Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Sugammadex for Reversal of Neuromuscular Blockade: Uses and Limitations

Author(s): Jesse Hawkins, Sandeep Khanna and Maged Argalious*

Volume 25, Issue 19, 2019

Page: [2140 - 2148] Pages: 9

DOI: 10.2174/1381612825666190704101145

Price: $65

Abstract

Sugammadex is a reversal agent that was engineered to reverse the effects of aminosteroid muscle relaxants. It is a modified gamma-cyclodextrin, i.e. a large glucose molecule bound in a ring-like structure. Sugammadex, when injected intravenously, creates a concentration gradient favoring the movement of aminosteroid muscle relaxants from the neuromuscular junction back into the plasma, and then encapsulates the aminosteroid muscle relaxants within its inner structure by forming tight water-soluble complexes. The dissociation of the aminosteroidal muscle relaxant from the post-synaptic acetylcholine receptors is responsible for the termination of neuromuscular blockade. This review article presents the current indication, mechanism of action, limitations, side effects and contraindications of sugammadex. An overview of monitoring of the adequacy of reversal of aminosteroid muscle relaxants with sugammadex is presented. Moreover, the use of sugammadex in special situations, including “cannot intubate cannot oxygenate” scenarios is also described.

Keywords: Sugammadex, neuromuscular blocker, aminosteroids, non-depolarizing muscle relaxants, neuromuscular reversal, neuromuscular monitoring.

[1]
Larijani GE, Gratz I, Silverberg M, Jacobi AG. Clinical pharmacology of the neuromuscular blocking agents. DICP 1991; 25(1): 54-64.
[http://dx.doi.org/10.1177/106002809102500111] [PMID: 1672571]
[2]
Griffith HR, Johnson GE. The use of curare in general anesthesia. Anesthesiology 1942; 3: 414-20.
[http://dx.doi.org/10.1097/00000542-194207000-00006]
[3]
Mencke T, Echternach M, Kleinschmidt S, et al. Laryngeal morbidity and quality of tracheal intubation: A randomized controlled trial. Anesthesiology 2003; 98(5): 1049-56.
[http://dx.doi.org/10.1097/00000542-200305000-00005] [PMID: 12717124]
[4]
Naguib M, Lien CA, Meistelman C. Pharmacology of Neuromuscular Blocking Drugs Miller’s Anesthesia. Elsevier 2015; pp. 958-94.
[5]
Lee CM. Train-of-4 quantitation of competitive neuromuscular block. Anesth Analg 1975; 54(5): 649-53.
[http://dx.doi.org/10.1213/00000539-197509000-00021] [PMID: 1237253]
[6]
Viby-Mogensen J, Howardy-Hansen P, Chraemmer-Jørgensen B, Ording H, Engbaek J, Nielsen A. Posttetanic count (PTC): A new method of evaluating an intense nondepolarizing neuromuscular blockade. Anesthesiology 1981; 55(4): 458-61.
[http://dx.doi.org/10.1097/00000542-198110000-00024] [PMID: 7294384]
[7]
Murphy GS, de Boer HD, Eriksson LI, Miller RD. Reversal of Neuromuscular Blockade Miller’s Anesthesia. Elsevier 2015; pp. 995-1027.
[8]
Brull SJ, Kopman AF. Current status of neuromuscular reversal and monitoring: Challenges and opportunities. Anesthesiology 2017; 126(1): 173-90.
[http://dx.doi.org/10.1097/ALN.0000000000001409] [PMID: 27820709]
[9]
Checketts MR, Alladi R, Ferguson K, et al. Recommendations for standards of monitoring during anaesthesia and recovery 2015: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia 2016; 71(1): 85-93.
[http://dx.doi.org/10.1111/anae.13316] [PMID: 26582586]
[10]
Naguib M, Brull SJ, Kopman AF, et al. Consensus statement on perioperative use of neuromuscular monitoring. Anesth Analg 2018; 127(1): 71-80.
[http://dx.doi.org/10.1213/ANE.0000000000002670] [PMID: 29200077]
[11]
Schaller SJ, Fink H. Sugammadex as a reversal agent for neuromuscular block: An evidence-based review. Core Evid 2013; 8: 57-67.
[PMID: 24098155]
[12]
Naguib M. Sugammadex: Another milestone in clinical neuromuscular pharmacology. Anesth Analg 2007; 104(3): 575-81.
[http://dx.doi.org/10.1213/01.ane.0000244594.63318.fc] [PMID: 17312211]
[13]
Bridion (sugammadex).prescribing information. Whitehouse Station, NJ: Merck & Co, Inc. 2017.
[14]
Adam JM, Bennett DJ, Bom A, et al. Cyclodextrin-derived host molecules as reversal agents for the neuromuscular blocker rocuronium bromide: Synthesis and structure-activity relationships. J Med Chem 2002; 45(9): 1806-16.
[http://dx.doi.org/10.1021/jm011107f] [PMID: 11960492]
[15]
Bom A, Bradley M, Cameron K, et al. A novel concept of reversing neuromuscular block: Chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host. Angew Chem Int Ed Engl 2002; 41(2): 266-70.
[http://dx.doi.org/10.1002/1521-3757(20020118)114:2<275:AID-ANGE275>3.0.CO;2-A] [PMID: 12491405]
[16]
Gijsenbergh F, Ramael S, Houwing N, van Iersel T. First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide. Anesthesiology 2005; 103(4): 695-703.
[http://dx.doi.org/10.1097/00000542-200510000-00007] [PMID: 16192761]
[17]
Sorgenfrei IF, Norrild K, Larsen PB, et al. Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex: A dose-finding and safety study. Anesthesiology 2006; 104(4): 667-74.
[http://dx.doi.org/10.1097/00000542-200604000-00009] [PMID: 16571960]
[18]
Suy K, Morias K, Cammu G, et al. Effective reversal of moderate rocuronium- or vecuronium-induced neuromuscular block with sugammadex, a selective relaxant binding agent. Anesthesiology 2007; 106(2): 283-8.
[http://dx.doi.org/10.1097/00000542-200702000-00016] [PMID: 17264722]
[19]
Khuenl-Brady KS, Wattwil M, Vanacker BF, Lora-Tamayo JI, Rietbergen H, Alvarez-Gómez JA. Sugammadex provides faster reversal of vecuronium-induced neuromuscular blockade compared with neostigmine: A multicenter, randomized, controlled trial. Anesth Analg 2010; 110(1): 64-73.
[http://dx.doi.org/10.1213/ane.0b013e3181ac53c3] [PMID: 19713265]
[20]
Sacan O, White PF, Tufanogullari B, Klein K. Sugammadex reversal of rocuronium-induced neuromuscular blockade: A comparison with neostigmine-glycopyrrolate and edrophonium-atropine. Anesth Analg 2007; 104(3): 569-74.
[http://dx.doi.org/10.1213/01.ane.0000248224.42707.48] [PMID: 17312210]
[21]
Geldner G, Niskanen M, Laurila P, et al. A randomised controlled trial comparing sugammadex and neostigmine at different depths of neuromuscular blockade in patients undergoing laparoscopic surgery. Anaesthesia 2012; 67(9): 991-8.
[http://dx.doi.org/10.1111/j.1365-2044.2012.07197.x] [PMID: 22698066]
[22]
Duvaldestin P, Kuizenga K, Saldien V, et al. A randomized, dose-response study of sugammadex given for the reversal of deep rocuronium- or vecuronium-induced neuromuscular blockade under sevoflurane anesthesia. Anesth Analg 2010; 110(1): 74-82.
[http://dx.doi.org/10.1213/ANE.0b013e3181c3be3c] [PMID: 19933538]
[23]
Hristovska AM, Duch P, Allingstrup M, Afshari A. The comparative efficacy and safety of sugammadex and neostigmine in reversing neuromuscular blockade in adults. A Cochrane systematic review with meta-analysis and trial sequential analysis. Anaesthesia 2018; 73(5): 631-41.
[http://dx.doi.org/10.1111/anae.14160] [PMID: 29280475]
[24]
Tran DTT, Newton EK, Mount VAH, et al. Rocuronium vs. succinylcholine for rapid sequence intubation: A Cochrane systematic review. Anaesthesia 2017; 72(6): 765-77.
[http://dx.doi.org/10.1111/anae.13903] [PMID: 28654173]
[25]
Tran DT, Newton EK, Mount VA, Lee JS, Wells GA, Perry JJ. Rocuronium versus succinylcholine for rapid sequence induction intubation. Cochrane Database Syst Rev 2015; (10): CD002788
[http://dx.doi.org/10.1002/14651858.CD002788.pub2]
[26]
Pühringer FK, Rex C, Sielenkämper AW, et al. Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points: An international, multicenter, randomized, dose-finding, safety assessor-blinded, phase II trial. Anesthesiology 2008; 109(2): 188-97.
[http://dx.doi.org/10.1097/ALN.0b013e31817f5bc7] [PMID: 18648227]
[27]
de Boer HD, Driessen JJ, Marcus MA, Kerkkamp H, Heeringa M, Klimek M. Reversal of rocuronium-induced (1.2 mg/kg) profound neuromuscular block by sugammadex: A multicenter, dose-finding and safety study. Anesthesiology 2007; 107(2): 239-44.
[http://dx.doi.org/10.1097/01.anes.0000270722.95764.37] [PMID: 17667567]
[28]
Berg H, Roed J, Viby-Mogensen J, et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand 1997; 41(9): 1095-103.
[http://dx.doi.org/10.1111/j.1399-6576.1997.tb04851.x] [PMID: 9366929]
[29]
Abrishami A, Ho J, Wong J, Yin L, Chung F. Sugammadex, a selective reversal medication for preventing postoperative residual neuromuscular blockade. Cochrane Database Syst Rev 2009; (4): CD007362
[http://dx.doi.org/10.1002/14651858.CD007362.pub2] [PMID: 19821409]
[30]
Brueckmann B, Sasaki N, Grobara P, et al. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade: A randomized, controlled study. Br J Anaesth 2015; 115(5): 743-51.
[http://dx.doi.org/10.1093/bja/aev104] [PMID: 25935840]
[31]
Puhringer FK, Blaszyk M, Cammu G. Sugammadex achieves fast recovery from shallow neuromuscular blockade by rocuronium or vecuronium: Dose-response studies. Eur J Anaesthesiol 2007; 39(Suppl.): 111.
[http://dx.doi.org/10.1097/00003643-200706001-00413]
[32]
Iwasaki H, Renew JR, Kunisawa T, Brull SJ. Preparing for the unexpected: Special considerations and complications after sugammadex administration. BMC Anesthesiol 2017; 17(1): 140.
[http://dx.doi.org/10.1186/s12871-017-0429-9] [PMID: 29041919]
[33]
Cammu G, de Kam PJ, De Graeve K, et al. Repeat dosing of rocuronium 1.2 mg kg-1 after reversal of neuromuscular block by sugammadex 4.0 mg kg-1 in anaesthetized healthy volunteers: A modelling-based pilot study. Br J Anaesth 2010; 105(4): 487-92.
[http://dx.doi.org/10.1093/bja/aeq167] [PMID: 20630888]
[34]
de Boer HD, Driessen JJ, van Egmond J, Booij LH. Non-steroidal neuromuscular blocking agents to re-establish paralysis after reversal of rocuronium-induced neuromuscular block with sugammadex. Can J Anaesth 2008; 55(2): 124-5.
[http://dx.doi.org/10.1007/BF03016324] [PMID: 18245072]
[35]
Asakura C, Iwasaki H. The use of succinylcholine after sugammadex reversal. J Anesth 2016; 30(5): 915.
[http://dx.doi.org/10.1007/s00540-016-2203-4] [PMID: 27294273]
[36]
Kotake Y, Ochiai R, Suzuki T, et al. Reversal with sugammadex in the absence of monitoring did not preclude residual neuromuscular block. Anesth Analg 2013; 117(2): 345-51.
[http://dx.doi.org/10.1213/ANE.0b013e3182999672] [PMID: 23757472]
[37]
O’Reilly-Shah VN, Lynde GC, Mitchell ML, Maffeo CL, Jabaley CS, Wolf FA. Initial experience with the unrestricted introduction of sugammadex at a large academic medical center: A retrospective observational study examining postoperative mechanical ventilation and efficiency outcomes. Korean J Anesthesiol 2018; 71(5): 374-85.
[http://dx.doi.org/10.4097/kja.d.18.00063] [PMID: 29843504]
[38]
Nemes R, Fülesdi B, Pongrácz A, et al. Impact of reversal strategies on the incidence of postoperative residual paralysis after rocuronium relaxation without neuromuscular monitoring: A partially randomised placebo controlled trial. Eur J Anaesthesiol 2017; 34(9): 609-16.
[http://dx.doi.org/10.1097/EJA.0000000000000585] [PMID: 28030444]
[39]
Loupec T, Frasca D, Rousseau N, Faure JP, Mimoz O, Debaene B. Appropriate dosing of sugammadex to reverse deep rocuronium-induced neuromuscular blockade in morbidly obese patients. Anaesthesia 2016; 71(3): 265-72.
[http://dx.doi.org/10.1111/anae.13344] [PMID: 26685122]
[40]
Llauradó S, Sabaté A, Ferreres E, Camprubí I, Cabrera A. Sugammadex ideal body weight dose adjusted by level of neuromuscular blockade in laparoscopic bariatric surgery. Anesthesiology 2012; 117(1): 93-8.
[http://dx.doi.org/10.1097/ALN.0b013e3182580409] [PMID: 22549697]
[41]
Van Lancker P, Dillemans B, Bogaert T, Mulier JP, De Kock M, Haspeslagh M. Ideal versus corrected body weight for dosage of sugammadex in morbidly obese patients. Anaesthesia 2011; 66(8): 721-5.
[http://dx.doi.org/10.1111/j.1365-2044.2011.06782.x] [PMID: 21692760]
[42]
Le Corre F, Nejmeddine S, Fatahine C, Tayar C, Marty J, Plaud B. Recurarization after sugammadex reversal in an obese patient. Can J Anaesth 2011; 58(10): 944-7.
[http://dx.doi.org/10.1007/s12630-011-9554-y] [PMID: 21751072]
[43]
Gaszynski T, Szewczyk T, Gaszynski W. Randomized comparison of sugammadex and neostigmine for reversal of rocuronium-induced muscle relaxation in morbidly obese undergoing general anaesthesia. Br J Anaesth 2012; 108(2): 236-9.
[http://dx.doi.org/10.1093/bja/aer330] [PMID: 22012861]
[44]
Lee C, Jahr JS, Candiotti K. Reversal of profound rocuronium NMB with sugammadex is faster than recovery from succinylcholine. Anesthesiology 2009; 110(5): 1020-5.
[http://dx.doi.org/10.1097/ALN.0b013e31819dabb0] [PMID: 19387176]
[45]
Naguib M, Brewer L, LaPierre C, Kopman AF, Johnson KB. The Myth of Rescue Reversal in “Can’t Intubate, Can’t Ventilate” Scenarios. Anesth Analg 2016; 123(1): 82-92.
[http://dx.doi.org/10.1213/ANE.0000000000001347] [PMID: 27140684]
[46]
Chambers D, Paulden M, Paton F, et al. Sugammadex for the reversal of muscle relaxation in general anaesthesia: A systematic review and economic assessment. Health Technol Assess 2010; 14(39): 1-211.
[http://dx.doi.org/10.3310/hta14390] [PMID: 20688009]
[47]
Ledowski T, Hillyard S, Kozman A, et al. Unrestricted access to sugammadex: Impact on neuromuscular blocking agent choice, reversal practice and associated healthcare costs. Anaesth Intensive Care 2012; 40(2): 340-3.
[http://dx.doi.org/10.1177/0310057X1204000219] [PMID: 22417031]
[48]
Carron M, Baratto F, Zarantonello F, Ori C. Sugammadex for reversal of neuromuscular blockade: A retrospective analysis of clinical outcomes and cost-effectiveness in a single center. Clinicoecon Outcomes Res 2016; 8: 43-52.
[http://dx.doi.org/10.2147/CEOR.S100921] [PMID: 26937203]
[49]
Cammu G. Sugammadex: Appropriate use in the context of budgetary constraints. Curr Anesthesiol Rep 2018; 8(2): 178-85.
[http://dx.doi.org/10.1007/s40140-018-0265-6] [PMID: 29904285]
[50]
Lee HJ, Kim KS, Jeong JS, Kim KN, Lee BC. The influence of mild hypothermia on reversal of rocuronium-induced deep neuromuscular block with sugammadex. BMC Anesthesiol 2015; 15: 7.
[http://dx.doi.org/10.1186/1471-2253-15-7] [PMID: 25971394]
[51]
Tsur A, Kalansky A. Hypersensitivity associated with sugammadex administration: A systematic review. Anaesthesia 2014; 69(11): 1251-7.
[http://dx.doi.org/10.1111/anae.12736] [PMID: 24848211]
[52]
Menéndez-Ozcoidi L, Ortiz-Gómez JR, Olaguibel-Ribero JM, Salvador-Bravo MJ. Allergy to low dose sugammadex. Anaesthesia 2011; 66(3): 217-9.
[http://dx.doi.org/10.1111/j.1365-2044.2010.06611.x] [PMID: 21320089]
[53]
Godai K, Hasegawa-Moriyama M, Kuniyoshi T, et al. Three cases of suspected sugammadex-induced hypersensitivity reactions. Br J Anaesth 2012; 109(2): 216-8.
[http://dx.doi.org/10.1093/bja/aes137] [PMID: 22617091]
[54]
Munro IC, Newberne PM, Young VR, Bär A. Safety assessment of gamma-cyclodextrin. Regul Toxicol Pharmacol 2004; 39(Suppl. 1): S3-S13.
[http://dx.doi.org/10.1016/j.yrtph.2004.05.008] [PMID: 15265610]
[55]
Min KC, Bondiskey P, Schulz V, et al. Hypersensitivity incidence after sugammadex administration in healthy subjects: A randomised controlled trial. Br J Anaesth 2018; 121(4): 749-57.
[http://dx.doi.org/10.1016/j.bja.2018.05.056] [PMID: 30236237]
[56]
Hunter JM, Naguib M. Sugammadex-induced bradycardia and asystole: How great is the risk? Br J Anaesth 2018; 121(1): 8-12.
[http://dx.doi.org/10.1016/j.bja.2018.03.003] [PMID: 29935599]
[57]
Saito I, Osaka Y, Shimada M. Transient third-degree AV block following sugammadex. J Anesth 2015; 29(4): 641.
[http://dx.doi.org/10.1007/s00540-015-1980-5] [PMID: 25672653]
[58]
Sanoja IA, Toth KS. Profound bradycardia and cardiac arrest after sugammadex administration in a previously healthy patient: A case report. A A Pract 2019; 12(1): 22-44.
[http://dx.doi.org/10.1213/XAA.0000000000000834] [PMID: 30004912]
[59]
Bhavani SS. Severe bradycardia and asystole after sugammadex. Br J Anaesth 2018; 121(1): 95-6.
[http://dx.doi.org/10.1016/j.bja.2018.02.036] [PMID: 29935601]
[60]
De Kam PJ, Grobara P, Prohn M, et al. Effects of sugammadex on activated partial thromboplastin time and prothrombin time in healthy subjects. Int J Clin Pharmacol Ther 2014; 52(3): 227-36.
[http://dx.doi.org/10.5414/CP201976] [PMID: 24447651]
[61]
Dirkmann D, Britten MW, Pauling H, et al. Anticoagulant effect of sugammadex: Just an in vitro artifact. Anesthesiology 2016; 124(6): 1277-85.
[http://dx.doi.org/10.1097/ALN.0000000000001076] [PMID: 26950705]
[62]
Rahe-Meyer N, Fennema H, Schulman S, et al. Effect of reversal of neuromuscular blockade with sugammadex versus usual care on bleeding risk in a randomized study of surgical patients. Anesthesiology 2014; 121(5): 969-77.
[http://dx.doi.org/10.1097/ALN.0000000000000424] [PMID: 25208233]
[63]
de Kam PJ, El Galta R, Kruithof AC, et al. No clinically relevant interaction between sugammadex and aspirin on platelet aggregation and coagulation parameters. Int J Clin Pharmacol Ther 2013; 51(12): 976-85.
[http://dx.doi.org/10.5414/CP201970] [PMID: 24120718]
[64]
Williamson RM, Mallaiah S, Barclay P. Rocuronium and sugammadex for rapid sequence induction of obstetric general anaesthesia. Acta Anaesthesiol Scand 2011; 55(6): 694-9.
[http://dx.doi.org/10.1111/j.1399-6576.2011.02431.x] [PMID: 21480829]
[65]
Pühringer FK, Kristen P, Rex C. Sugammadex reversal of rocuronium-induced neuromuscular block in Caesarean section patients: A series of seven cases. Br J Anaesth 2010; 105(5): 657-60.
[http://dx.doi.org/10.1093/bja/aeq227] [PMID: 20736231]
[66]
Bethesda (MD). US: National Library of Medicine 2006.
[67]
Zwiers A, van den Heuvel M, Smeets J, Rutherford S. Assessment of the potential for displacement interactions with sugammadex: A pharmacokinetic-pharmacodynamic modelling approach. Clin Drug Investig 2011; 31(2): 101-11.
[http://dx.doi.org/10.1007/BF03256937] [PMID: 21067251]
[68]
Smart A, Gallagher J. Clinicians and women’s learning package on Sugammadex (Bridion) and hormonal contraceptives. Aust Nurs Midwifery J 2015; 22(9): 52.
[PMID: 26449072]
[69]
Jabaley CS, Wolf FA, Lynde GC, O’Reilly-Shah VN. Crowdsourcing sugammadex adverse event rates using an in-app survey: Feasibility assessment from an observational study. Ther Adv Drug Saf 2018; 9(7): 331-42.
[http://dx.doi.org/10.1177/2042098618769565] [PMID: 30034775]
[70]
Min KC, Woo T, Assaid C, et al. Incidence of hypersensitivity and anaphylaxis with sugammadex. J Clin Anesth 2018; 47: 67-73.
[http://dx.doi.org/10.1016/j.jclinane.2018.03.018] [PMID: 29621739]
[71]
Patton K, Borshoff DC. Adverse drug reactions. Anaesthesia 2018; 73(Suppl. 1): 76-84.
[http://dx.doi.org/10.1111/anae.14143] [PMID: 29313907]
[72]
Min KC, Lasseter KC, Marbury TC, et al. Pharmacokinetics of sugammadex in subjects with moderate and severe renal impairment. Int J Clin Pharmacol Ther 2017; 55(9): 746-52.
[http://dx.doi.org/10.5414/CP203025] [PMID: 28679468]
[73]
Panhuizen IF, Gold SJ, Buerkle C, et al. Efficacy, safety and pharmacokinetics of sugammadex 4 mg kg-1 for reversal of deep neuromuscular blockade in patients with severe renal impairment. Br J Anaesth 2015; 114(5): 777-84.
[http://dx.doi.org/10.1093/bja/aet586] [PMID: 25829395]
[74]
Cammu G, Van Vlem B, van den Heuvel M, et al. Dialysability of sugammadex and its complex with rocuronium in intensive care patients with severe renal impairment. Br J Anaesth 2012; 109(3): 382-90.
[http://dx.doi.org/10.1093/bja/aes207] [PMID: 22732111]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy