[2]
Daniel, D.; Fabrizio, C. Handbook of Advanced Methods and Processes in Oxidation Catalysis: From Laboratory to Industry; World Scientific: Singapore, 2014, pp. 796-1017.
[3]
Spitz, P.H. Petrochemicals: The Rise of an Industry; Wiley: New
York, 1988, 27, p. 588.
[4]
Snell, F.D.; Hilton, C.L.; Ettre, L.S. Encyclopedia of Industrial Chemical Analysis; Interscience Publishers: New York, 1971, Vol. 11, .
[5]
Barber, W.A.; Fetchin, J.A. Copper catalyst for hydration of nitriles
to amides, U.S. Patent 4048226A. 1977.
[7]
Matsuda, K.; Barber, W.A. Reduced copper catalyst on support., European Patent 1069946A1. 1978.
[8]
Tefertiller, B.A.; Habermann, C.E. Heterogeneous catalyst for the
liquid phase hydrolysis of nitriles to amides, U.S. Patent
4036879A. 1971.
[10]
Dalin, M.A.; Kolchin, I.K.; Serebr︠i︡akov, B.R. Acrylonitrile; Technomic
Publication: London, 1971, Vol. 6, .
[11]
Heller, S.R.; Milne, G.W. EPA/NIH Mass Spectral Database, Volume
2. Molecular Weights 186-273, (No. NSRDS-NBS-63-VOL-2).
National Standard Reference Data System,. 1978.
[12]
Badham, J.W. Adiponitrile apparatus., U.S. Patent 3728480A. 1971.
[13]
Baizer, M.M.; Campbell, C.R.; Fariss, R.H.; Robert, J. Adiponitrile process, U.S. Patent 3529011A. 1965.
[15]
Wu, M.M. Acrylonitrile and acrylonitrile polymers. In: Encyclopedia of Polymer Science and Technology; Wiley: Weinheim, 2002.
[16]
Acrylonitrile, Chemical Economics Handbook; IHS Market: London, 2019.
[17]
Acrylonitrile (ACN): 2019 World Market Outlook and Forecast up to 2028; Merchant Research and Consulting Ltd, 2019, p. 154.
[18]
Bartoň, J.; Capek, I.; Hrdlovič, P.; Photoinitiation, I.I. Kinetics of the acrylonitrile polymerization photoinitiated by aromatic hydrocarbons. J. Polym. Sci. Pol. Chem., 1975, 13(2), 2671-2690.
[19]
Simitzis, J. Polyacrylonitrile. In: Handbook of Thermoplastics; Olabisi, O.; Adewale, K., Eds.; CRC Press: Boca Raton, 1997; pp. 177-201.
[20]
Melacini, P.; Patron, L.; Moretti, A.; Tedesco, R. Process for the
bulk polymerization of acrylonitrile, U.S. Patent 3821178A. 1974.
[21]
Patron, L.; Moretti, A.; Tedesco, R.; Pasqualetto, R. Process for the
bulk-polymerization of acrylonitrile., U.S. Patent 3879360A. 1975.
[22]
Charles, M.W. Continuous process for the polymerization of acrylonitrile., U.S. Patent 2777832A. 1957.
[23]
Brubaker, M.M.; Jacobson, R.A. Organic compound polymerization
process., WO2006031965A2. 1949.
[25]
Keskkula, H.; Paul, D. Barlow, J. Polymer blends. In: Kirk‐Othmer Encyclopedia of Chemical Technology; Wiley: New York, 1996.
[26]
Bradzil, J.F. Acrylonitrile. In: Kirk‐Othmer Encyclopedia of Chemical Technology; Wiley: New York, 2000; pp. 1-17.
[27]
Wu, M.M. Kirk‐Othmer Encyclopedia of Chemical Technology; Wiley: New York, 2000.
[28]
Ball, L.E.; Curatolo, B.S. Kirk‐Othmer Encyclopedia of Chemical Technology; Wiley: New York, 2001.
[29]
Kondo, Y.; Yamamoto, T.; Yamamoto, T. Porous flame retardant
acrylic synthetic fibers and a method for producing these fibers, U.S. Patent 4623583A. 1982.
[31]
Salee, G. Polymer blends with improved hydrolytic stability., U.S.
Patent 4304709A. 1982.
[32]
McKeen, L.W. Polyesters. In: Fatigue and Tribological Properties of Plastics and Elastomers, 2nd ed; Elsevier: Amsterdam, 2010; pp. 99-147.
[33]
Styrenic copolymersChemical Economics Handbook; IHS Market:
London, 2019, pp. 15-110.
[34]
Kutz, M. Applied Plastics Engineering, Handbook: Processing and Materials; Elsevier: Amsterdam, 2011.
[36]
Cincera, D.L.; Dalton, W.O.; Jastrzebski, M.B.; Wyman, C.E. Continuous mass polymerization process for ABS polymeric polyblends., U.S. Patent 3903200A. 1975.
[37]
Simon, R.H. Mass polymerization process for ABS polyblends, U.S. Patent 4417030A. 1981.
[38]
Alfred, B.C.; Peter, S.J.J. Process for polymerizing vinylidene
compounds., U.S. Patent 9637564B2. 1951.
[42]
Fernandez-Vicente, M.; Calle, W.; Ferrandiz, S.; Conejero, A. Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Print. Addit. Manuf., 2016, 3(3), 183-192.
[44]
Peterson, A.M. Review of acrylonitrile butadiene styrene in fused filament fabrication: A plastics engineering-focused perspective. Addit. Manuf., 2019, 27, 363-371.
[45]
(ABS) ResinsChemical Economics Handbook; IHS Market: London, 2019, pp. 22-110.
[46]
Castelli, A. New Catalysts for Acrylonitrile Synthesis., Ph. D
Thesis, Università di Bologna, Bologna. 2011.
[51]
Edison, T.A. Electric lamp., U.S. Patent 223898A. 1880.
[52]
Park, S-J.; Lee, S-Y. History and structure of carbon fibers. Carbon Fibers; Springer: Berlin, 2015, pp. 1-30.
[54]
Farsani, R. In Production of carbon fibers from acrylic fibersInternational Conference on Chemical, Civil and Environment engineering; Dubai, March 24-25, 2012.
[55]
Choi, D.; Kil, H.S.; Lee, S. Fabrication of low-cost carbon fibers using economical precursors and advanced processing technologies. Carbon, 2019, 142, 610-649.
[58]
Savage, E. Carbon-Carbon Composites; Springer: Heidelberg, 2012, pp. 45-65.
[62]
Burlant, W.; Parsons, J. Pyrolysis of polyacrylonitrile. J. Polym. Sci., Polym. Phys. Ed., 1956, 22(101), 249-256.
[64]
Clingerman, M.L. Development and Modeling of Electrically Conductive Composite Materials, Ph.D Thesis, Michigan Technological
University, Michigan. 2001.
[77]
Schurz, J. Discoloration effects in acrylonitrile polymers. J. Polym. Sci., Polym. Phys. Ed., 1958, 28(117), 438-439.
[79]
Konkin, A.A.; Watt, W. Properties of carbon fibers and fields of their application. Production of cellulose based carbon fibrous materials. Chemistry and physics of the conversion of polyacrylonitrile fibers into high modulus carbon fibers. In: Strong Fibers; Watt, W.; Perov, B.V., Eds.; Elsevier Science Publishers: Amsterdam, 1985; pp. 241-273.
[86]
Zhu, D.; Xu, C.; Nakura, N.; Matsuo, M. Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution. Carbon, 2002, 40(3), 363-373.
[90]
Capone, G. Wet-spinning technology; Acrylic Fiber Technology and Applications, 1995, pp. 69-103.
[91]
Prasad, G. Wet spinning of acrylic fiber and effects of spinning variables on fiber formation. Synthetic Fibers, 1985, 1, 6-15.
[92]
Zhang, D. Advances in Filament Yarn Spinning of Textiles and Polymers; Elsevier: Amsterdam, 2014.
[94]
Fukagawa, H.; Hirogaki, T.; Kato, T.; Kato, A.; Seki, T.M. In Development of the Hole Generation Technology for Aircraft CFRP Parts.Key Eng. Mater; , 2012, pp. 226-231.
[96]
Piancastelli, L.; Frizziero, L.; Zanuccoli, G.; Daidzic, N.; Rocchi, I. A comparison between CFRP and 2195-FSW for aircraft structural designs. Intern. J. Heat Technol., 2013, 31(1), 17-24.
[97]
Tenney, D.R.; Davis, J.G., Jr; Pipes, R.B.; Johnston, N. NASA
composite materials development, Lessons learned and future challenges. 2009.
[98]
Witten, E.; Kraus, T.; Kühnel, M. Composites Market Report 2015-
Market developments, trends, outlook and challenges. AVK Industrievereinigung
verstärkte Kunststoffe, Carbon Composites eV, 2015.
[99]
Pregoretti, A.; Traina, M.; Bunsell, A. Handbook of Tensile Properties of Textile and Technical Fibers; Woodhead Publishing Limited Cambridge: UK, 2009, pp. 592-615.