Mini-Review Article

当前用于改善心血管疾病和肾脏疾病等流行病的诊断和治疗的药物纳米靶向策略

卷 20, 期 14, 2019

页: [1496 - 1504] 页: 9

弟呕挨: 10.2174/1389450120666190702162533

价格: $65

conference banner
摘要

背景:在调节心血管稳态过程中,肾脏和心血管系统彼此密切相关。但是,寻找治疗和诊断心血管疾病的新方法没有考虑到这种关系,因此浪费了它们的评估结果以及其整体和综合分析所提供的优势。例如,在两种病理中均过表达的多种受体足够大,可以扩展寻找新的分子靶标和配体的范围。纳米技术提供了针对肾脏,心脏和血管的药理靶向策略,以克服传统心血管疗法的基本限制之一,这些限制与其在这些关键器官中的非特异性药效分布有关。 最新发现:用于治疗或诊断动脉粥样硬化,血栓形成,肾癌或纤维化,肾小球肾炎以及其他肾脏,心脏和血管病变的药物或造影剂纳米靶标可提高疗效,并减少副作用。这种作用之所以可能是因为,通过药理靶向,主要在所需部位发现了该药物。 综述目的:在本综述中,针对几种纳米载体的主动,被动和物理靶向策略进行了探讨,这些载体已被评估并提议用于治疗和诊断不同的心血管疾病。

关键词: 肾脏,心血管系统,治疗,诊断,纳米技术,纳米靶向。

« Previous
图形摘要

[1]
Shi A, Tao Z, Wei P, Zhao J. Epidemiological aspects of heart diseases. Exp Ther Med 2016; 12(3): 1645-50.
[http://dx.doi.org/10.3892/etm.2016.3541] [PMID: 27602082]
[2]
Said S, Hernandez GT. The link between chronic kidney disease and cardiovascular disease. J Nephropathol 2014; 3(3): 99-104.
[PMID: 25093157]
[3]
Nodari S, Palazzuoli A. Current treatment in acute and chronic cardio-renal syndrome. Heart Fail Rev 2011; 16(6): 583-94.
[http://dx.doi.org/10.1007/s10741-010-9202-6] [PMID: 21136149]
[4]
Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J 2015; 36(23): 1437-44.
[http://dx.doi.org/10.1093/eurheartj/ehv010] [PMID: 25838436]
[5]
Martín Giménez VM, Kassuha DE, Manucha W. Nanomedicine applied to cardiovascular diseases: latest developments. Ther Adv Cardiovasc Dis 2017; 11(4): 133-42.
[http://dx.doi.org/10.1177/1753944717692293] [PMID: 28198204]
[6]
Jain A, Kumari R, Tiwari A, et al. Nanocarrier based advances in drug delivery to tumor: an overview. Curr Drug Targets 2018; 19(13): 1498-518.
[http://dx.doi.org/10.2174/1389450119666180131105822] [PMID: 29384060]
[7]
Kassem AA. Nanotechnology inspired advanced engineering fundamentals for optimizing drug delivery. Curr Drug Targets 2018; 19(15): 1839-54.
[http://dx.doi.org/10.2174/1389450119666180207092831] [PMID: 29412103]
[8]
Yu X, Trase I, Ren M, et al. Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater 2016.20161087250
[http://dx.doi.org/10.1155/2016/1087250] [PMID: 27398083]
[9]
Geldenhuys WJ, Khayat MT, Yun J, Nayeem MA. Drug delivery and nanoformulations for the cardiovascular system. Res Rev Drug Deliv 2017; 1(1): 32-40.
[PMID: 28713881]
[10]
Martín Giménez VM, Ruiz-Roso MB, Camargo AB, Kassuha D, Manucha W. Nanotechnology, a new paradigm in atherosclerosis treatment. Clin Investig Arterioscler 2017; 29(5): 224-30.
[http://dx.doi.org/10.1016/j.artere.2017.09.001] [PMID: 27914728]
[11]
Martín Giménez V, Camargo A, Kassuha D, Manucha W. Nanotechnological strategies as smart ways for diagnosis and treatment of the atherosclerosis. Curr Pharm Des 2018; 24(39): 4681-4.
[http://dx.doi.org/10.2174/1381612825666190110154609]
[12]
Gadde S, Rayner KJ. Nanomedicine Meets microRNA: Current advances in rna-based nanotherapies for atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36(9): e73-9.
[http://dx.doi.org/10.1161/ATVBAHA.116.307481] [PMID: 27559146]
[13]
Kelley WJ, Safari H, Lopez-Cazares G, Eniola-Adefeso O. Vascular-targeted nanocarriers: design considerations and strategies for successful treatment of atherosclerosis and other vascular diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(6): 909-26.
[http://dx.doi.org/10.1002/wnan.1414] [PMID: 27194461]
[14]
Liu M, Li M, Wang G, et al. Heart-targeted nanoscale drug delivery systems. J Biomed Nanotechnol 2014; 10(9): 2038-62.
[http://dx.doi.org/10.1166/jbn.2014.1894] [PMID: 25992448]
[15]
Wang J, Masehi-Lano JJ, Chung EJ. Peptide and antibody ligands for renal targeting: nanomedicine strategies for kidney disease. Biomater Sci 2017; 5(8): 1450-9.
[http://dx.doi.org/10.1039/C7BM00271H] [PMID: 28516997]
[16]
Kamaly N, He JC, Ausiello DA, Farokhzad OC. Nanomedicines for renal disease: current status and future applications. Nat Rev Nephrol 2016; 12(12): 738-53.
[http://dx.doi.org/10.1038/nrneph.2016.156] [PMID: 27795549]
[17]
Zhou P, Sun X, Zhang Z. Kidney-targeted drug delivery systems. Acta Pharm Sin B 2014; 4(1): 37-42.
[http://dx.doi.org/10.1016/j.apsb.2013.12.005] [PMID: 26579362]
[18]
Xu P, Zhang H, Dang R, Jiang P. Peptide and low molecular weight proteins based kidney targeted drug delivery systems. Protein Pept Lett 2018; 25(6): 522-7.
[http://dx.doi.org/10.2174/0929866525666180530123441] [PMID: 29848259]
[19]
Liu CP, Hu Y, Lin JC, et al. Targeting strategies for drug delivery to the kidney: From renal glomeruli to tubules. Med Res Rev 2018; 39(2): 561-71.
[http://dx.doi.org/10.1002/med.21532] [PMID: 30136283]
[20]
Williams RM, Jaimes EA, Heller DA. Nanomedicines for kidney diseases. Kidney Int 2016; 90(4): 740-5.
[http://dx.doi.org/10.1016/j.kint.2016.03.041] [PMID: 27292222]
[21]
Martinez JO, Molinaro R, Hartman KA, et al. Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics 2018; 8(4): 1131-45.
[http://dx.doi.org/10.7150/thno.22078] [PMID: 29464004]
[22]
Kim M, Sahu A, Kim GB, et al. Comparison of in vivo targeting ability between cRGD and collagen-targeting peptide conjugated nano-carriers for atherosclerosis. J Control Release 2018; 269: 337-46.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.033] [PMID: 29175140]
[23]
Sun X, Li W, Zhang X, et al. In Vivo Targeting and Imaging of Atherosclerosis Using Multifunctional Virus-Like Particles of Simian Virus 40. Nano Lett 2016; 16(10): 6164-71.
[http://dx.doi.org/10.1021/acs.nanolett.6b02386] [PMID: 27622963]
[24]
Ma S, Tian XY, Zhang Y, et al. E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Sci Rep 2016; 6: 22910.
[http://dx.doi.org/10.1038/srep22910] [PMID: 26956647]
[25]
Yu M, Ortega CA, Si K, et al. Nanoparticles targeting extra domain B of fibronectin-specific to the atherosclerotic lesion types III, IV, and V-enhance plaque detection and cargo delivery. Theranostics 2018; 8(21): 6008-24.
[http://dx.doi.org/10.7150/thno.24365] [PMID: 30613278]
[26]
Matuszak J, Lutz B, Sekita A, et al. Drug delivery to atherosclerotic plaques using superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2018; 13: 8443-60.
[http://dx.doi.org/10.2147/IJN.S179273] [PMID: 30587970]
[27]
Song Y, Huang Z, Liu X, et al. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE-/-) mice. Nanomedicine (Lond) 2019; 15(1): 13-24.
[http://dx.doi.org/10.1016/j.nano.2018.08.002] [PMID: 30171903]
[28]
Vankayala R, Corber SR, Mac JT, et al. Erythrocyte-derived nanoparticles as a theranostic agent for near-infrared fluorescence imaging and thrombolysis of blood clots. Macromol Biosci 2018; 18(4)e1700379
[http://dx.doi.org/10.1002/mabi.201700379] [PMID: 29479820]
[29]
Deng J, Mei H, Shi W, et al. Recombinant tissue plasminogen activator-conjugated nanoparticles effectively targets thrombolysis in a rat model of middle cerebral artery occlusion. Curr Med Sci 2018; 38(3): 427-35.
[http://dx.doi.org/10.1007/s11596-018-1896-z] [PMID: 30074208]
[30]
Heid S, Unterweger H, Tietze R, et al. Synthesis and characterization of tissue plasminogen activator-functionalized superparamagnetic iron oxide nanoparticles for targeted fibrin clot dissolution. Int J Mol Sci 2017; 18(9)E1837
[http://dx.doi.org/10.3390/ijms18091837] [PMID: 28837060]
[31]
Juenet M, Aid-Launais R, Li B, et al. Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials 2018; 156: 204-16.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.047] [PMID: 29216534]
[32]
Huang Z, Song Y, Pang Z, et al. Targeted delivery of thymosin beta 4 to the injured myocardium using CREKA-conjugated nanoparticles. Int J Nanomedicine 2017; 12: 3023-36.
[http://dx.doi.org/10.2147/IJN.S131949] [PMID: 28442910]
[33]
Ishihara T, Hayashi E, Yamamoto S, et al. Encapsulation of beraprost sodium in nanoparticles: analysis of sustained release properties, targeting abilities and pharmacological activities in animal models of pulmonary arterial hypertension. J Control Release 2015; 197: 97-104.
[http://dx.doi.org/10.1016/j.jconrel.2014.10.029] [PMID: 25449809]
[34]
Maeda H. Polymer therapeutics and the EPR effect. J Drug Target 2017; 25(9-10): 781-5.
[http://dx.doi.org/10.1080/1061186X.2017.1365878] [PMID: 28988499]
[35]
Vandergriff AC, Hensley TM, Henry ET, et al. Magnetic targeting of cardiosphere-derived stem cells with ferumoxytol nanoparticles for treating rats with myocardial infarction. Biomaterials 2014; 35(30): 8528-39.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.031] [PMID: 25043570]
[36]
Li R, Kowalski PS, Morselt HWM, et al. Endothelium-targeted delivery of dexamethasone by anti-VCAM-1 SAINT-O-Somes in mouse endotoxemia. PLoS One 2018; 13(5)e0196976
[http://dx.doi.org/10.1371/journal.pone.0196976] [PMID: 29763440]
[37]
Nastase MV, Zeng-Brouwers J, Wygrecka M, Schaefer L. Targeting renal fibrosis: Mechanisms and drug delivery systems. Adv Drug Deliv Rev 2018; 129: 295-307.
[http://dx.doi.org/10.1016/j.addr.2017.12.019] [PMID: 29288033]
[38]
Tan L, Lai X, Zhang M, et al. A stimuli-responsive drug release nanoplatform for kidney-specific anti-fibrosis treatment. Biomater Sci 2019; 7(4): 1554-64.
[http://dx.doi.org/10.1039/C8BM01297K] [PMID: 30681674]
[39]
Alameh M, Lavertu M, Tran-Khanh N, et al. siRNA delivery with chitosan: influence of chitosan molecular weight, degree of deacetylation, and amine to phosphate ratio on in vitro silencing efficiency, hemocompatibility, biodistribution, and in vivo efficacy. Biomacromolecules 2018; 19(1): 112-31.
[http://dx.doi.org/10.1021/acs.biomac.7b01297] [PMID: 29211954]
[40]
Tang L, Yu G, Tan L, et al. Highly stabilized core-satellite gold nanoassemblies in vivo: dna-directed self-assembly, peg modification and cell imaging. Sci Rep 2017; 7(1): 8553.
[http://dx.doi.org/10.1038/s41598-017-08903-0] [PMID: 28819188]
[41]
Li M, Tan L, Tang L, Li A, Hu J. Hydrosoluble 50% N-acetylation-thiolated chitosan complex with cobalt as a pH-responsive renal fibrosis targeting drugs. J Biomater Sci Polym Ed 2016; 27(10): 972-85.
[http://dx.doi.org/10.1080/09205063.2016.1175405] [PMID: 27115330]
[42]
Qiao H, Sun M, Su Z, et al. Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan. Biomaterials 2014; 35(25): 7157-71.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.106] [PMID: 24862442]
[43]
Geng X, Zhang M, Lai X, et al. Small-sized cationic miri-pcnps selectively target the kidneys for high-efficiency antifibrosis treatment. Adv Healthc Mater 2018; 7(21)e1800558
[http://dx.doi.org/10.1002/adhm.201800558] [PMID: 30277665]
[44]
Gao S, Hein S, Dagnæs-Hansen F, et al. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing. Theranostics 2014; 4(10): 1039-51.
[http://dx.doi.org/10.7150/thno.7866] [PMID: 25157280]
[45]
Teekamp N, Van Dijk F, Broesder A, et al. Polymeric microspheres for the sustained release of a protein-based drug carrier targeting the PDGFβ-receptor in the fibrotic kidney. Int J Pharm 2017; 534(1-2): 229-36.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.072] [PMID: 29038068]
[46]
Lin YF, Lee YH, Hsu YH, et al. Resveratrol-loaded nanoparticles conjugated with kidney injury molecule-1 as a drug delivery system for potential use in chronic kidney disease. Nanomedicine (Lond) 2017; 12(22): 2741-56.
[http://dx.doi.org/10.2217/nnm-2017-0256] [PMID: 28884615]
[47]
Visweswaran GR, Gholizadeh S, Ruiters MH, et al. Targeting rapamycin to podocytes using a vascular cell adhesion molecule-1 (vcam-1)-harnessed saint-based lipid carrier system. PLoS One 2015; 10(9)e0138870
[http://dx.doi.org/10.1371/journal.pone.0138870] [PMID: 26407295]
[48]
Rubio-Navarro A, Carril M, Padro D, et al. CD163-macrophages are involved in rhabdomyolysis-induced kidney injury and may be detected by mri with targeted gold-coated iron oxide nanoparticles. Theranostics 2016; 6(6): 896-914.
[http://dx.doi.org/10.7150/thno.14915] [PMID: 27162559]
[49]
Hu JB, Song GL, Liu D, et al. Sialic acid-modified solid lipid nanoparticles as vascular endothelium-targeting carriers for ischemia-reperfusion-induced acute renal injury. Drug Deliv 2017; 24(1): 1856-67.
[http://dx.doi.org/10.1080/10717544.2017.1410258] [PMID: 29188738]
[50]
DiRito JR, Hosgood SA, Tietjen GT, Nicholson ML. The future of marginal kidney repair in the context of normothermic machine perfusion. Am J Transplant 2018; 18(10): 2400-8.
[http://dx.doi.org/10.1111/ajt.14963] [PMID: 29878499]
[51]
Tietjen GT, Hosgood SA, DiRito J, et al. Nanoparticle targeting to the endothelium during normothermic machine perfusion of human kidneys. Sci Transl Med 2017; 9(418)pii: eaam6764
[http://dx.doi.org/10.1126/scitranslmed.aam6764] [PMID: 29187644]
[52]
He F, Wen N, Xiao D, et al. Aptamer based targeted drug delivery systems: current potential and challenges. Curr Med Chem 2018; 8.
[http://dx.doi.org/10.2174/0929867325666181008142831] [PMID: 30295183]
[53]
Tan KX, Danquah MK, Sidhu A, Yon LS, Ongkudon CM. Aptamer-mediated polymeric vehicles for enhanced cell-targeted drug delivery. Curr Drug Targets 2018; 19(3): 248-58.
[http://dx.doi.org/10.2174/1389450117666160617120926] [PMID: 27321771]
[54]
Ara MN, Matsuda T, Hyodo M, et al. An aptamer ligand based liposomal nanocarrier system that targets tumor endothelial cells. Biomaterials 2014; 35(25): 7110-20.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.087] [PMID: 24875764]
[55]
Li J, Wu C, Hou P, Zhang M, Xu K. One-pot preparation of hydrophilic manganese oxide nanoparticles as T1 nano-contrast agent for molecular magnetic resonance imaging of renal carcinoma in vitro and in vivo. Biosens Bioelectron 2018; 102: 1-8.
[http://dx.doi.org/10.1016/j.bios.2017.10.047] [PMID: 29101783]
[56]
Li J, Wang J, Sun D, et al. Aptamer-directed specific drug delivery and magnetic resonance imaging of renal carcinoma cells in vitro and in vivo. J Biomed Nanotechnol 2016; 12(8): 1604-16.
[http://dx.doi.org/10.1166/jbn.2016.2271] [PMID: 29342341]
[57]
Wang J, Zhang Y, Chen Y, et al. In vitro selection of DNA aptamers against renal cell carcinoma using living cell-SELEX. Talanta 2017; 175: 235-42.
[http://dx.doi.org/10.1016/j.talanta.2017.07.049] [PMID: 28841985]
[58]
Li S, Zeng YC, Peng K, Liu C, Zhang ZR, Zhang L. Design and evaluation of glomerulus mesangium-targeted PEG-PLGA nanoparticles loaded with dexamethasone acetate. Acta Pharmacol Sin 2019; 40(1): 143-50.
[http://dx.doi.org/10.1038/s41401-018-0052-4] [PMID: 29950614]
[59]
Guo L, Luo S, Du Z, et al. Targeted delivery of celastrol to mesangial cells is effective against mesangioproliferative glomerulonephritis. Nat Commun 2017; 8(1): 878.
[http://dx.doi.org/10.1038/s41467-017-00834-8] [PMID: 29026082]
[60]
Salva E, Turan SÖ, Akbuğa J. Inhibition of Glomerular Mesangial Cell Proliferation by siPDGF-B- and siPDGFR-β-Containing Chitosan Nanoplexes. AAPS PharmSciTech 2017; 18(4): 1031-42.
[http://dx.doi.org/10.1208/s12249-016-0687-8] [PMID: 27975193]
[61]
Matsuura S, Katsumi H, Suzuki H, et al. l-Serine-modified polyamidoamine dendrimer as a highly potent renal targeting drug carrier. Proc Natl Acad Sci USA 2018; 115(41): 10511-6.
[http://dx.doi.org/10.1073/pnas.1808168115] [PMID: 30249662]
[62]
Williams RM, Shah J, Ng BD, et al. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. Nano Lett 2015; 15(4): 2358-64.
[http://dx.doi.org/10.1021/nl504610d] [PMID: 25811353]
[63]
Williams RM, Shah J, Tian HS, et al. Selective nanoparticle targeting of the renal tubules. Hypertension 2018; 71(1): 87-94.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09843] [PMID: 29133360]
[64]
Yap ML, Wang X, Pietersz GA, Peter K. mesoscale nanoparticles: an unexpected means for selective therapeutic targeting of kidney diseases. Hypertension 2018; 71(1): 61-3.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09944] [PMID: 29133359]
[65]
Markovsky E, Vax E, Ben-Shushan D, et al. Wilms tumor ncam-expressing cancer stem cells as potential therapeutic target for polymeric nanomedicine. Mol Cancer Ther 2017; 16(11): 2462-72.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0184] [PMID: 28729402]
[66]
Oroojalian F, Rezayan AH, Mehrnejad F, et al. Efficient megalin targeted delivery to renal proximal tubular cells mediated by modified-polymyxin B-polyethylenimine based nano-gene-carriers. Mater Sci Eng C 2017; 79: 770-82.
[http://dx.doi.org/10.1016/j.msec.2017.05.068] [PMID: 28629080]
[67]
Liang X, Wang H, Zhu Y, et al. Short- and long-term tracking of anionic ultrasmall nanoparticles in kidney. ACS Nano 2016; 10(1): 387-95.
[http://dx.doi.org/10.1021/acsnano.5b05066] [PMID: 26743581]
[68]
Chen J, Vemuri C, Palekar RU, et al. Antithrombin nanoparticles improve kidney reperfusion and protect kidney function after ischemia-reperfusion injury. Am J Physiol Renal Physiol 2015; 308(7): F765-73.
[http://dx.doi.org/10.1152/ajprenal.00457.2014] [PMID: 25651565]
[69]
Tsai YC, Teng IL, Jiang ST, et al. Safe nanocomposite-mediated efficient delivery of microrna plasmids for autosomal dominant polycystic kidney disease (adpkd) therapy. Adv Healthc Mater 2019; 8(5)e1801358
[http://dx.doi.org/10.1002/adhm.201801358] [PMID: 30672150]
[70]
Chen D, Han S, Zhu Y, et al. Kidney-targeted drug delivery via rhein-loaded polyethyleneglycol-co-polycaprolactone-co-polyethylenimine nanoparticles for diabetic nephropathy therapy. Int J Nanomedicine 2018; 13: 3507-27.
[http://dx.doi.org/10.2147/IJN.S166445] [PMID: 29950832]
[71]
Wu L, Chen M, Mao H, et al. Albumin-based nanoparticles as methylprednisolone carriers for targeted delivery towards the neonatal Fc receptor in glomerular podocytes. Int J Mol Med 2017; 39(4): 851-60.
[http://dx.doi.org/10.3892/ijmm.2017.2902] [PMID: 28259932]
[72]
Bidwell GL III, Mahdi F, Shao Q, et al. A kidney-selective biopolymer for targeted drug delivery. Am J Physiol Renal Physiol 2017; 312(1): F54-64.
[http://dx.doi.org/10.1152/ajprenal.00143.2016] [PMID: 27784692]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy