Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

One-pot Pseudo-Domino Three-Component Knoevenagel Condensation Reaction in Water Enabled by Micellar Catalyst: Mechanism and Reactivity

Author(s): Dini Ahanthem, Devi Prasan Ojha, Francis A.S. Chipem and Warjeet S. Laitonjam*

Volume 17, Issue 11, 2020

Page: [823 - 831] Pages: 9

DOI: 10.2174/1570178616666190701102542

Price: $65

Abstract

The micellar catalysis is well-known for its hydrophobic effect that is the tendency of nonpolar groups to cluster within the lipophilic core so as to shield them from contact with an aqueous environment formed upon the dissolution of a surfactant in water. This provides a unique opportunity to establish organic transformations in greener solvents, such as water leading to organic waste control and easy product isolation protocols. Considering the significant interaction of thiobarbituric acid moieties in a biological macromolecule core, herein, a highly efficient procedure for the synthesis of biological and medicinal important 5-(arylmethylene)dihydro-2-thioxo-4,6(1H,5H)-pyrimidinediones via Knoevenagel condensation of thiobarbituric acids and aldehydes catalyzed by a surfactant, sodium dodecyl sulfate, is developed. The synthetic procedure shows the excellent activity of the micellar catalysts towards the aldehyde activation leading to a facile condensation. The application of the method is demonstrated by further synthesis of 5,5'-(4-arylmethylene)bis[dihydro-2-thioxo-4,6(1H,5H)- pyrimidinediones]. Theoretical studies of the reaction were also carried out to investigate the effect of electron releasing and electron-withdrawing group in benzaldehyde on the reaction.

Keywords: Green catalysis, Knoevenagel condensation, pseudo-domino reaction, recyclability, surfactant catalyst.

Graphical Abstract

[1]
(a) Lipshutz, B.H.; Ghorai, S. Aldrichim Acta, 2008, 41, 59-72.
(b) Lipshutz, B.H.; Ghorai, S. Aldrichim Acta, 2012, 45, 3-16.
(c) Lipshutz, B.H.; Isley, N.A.; Fennewald, J.C.; Slack, E.D. Angew. Chem. Int. Ed; , 2013, 52, pp. 10952-10958.
[http://dx.doi.org/10.1002/anie.201302020]
[2]
Bryan, M.C.; Dillon, B.; Hamann, L.G.; Hughes, G.J.; Kopach, M.E.; Peterson, E.A.; Pourashraf, M.; Raheem, I.; Richardson, P.; Richter, D.; Sneddon, H.F. J. Med. Chem., 2013, 56(15), 6007-6021.
[http://dx.doi.org/10.1021/jm400250p] [PMID: 23586692]
[3]
Fennell Evans, D.; Wennerström, H. The Colloidal Domain. Where Physics, Chemistry, Biology, and Technology Meet; Wiley-VCH: New York, 1994.
[4]
Cornils, B.; Herrmann, W.A., Eds.; Aqueous-Phase Organometallic Catalysis; Wiley-VCH: Weinheim, Germany, 1998.
[5]
Rombola, M.; Sumaria, C.S.; Montgomery, T.D.; Rawal, V.H. J. Am. Chem. Soc., 2017, 139(15), 5297-5300.
[http://dx.doi.org/10.1021/jacs.7b01115] [PMID: 28375610]
[6]
(a) Liu, Y.; Zhang, Y.; Duan, H-X.; Wanyan, D-Y.; Wang, Y-Q. Org. Biomol. Chem. 2017, 15(40), 8669-8679.
[http://dx.doi.org/10.1039/C7OB02116J] [PMID: 28990625]
(b) Moosavi-Zare, A.R.; Zolfigol, M.A.; Noroozizadeh, E.; Khaledian, O.; Shaghasemi, B.S. Res. Chem. Intermed. 2016, 42, 4759-4772.
[http://dx.doi.org/10.1007/s11164-015-2317-6]
(c) Moosavi-Zare, A.R.; Zolfigol, M.A.; Zarei, M.; Zare, A.; Khakyzadeh, V.; Hasaninejad, A. Appl. Catal., A 2013, 467, 61-68.
(d) Khazaei, A.; Abbasi, F.; Moosavi-Zare, A.R. New J. Chem., 2014, 38, 5287-5292.
[http://dx.doi.org/10.1039/C4NJ01079E]
[7]
(a) Elinson, M.N.; Merkulova, V.M.; Ilovaisky, A.I.; Barba, F.; Batanero, B. Electrochim. Acta 2011, 56, 8219-8223.
[http://dx.doi.org/10.1016/j.electacta.2011.06.059]
(b) Luo, Y.; Ma, L.; Zheng, H.; Chen, L.; Li, R.; He, C.; Yang, S.; Ye, X.; Chen, Z.; Li, Z.; Gao, Y.; Han, J.; He, G.; Yang, L.; Wei, Y. Discovery of (Z)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione, a readily available and orally active glitazone for the treatment of concanavalin A-induced acute liver injury of BALB/c mice. J. Med. Chem. 2010, 53(1), 273-281.
[http://dx.doi.org/10.1021/jm901183d] [PMID: 19904929]
(c) Figueiredo, J.; Serrano, J.L.; Cavalheiro, E.; Keurulainen, L.; Yli-Kauhaluoma, J.; Moreira, V.M.; Ferreira, S.; Domingues, F.C.; Silvestre, S.; Almeida, P. Eur. J. Med. Chem., 2018, 143, 829-842.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.070] [PMID: 29223098]
[8]
Al-Najjar, H.J.; Barakat, A.; Al-Majid, A.M.; Mabkhot, Y.N.; Weber, M.; Ghabbour, H.A.; Fun, H-K. Molecules, 2014, 19(1), 1150-1162.
[http://dx.doi.org/10.3390/molecules19011150] [PMID: 24445342]
[9]
(a) An, Z.; Guo, Y.; Zhao, L.; Li, Z.; He, J. ACS Catal 2014, 4, 2566-2576.
[http://dx.doi.org/10.1021/cs500385s ]
(b) Li, W.; Fedosov, S.N.; Tan, T.; Xu, X.; Guo, Z. ACS Catal. 2014, 4, 3294-3300.
[http://dx.doi.org/10.1021/cs500882r ]
(c) Tran, U.P.N.; Le, K.K.A.; Phan, N.T.S. ACS Catal 2011, 1, 120-127.
[http://dx.doi.org/10.1021/cs1000625 ]
(d) Kuzemko, M.A.; Van Arnum, S.D.; Niemczyk, H.J. Org. Process Res. Dev., 2007, 11, 470-476.
[http://dx.doi.org/10.1021/op700008k]
[10]
Ryabukhin, S.V.; Plaskon, A.S.; Volochnyuk, D.M.; Pipko, S.E.; Shivanyuk, A.N.; Tolmachev, A.A. Combinatorial Knoevenagel reactions. J. Comb. Chem., 2007, 9(6), 1073-1078.
[http://dx.doi.org/10.1021/cc070073f] [PMID: 17900167]
[11]
Tietze, L.F.; Saling, P. Synlett, 1992, 281-282.
[http://dx.doi.org/10.1055/s-1992-21339]
[12]
Kim, I.; Kim, S.G.; Choi, J.; Lee, G.H. Tetrahedron, 2008, 64, 664-671.
[http://dx.doi.org/10.1016/j.tet.2007.11.036]
[13]
(a) Biradar, J.S.; Sasidhar, B.S.; Parveen, R. Eur. J. Med. Chem. 2010, 45(9), 4074-4078.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.067] [PMID: 20594623 ]
(b) Biradar, J.S.; Sasidhar, B.S. Eur. J. Med. Chem., 2011, 46(12), 6112-6118.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.004] [PMID: 22014995]
[14]
Singh, P.; Kaur, M.; Verma, P. Bioorg. Med. Chem. Lett., 2009, 19(11), 3054-3058.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.014] [PMID: 19398334]
[15]
Haldar, M.K.; Scott, M.D.; Sule, N.; Srivastava, D.K.; Mallik, S. Bioorg. Med. Chem. Lett., 2008, 18(7), 2373-2376.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.066] [PMID: 18343108]
[16]
(a) Khan, K.M.; Ali, M.; Wadood, A. Zaheer-ul-Haq; Khan, M.; Lodhi, M.A.; Perveen, S.; Choudhary, M.I.; Voelter. W. J. Mol. Graphics Modell. 2011, 30, 153-156.
[http://dx.doi.org/10.1016/j.jmgm.2011.07.001]
(b) Ibrar, A.; Khan, I.; Abbas, N. Arch. Pharm. (Weinheim), 2013, 346(6), 423-446.
[http://dx.doi.org/10.1002/ardp.201300041] [PMID: 23712847]
[17]
(a) Yan, Q.; Cao, R.; Yi, W.; Chen, Z.; Wen, H.; Ma, L.; Song, H. Eur. J. Med. Chem 2009, 44(10), 4235-4243.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.023 ] [PMID: 19552984 ]
(b) Yan, Q.; Cao, R.; Yi, W.; Yu, L.; Chen, Z.; Ma, L.; Song, H. Bioorg. Med. Chem. Lett., 2009, 19(15), 4055-4058.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.018] [PMID: 19564107]
[18]
Zoorob, H.H.; Abou Elzahab, M.; Abdel-Mogib, M.; Ismail, M.A.; Abdel-Hamid, M. Arzneimittelforschung, 1997, 47(8), 958-962.
[PMID: 9296283]
[19]
(a) Kidwai, M.; Singhal, K.; Kukreja, S.Z. Naturforsch; , 2007, 62, pp. 732-736.
[http://dx.doi.org/10.1515/znb-2007-0518]
(b) Bazgir, A.; Khanaposhtani, M.M.; Soorki, A.A. Bioorg. Med. Chem. Lett., 2008, 18(21), 5800-5803.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.057] [PMID: 18842404]
[20]
(a) Dewan, S.K.; Singh, R. Orient. J. Chem; , 2002, 18, pp. 555-558.
(b) Khalafi-Nezhad, A.; Hashemi, A. Iran. J. Chem. Chem. Eng; , 2001, 20, pp. 9-11.
[21]
Dewan, S.K.; Singh, R. Synth. Commun., 2003, 33, 3081-3084.
[http://dx.doi.org/10.1081/SCC-120022485]
[22]
(a) Jin, T-S.; Zhao, R-Q.; Li, T-S. Asian J. Chem; , 2007, 19, pp. 3815-3820.
(b) Rathod, S.B.; Gambhire, A.B.; Arbad, B.R.; Lande, M.K. Bull. Korean Chem. Soc., 2010, 31, 339-343.
[http://dx.doi.org/10.5012/bkcs.2010.31.02.339]
[23]
Kamble, S.; Rashinkar, G.; Kumbhar, A.; Mote, K.; Salunkhe, R. Arch. Appl. Sci. Res; , 2010, 2, pp. 217-222.
[24]
(a) Wang, C.; Ma, J.j.; Zhou, X.; Zang, X-h.; Wang, Z.; Gao, Y-j.; Cui, P-l. Synth. Commun 2005, 35, 2759-2764.
[http://dx.doi.org/10.1080/00397910500288254]
(b) Hu, Y.; Chen, Z-C.; Le, Z-G.; Zheng, Q-G. Synth. Commun., 2004, 34, 4521-4529.
[http://dx.doi.org/10.1081/SCC-200043210]
[25]
Shinde, S.; Rashinkar, G.; Kumbhar, A.; Kamble, S.; Salunkhe, R. Helv. Chim. Acta, 2011, 94, 1943-1951.
[http://dx.doi.org/10.1002/hlca.201100133]
[26]
Kalita, S.J.; Mecadon, H.; Deka, D.C. RSC Advances, 2014, 4, 32207-32213.
[http://dx.doi.org/10.1039/C4RA03413A]
[27]
Khurana, J.M.; Vij, K. Catal. Lett., 2010, 138, 104-110.
[http://dx.doi.org/10.1007/s10562-010-0376-2]
[28]
(a) Cornils, B.; Herrmann, W.A.; Eckl, R.W. J. Mol. Catal. Chem., 1997, 116, 27-33.
[http://dx.doi.org/10.1016/S1381-1169(96)00073-8]
(b) Horvath, I.T.; Joo, F., Eds.; Aqueous Organometallic Chemistry and Catalysis; Kluwer: Dordrecht, The Netherlands, 1995.
[http://dx.doi.org/10.1007/978-94-011-0355-8]
(c) Cornils, B. Org. Process Res. Dev., 1998, 2, 121-127.
[http://dx.doi.org/10.1021/op970057e]
[29]
(a) Dittmer, D. Chem. Ind., 1997, 779-784.
(b) Tanaka, K.; Toda, F. Chem. Rev., 2000, 100(3), 1025-1074.
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257 Hara, K. Organic Synthesis at High Pressures; Matsumoto, K.; Archeson, R.M., Eds.; Wiley: New York, 1991. ]
[30]
Grieco, P.A. Organic Synthesis in Water; Blackie Academic & Professional: London, 1998. (b) Li, C.–j.; Chan, T.-H. Organic Reactions in Aqueous Media; John Wiley & Sons: New York, NY, 1997.
[31]
Li, C. J. Chem. Rev, 1993, 93, 2023-2035.
[http://dx.doi.org/10.1021/cr00022a004]
[32]
Manabe, K.; Kobayashi, S. Chemistry, 2002, 8(18), 4094-4101.
[http://dx.doi.org/10.1002/1521-3765(20020916)8:18<4094:AID-CHEM4094>3.0.CO;2-G] [PMID: 12297999]
[33]
(a) Li, Y.; Chen, H.; Shi, C.; Shi, D.; Ji, S. J. Comb. Chem., 2010, 12(2), 231-237.
[http://dx.doi.org/10.1021/cc9001185] [PMID: 20085353]
(b) Lai, Y-F.; Zheng, H.; Chai, S-J.; Zhang, P-F.; Chen, X-Z. Green Chem., 2010, 12, 1917-1918.
[http://dx.doi.org/10.1039/c004547k]
(c) Kapoor, M.; Gupta, M.N. Process Biochem., 2012, 47, 555-569.
[http://dx.doi.org/10.1016/j.procbio.2012.01.011]
(d) Liu, Z-Q.; Liu, B-K.; Wu, Q.; Lin, X-F. Tetrahedron, 2011, 67, 9736-9740.
[http://dx.doi.org/10.1016/j.tet2011.09.086]
(e) Bahrami, K.; Khodaei, M.M.; Babajani, N.; Naali, F.J. Iran. Chem. Soc., 2014, 11, 1675-1680.
[http://dx.doi.org/10.1007/s13738-014-0440-8]
(f) Shaker, R.M.; Ishak, E.A.Z. Naturforsch, 2011, 66b, 1189-1201.
[http://dx.doi.org/10.1515/znb-2011-1201]
(g) Yu, Y-Q.; Whang, Z-L. J. Chin. Chem. Soc. (Taipei), 2013, 60, 288-292.
[http://dx.doi.org/10.1002/jccs.201200391]
[34]
(a) Ahanthem, D.; Laitonjam, W.S.; Organic Chemistry., An Indian Journal,, 2015, 11, 385-391.
b Ahanthem, D.; Laitonjam, W.S. Asian J. Org. Chem.,, 2017, 6, 1492-1497.
[http://dx.doi.org/10.1002/ajoc.201700324]
(c) Ahanthem, D.; Singh, S.M.; Laitonjam, W.S. Nat. Prod. J; , 2018, 8, pp. 228-238.
[http://dx.doi.org/10.2174/2210315508666180327143107]
[35]
(a) Adamson, J.; Coe, B.J.; Grassam, H.L.; Jeffery, J.C.; Coles, S.J.; Hursthouse, M.B. J. Chem. Soc., Perkin Trans. 1, 1999, 2483-2488.
[http://dx.doi.org/10.1039/a904015c]
(b) Deb, M.L.; Bhuyan, P.J. Tetrahedron Lett., 2005, 46, 6453-6456.
[http://dx.doi.org/10.1016/j.tetlet.2005.07.111]
(c) Zidar, N.; Kikelj, D. Acta Chim. Slov., 2011, 58(1), 151-157.
[PMID: 24061956]
[36]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, 2016.
[37]
Hohenberg, P.; Kohn, W. Phys. Rev., 1964, 136(3B), B864-B871.
[http://dx.doi.org/10.1103/PhysRev.136.B864]
[38]
Kohn, W.; Sham, L. J. Phys. Rev., 1965, 140, pp. (4A)A1133- A1138.
[http://dx.doi.org/10.1103/PhysRev.140.A1133]
[39]
Becke, A.D. J. Chem. Phys., 1993, 98, 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[40]
Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[41]
Hassan, P.A.; Raghavan, S.R.; Kaler, E.W. Langmuir, 2002, 18, 2543-2548.
[http://dx.doi.org/10.1021/la011435i]
[42]
Tomasić, T.; Zidar, N.; Mueller-Premru, M.; Kikelj, D.; Masic, L.P. Eur. J. Med. Chem., 2010, 45(4), 1667-1672.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.030] [PMID: 20060624]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy