[1]
Nitiss, J.L. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer, 2009, 9(5), 327-337. [http://dx.doi.org/10.1038/nrc2608]. [PMID: 19377505].
[2]
Vos, S.M.; Tretter, E.M.; Schmidt, B.H.; Berger, J.M. All tangled up: How cells direct, manage and exploit topoisomerase function. Nat. Rev. Mol. Cell Biol., 2011, 12(12), 827-841. [http://dx.doi.org/10.1038/nrm3228]. [PMID: 22108601].
[3]
Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70, 369-413. [http://dx.doi.org/10.1146/annurev.biochem.70.1.369]. [PMID: 11395412].
[4]
Wang, J.C. Moving one DNA double helix through another by a type II DNA topoisomerase: The story of a simple molecular machine. Q. Rev. Biophys., 1998, 31(2), 107-144. [http://dx.doi.org/10.1017/S0033583598003424]. [PMID: 9794033].
[5]
Kathiravan, M.K.; Khilare, M.M.; Nikoomanesh, K.; Chothe, A.S.; Jain, K.S. Topoisomerase as target for antibacterial and anticancer drug discovery. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 419-435. [http://dx.doi.org/10.3109/14756366.2012.658785]. [PMID: 22380774].
[6]
Winkler, D. Modelling topoisomerase I inhibition by minor groove binders. Bioorg. Med. Chem., 2011, 19(4), 1450-1457. [http://dx.doi.org/10.1016/j.bmc.2011.01.003]. [PMID: 21273082].
[7]
Liu, L.F. DNA topoisomerase poisons as antitumor drugs. Annu. Rev. Biochem., 1989, 58, 351-375. [http://dx.doi.org/10.1146/annurev.bi.58.070189.002031]. [PMID: 2549853].
[8]
Oviatt, A.A.; Kuriappan, J.A.; Minniti, E.; Vann, K.R.; Onuorah, P.; Minarini, A.; De Vivo, M.; Osheroff, N. Polyamine-containing etoposide derivatives as poisons of human type II topoisomerases: Differential effects on topoisomerase IIα and IIβ. Bioorg. Med. Chem. Lett., 2018, 28(17), 2961-2968. [http://dx.doi.org/10.1016/j.bmcl.2018.07.010]. [PMID: 30006062].
[9]
Zuma, A.A.; Cavalcanti, D.P.; Maia, M.C.P.; de Souza, W.; Motta, M.C.M. Effect of topoisomerase inhibitors and DNA-binding drugs on the cell proliferation and ultrastructure of Trypanosoma cruzi. Int. J. Antimicrob. Agents, 2011, 37(5), 449-456. [http://dx.doi.org/10.1016/j.ijantimicag.2010.11.031]. [PMID: 21292448].
[10]
Classen, S.; Olland, S.; Berger, J.M. Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc. Natl. Acad. Sci. USA, 2003, 100(19), 10629-10634. [http://dx.doi.org/10.1073/pnas.1832879100]. [PMID: 12963818].
[11]
Li, H.; Xie, N.; Gleave, M.E.; Dong, X. Catalytic inhibitors of DNA topoisomerase II suppress the androgen receptor signaling and prostate cancer progression. Oncotarget, 2015, 6(24), 20474-20484. [http://dx.doi.org/10.18632/oncotarget.4105]. [PMID: 26009876].
[12]
Ghosh, S.; Mukhopadhyay, S.; Sarkar, M.; Mandal, A.; Das, V.; Kumar, A.; Giri, B. Biological evaluation of a halogenated triterpenoid, 2α-bromo-dihydrobelulonic acid as inhibitor of human topoisomerase IIα and HeLa cell proliferation. Chem. Biol. Interact., 2017, 268, 68-76. [http://dx.doi.org/10.1016/j.cbi.2017.02.015]. [PMID: 28254521].
[13]
Bau, J.T.; Kang, Z.; Austin, C.A.; Kurz, E.U. Salicylate, a catalytic inhibitor of topoisomerase II, inhibits DNA cleavage and is selective for the α isoform. Mol. Pharmacol., 2014, 85(2), 198-207. [http://dx.doi.org/10.1124/mol.113.088963]. [PMID: 24220011].
[14]
Chène, P.; Rudloff, J.; Schoepfer, J.; Furet, P.; Meier, P.; Qian, Z.; Schlaeppi, J.M.; Schmitz, R.; Radimerski, T. Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue. BMC Chem. Biol., 2009, 9(1), 1-16. [http://dx.doi.org/10.1186/1472-6769-9-1]. [PMID: 19128485].
[15]
Seiter, K. Toxicity of the topoisomerase II inhibitors. Expert Opin. Drug Saf., 2005, 4(2), 219-234. [http://dx.doi.org/10.1517/14740338.4.2.219]. [PMID: 15794715].
[16]
Haddadin, M.J.; Kurth, M.J.; Olmstead, M.M. One-step synthesis of new heterocyclic azacyanines. Tetrahedron Lett., 2000, 41(30), 5613-5616. [http://dx.doi.org/10.1016/S0040-4039(00)00908-4].
[17]
Tutuncu, S.; Guloglu, S.; Kuçukakdag, A.; Cetinkol, O.P. selective high binding affinity of azacyanines to polyd(a).polyd(t).polyd(t) triplex: The effect of chain length and branching on stabilization, selectivity and affinity. Chem Select, 2018, 45(3), 12878-12887. [http://dx.doi.org/10.1002/slct.201802802].
[18]
Çetinkol, Ö.P.; Hud, N.V. Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding. Nucleic Acids Res., 2009, 37(2), 611-621. [http://dx.doi.org/10.1093/nar/gkn977]. [PMID: 19073699].
[19]
Çetinkol, Ö.P.; Engelhart, A.E.; Nanjunda, R.K.; Wilson, W.D.; Hud, N.V. Submicromolar, selective G-quadruplex ligands from one pot: Thermodynamic and structural studies of human telomeric DNA binding by azacyanines. ChemBioChem, 2008, 9(12), 1889-1892. [PMID: 18600816].
[20]
Hyun, Min Genome instability induced by triplex forming mirror
repeats in S.cerevisiae, PhD thesis. Georgia Institute of Technology
(USA), 2009.
[21]
WHO Model List of Essential Medicines - 19th List. Essential
Medicines, (April), 2015, 1.45
[22]
Lee, P.Y.; Costumbrado, J.; Hsu, C.Y.; Kim, Y.H. Agarose gel electrophoresis for the separation of DNA fragments. J. Vis. Exp., 2012, (62), 1-5. [http://dx.doi.org/10.3791/3923]. [PMID: 22546956].