[1]
Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000 Res 2017; 6: 750. [http://dx.doi.org/10.12688/f1000research.11120.1]. [PMID: 28649370].
[2]
Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. Lancet Infect Dis 2007; 7(9): 581-96. [http://dx.doi.org/10.1016/S1473-3099(07)70209-8]. [PMID: 17714672].
[3]
Akhoundi M, Kuhls K, Cannet A, et al. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis 2016; 10(3)e0004349 [http://dx.doi.org/10.1371/journal.pntd.0004349]. [PMID: 26937644].
[4]
Ghorbani M, Farhoudi R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des Devel Ther 2017; 12: 25-40. [http://dx.doi.org/10.2147/DDDT.S146521]. [PMID: 29317800].
[5]
Sunyoto T, Boelaert M, Meheus F. Understanding the economic impact of leishmaniasis on households in endemic countries: a systematic review. Expert Rev Anti Infect Ther 2019; 17(1): 57-69. [http://dx.doi.org/10.1080/14787210.2019.1555471]. [PMID: 30513027].
[6]
Organization WH. Leishmaniasis Factsheet. Bull World Health Organ 2017.
[7]
Savoia D. Recent updates and perspectives on leishmaniasis. J Infect Dev Ctries 2015; 9(6): 588-96. [http://dx.doi.org/10.3855/jidc.6833]. [PMID: 26142667].
[8]
Sundar S. Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health 2001; 6(11): 849-54. [http://dx.doi.org/10.1046/j.1365-3156.2001.00778.x]. [PMID: 11703838].
[9]
Mishra J, Saxena A, Singh S. Chemotherapy of leishmaniasis: Past, present and future. Curr Med Chem 2007; 14(10): 1153-69. [http://dx.doi.org/10.2174/092986707780362862]. [PMID: 17456028].
[10]
Martínez E, Torres-Guerrero E, Cortés E, Tejada D, Arenas R. Cryptococcus laurentii infection in a patient with cutaneous leishmaniasis. Int J Dermatol 2017; 56(3): e56-7. [http://dx.doi.org/10.1111/ijd.13329]. [PMID: 27666937].
[11]
Thakur CP. A single high dose treatment of kala-azar with Ambisome (amphotericin B lipid complex): A pilot study. Int J Antimicrob Agents 2001; 17(1): 67-70. [http://dx.doi.org/10.1016/S0924-8579(00)00312-5]. [PMID: 11137652].
[13]
Sundar S, Chakravarty J. Liposomal amphotericin B and leishmaniasis: Dose and response. J Glob Infect Dis 2010; 2(2): 159-66. [http://dx.doi.org/10.4103/0974-777X.62886]. [PMID: 20606972].
[14]
Dorlo TP, Rijal S, Ostyn B, et al. Failure of miltefosine in visceral leishmaniasis is associated with low drug exposure. J Infect Dis 2014; 210(1): 146-53. [http://dx.doi.org/10.1093/infdis/jiu039]. [PMID: 24443541].
[15]
de Menezes JP, Guedes CE, Petersen AL, Fraga DB, Veras PS. Advances in Development of New Treatment for Leishmaniasis. BioMed Res Int 2015; 2015815023 [http://dx.doi.org/10.1155/2015/815023]. [PMID: 26078965].
[16]
No JH. Visceral leishmaniasis: Revisiting current treatments and approaches for future discoveries. Acta Trop 2016; 155: 113-23. [http://dx.doi.org/10.1016/j.actatropica.2015.12.016]. [PMID: 26748356].
[17]
Rajasekaran R, Chen YP. Potential therapeutic targets and the role of technology in developing novel antileishmanial drugs. Drug Discov Today 2015; 20(8): 958-68. [http://dx.doi.org/10.1016/j.drudis.2015.04.006]. [PMID: 25936844].
[18]
Hancock REW, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 2006; 24(12): 1551-7. [http://dx.doi.org/10.1038/nbt1267]. [PMID: 17160061].
[19]
Peters BM, Shirtliff ME, Jabra-Rizk MA. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 2010; 6(10)e1001067 [http://dx.doi.org/10.1371/journal.ppat.1001067]. [PMID: 21060861].
[20]
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415(6870): 389-95. [http://dx.doi.org/10.1038/415389a]. [PMID: 11807545].
[21]
Rivas-Santiago B, Sada E, Hernández-Pando R, Tsutsumi V. [Antimicrobial peptides in the innate immunity of infectious diseases]. [PMID: 16555536]. Salud Publica Mex 2006; 48(1): 62-71.
[22]
Zhang LJ, Gallo RL. Antimicrobial peptides. Curr Biol 2016; 26(1): R14-9. [http://dx.doi.org/10.1016/j.cub.2015.11.017]. [PMID: 26766224].
[23]
Territo MC, Ganz T, Selsted ME, Lehrer R. Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest 1989; 84(6): 2017-20. [http://dx.doi.org/10.1172/JCI114394]. [PMID: 2592571].
[24]
Yang D, Chen Q, Chertov O, Oppenheim JJ. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol 2000; 68(1): 9-14. [PMID: 10914484].
[25]
Lehrer RI, Lu W. α-Defensins in human innate immunity. Immunol Rev 2012; 245(1): 84-112. [http://dx.doi.org/10.1111/j.1600-065X.2011.01082.x]. [PMID: 22168415].
[26]
Dürr UHN, Sudheendra US, Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 2006; 1758(9): 1408-25. [http://dx.doi.org/10.1016/j.bbamem.2006.03.030]. [PMID: 16716248].
[27]
De Yang Chen Q. Schmidt AP, et al LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 2000; 192(7): 1069-74. [http://dx.doi.org/10.1084/jem.192.7.1069]. [PMID: 11015447].
[28]
Elssner A, Duncan M, Gavrilin M, Wewers MD. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J Immunol 2004; 172(8): 4987-94. [http://dx.doi.org/10.4049/jimmunol.172.8.4987]. [PMID: 15067080].
[29]
Montreekachon P, Chotjumlong P, Bolscher JG, Nazmi K, Reutrakul V, Krisanaprakornkit S. Involvement of P2X(7) purinergic receptor and MEK1/2 in interleukin-8 up-regulation by LL-37 in human gingival fibroblasts. J Periodontal Res 2011; 46(3): 327-37. [http://dx.doi.org/10.1111/j.1600-0765.2011.01346.x]. [PMID: 21338358].
[30]
Tokumaru S, Sayama K, Shirakata Y, et al. Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 2005; 175(7): 4662-8. [http://dx.doi.org/10.4049/jimmunol.175.7.4662]. [PMID: 16177113].
[31]
Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A. The human cathelicidin LL-37--A pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta 2016; 1858(3): 546-66. [http://dx.doi.org/10.1016/j.bbamem.2015.11.003]. [PMID: 26556394].
[32]
Dabirian S, Taslimi Y, Zahedifard F, et al. Human neutrophil peptide-1 (HNP-1): a new anti-leishmanial drug candidate. PLoS Negl Trop Dis 2013; 7(10)e2491 [http://dx.doi.org/10.1371/journal.pntd.0002491]. [PMID: 24147170].
[33]
Abdossamadi Z, Seyed N, Zahedifard F, et al. Human Neutrophil Peptide 1 as immunotherapeutic agent against Leishmania infected BALB/c mice. PLoS Negl Trop Dis 2017; 11(12)e0006123 [http://dx.doi.org/10.1371/journal.pntd.0006123]. [PMID: 29253854].
[34]
Dos Santos JC, Heinhuis B, Gomes RS, et al. Cytokines and microbicidal molecules regulated by IL-32 in THP-1-derived human macrophages infected with New World Leishmania species. PLoS Negl Trop Dis 2017; 11(2)e0005413 [http://dx.doi.org/10.1371/journal.pntd.0005413]. [PMID: 28241012].
[35]
Kulkarni MM, McMaster WR, Kamysz E, Kamysz W, Engman DM, McGwire BS. The major surface-metalloprotease of the parasitic protozoan, Leishmania, protects against antimicrobial peptide-induced apoptotic killing. Mol Microbiol 2006; 62(5): 1484-97. [http://dx.doi.org/10.1111/j.1365-2958.2006.05459.x]. [PMID: 17074074].
[36]
Kulkarni MM, Barbi J, McMaster WR, Gallo RL, Satoskar AR, McGwire BS. Mammalian antimicrobial peptide influences control of cutaneous Leishmania infection. Cell Microbiol 2011; 13(6): 913-23. [http://dx.doi.org/10.1111/j.1462-5822.2011.01589.x]. [PMID: 21501359].
[37]
de la Fuente-Núñez C, Silva ON, Lu TK, Franco OL. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol Ther 2017; 178: 132-40. [http://dx.doi.org/10.1016/j.pharmthera.2017.04.002]. [PMID: 28435091].
[38]
Rivas-Santiago B, Serrano CJ, Enciso-Moreno JA. Susceptibility to infectious diseases based on antimicrobial peptide production. Infect Immun 2009; 77(11): 4690-5. [http://dx.doi.org/10.1128/IAI.01515-08]. [PMID: 19703980].
[39]
Arranz-Trullén J, Lu L, Pulido D, Bhakta S, Boix E. Host Antimicrobial Peptides: The Promise of New Treatment Strategies against Tuberculosis. Front Immunol 2017; 8: 1499. [http://dx.doi.org/10.3389/fimmu.2017.01499]. [PMID: 29163551].
[40]
Fehlbaum P, Rao M, Zasloff M, Anderson GM. An essential amino acid induces epithelial beta-defensin expression. Proc Natl Acad Sci USA 2000; 97(23): 12723-8. [http://dx.doi.org/10.1073/pnas.220424597]. [PMID: 11058160].
[41]
Rivas-Santiago CE, Hernández-Pando R, Rivas-Santiago B. Immunotherapy for pulmonary TB: Antimicrobial peptides and their inducers. Immunotherapy 2013; 5(10): 1117-26. [http://dx.doi.org/10.2217/imt.13.111]. [PMID: 24088080].
[42]
Rivas-Santiago B, Castañeda-Delgado JE, Rivas Santiago CE, et al. Ability of innate defence regulator peptides IDR-1002, IDR-HH2 and IDR-1018 to protect against Mycobacterium tuberculosis infections in animal models. PLoS One 2013; 8(3)e59119 [http://dx.doi.org/10.1371/journal.pone.0059119]. [PMID: 23555622].
[43]
Rivas-Santiago CE, Rivas-Santiago B, León DA, Castañeda-Delgado J, Hernández Pando R. Induction of β-defensins by l-isoleucine as novel immunotherapy in experimental murine tuberculosis. Clin Exp Immunol 2011; 164(1): 80-9. [http://dx.doi.org/10.1111/j.1365-2249.2010.04313.x]. [PMID: 21235540].
[44]
Gonzalez-Curiel I, Trujillo V, Montoya-Rosales A, et al. 1,25-dihydroxyvitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: an in vitro model. PLoS One 2014; 9(10)e111355 [http://dx.doi.org/10.1371/journal.pone.0111355]. [PMID: 25337708].
[45]
Nnoaham KE, Clarke A. Low serum vitamin D levels and tuberculosis: A systematic review and meta-analysis. Int J Epidemiol 2008; 37(1): 113-9. [http://dx.doi.org/10.1093/ije/dym247]. [PMID: 18245055].
[46]
Yamshchikov AV, Kurbatova EV, Kumari M, et al. Vitamin D status and antimicrobial peptide cathelicidin (LL-37) concentrations in patients with active pulmonary tuberculosis. Am J Clin Nutr 2010; 92(3): 603-11. [http://dx.doi.org/10.3945/ajcn.2010.29411]. [PMID: 20610636].
[47]
Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311(5768): 1770-3. [http://dx.doi.org/10.1126/science.1123933]. [PMID: 16497887].
[48]
Denis M. Killing of Mycobacterium tuberculosis within human monocytes: Activation by cytokines and calcitriol. Clin Exp Immunol 1991; 84(2): 200-6. [http://dx.doi.org/10.1111/j.1365-2249.1991.tb08149.x]. [PMID: 1902761].
[49]
Larcombe L, Orr P, Turner-Brannen E, Slivinski CR, Nickerson PW, Mookherjee N. Effect of vitamin D supplementation on Mycobacterium tuberculosis-induced innate immune responses in a Canadian Dené First Nations cohort. PLoS One 2012; 7(7)e40692 [http://dx.doi.org/10.1371/journal.pone.0040692]. [PMID: 22866178].
[50]
Mily A, Rekha RS, Kamal SM, et al. Oral intake of phenylbutyrate with or without vitamin D3 upregulates the cathelicidin LL-37 in human macrophages: a dose finding study for treatment of tuberculosis. BMC Pulm Med 2013; 13: 23. [http://dx.doi.org/10.1186/1471-2466-13-23]. [PMID: 23590701].
[51]
Raqib R, Sarker P, Bergman P, et al. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc Natl Acad Sci USA 2006; 103(24): 9178-83. [http://dx.doi.org/10.1073/pnas.0602888103]. [PMID: 16740661].
[52]
Sarker P, Ahmed S, Tiash S, et al. Phenylbutyrate counteracts Shigella mediated downregulation of cathelicidin in rabbit lung and intestinal epithelia: a potential therapeutic strategy. PLoS One 2011; 6(6)e20637 [http://dx.doi.org/10.1371/journal.pone.0020637]. [PMID: 21673991].
[53]
Raqib R, Sarker P, Mily A, et al. Efficacy of sodium butyrate adjunct therapy in shigellosis: A randomized, double-blind, placebo-controlled clinical trial. BMC Infect Dis 2012; 12: 111. [http://dx.doi.org/10.1186/1471-2334-12-111]. [PMID: 22574737].
[54]
Steinmann J, Halldórsson S, Agerberth B, Gudmundsson GH. Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother 2009; 53(12): 5127-33. [http://dx.doi.org/10.1128/AAC.00818-09]. [PMID: 19770273].
[55]
Kindrachuk J, Jenssen H, Elliott M, et al. A novel vaccine adjuvant comprised of a synthetic innate defence regulator peptide and CpG oligonucleotide links innate and adaptive immunity. Vaccine 2009; 27(34): 4662-71. [http://dx.doi.org/10.1016/j.vaccine.2009.05.094]. [PMID: 19539585].
[56]
Cao D, Li H, Jiang Z, et al. Synthetic innate defence regulator peptide enhances in vivo immunostimulatory effects of CpG-ODN in newborn piglets. Vaccine 2010; 28(37): 6006-13. [http://dx.doi.org/10.1016/j.vaccine.2010.06.103]. [PMID: 20637306].
[57]
Yang J, Mao M, Zhang S, et al. Innate defense regulator peptide synergizes with CpG ODN for enhanced innate intestinal immune responses in neonate piglets. Int Immunopharmacol 2012; 12(2): 415-24. [http://dx.doi.org/10.1016/j.intimp.2011.12.015]. [PMID: 22226751].
[58]
Hancock RE, Nijnik A, Philpott DJ. Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 2012; 10(4): 243-54. [http://dx.doi.org/10.1038/nrmicro2745]. [PMID: 22421877].
[59]
Rivas-Santiago B, Rivas Santiago CE, Castañeda-Delgado JE, León-Contreras JC, Hancock RE, Hernandez-Pando R. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis. Int J Antimicrob Agents 2013; 41(2): 143-8. [http://dx.doi.org/10.1016/j.ijantimicag.2012.09.015]. [PMID: 23141114].
[60]
Salay LC, Nobre TM, Colhone MC, et al. Dermaseptin 01 as antimicrobial peptide with rich biotechnological potential: study of peptide interaction with membranes containing Leishmania amazonensis lipid-rich extract and membrane models. J Pept Sci 2011; 17(10): 700-7. [http://dx.doi.org/10.1002/psc.1392]. [PMID: 21805539].
[61]
Savoia D, Guerrini R, Marzola E, Salvadori S. Synthesis and antimicrobial activity of dermaseptin S1 analogues. Bioorg Med Chem 2008; 16(17): 8205-9. [http://dx.doi.org/10.1016/j.bmc.2008.07.032]. [PMID: 18676150].
[62]
Zampa MF, Araújo IM, Costa V, et al. Leishmanicidal activity and immobilization of dermaseptin 01 antimicrobial peptides in ultrathin films for nanomedicine applications. Nanomedicine (Lond) 2009; 5(3): 352-8. [http://dx.doi.org/10.1016/j.nano.2008.11.001]. [PMID: 19215729].
[63]
Hernandez C, Mor A, Dagger F, et al. Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin. Eur J Cell Biol 1992; 59(2): 414-24. [PMID: 1493807].
[64]
Mangoni ML, Saugar JM, Dellisanti M, Barra D, Simmaco M, Rivas L. Temporins, small antimicrobial peptides with leishmanicidal activity. J Biol Chem 2005; 280(2): 984-90. [http://dx.doi.org/10.1074/jbc.M410795200]. [PMID: 15513914].
[65]
Akuffo H, Hultmark D, Engstöm A, Frohlich D, Kimbrell D. Drosophila antibacterial protein, cecropin A, differentially affects non-bacterial organisms such as Leishmania in a manner different from other amphipathic peptides. Int J Mol Med 1998; 1(1): 77-82. [http://dx.doi.org/10.3892/ijmm.1.1.77]. [PMID: 9852202].
[66]
Lynn MA, Kindrachuk J, Marr AK, et al. Effect of BMAP-28 antimicrobial peptides on Leishmania major promastigote and amastigote growth: Role of leishmanolysin in parasite survival. PLoS Negl Trop Dis 2011; 5(5)e1141 [http://dx.doi.org/10.1371/journal.pntd.0001141]. [PMID: 21655347].
[67]
do Nascimento VV, Mello Éde O, Carvalho LP, et al. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis. Biosci Rep 2015; 35(5)e00248 [http://dx.doi.org/10.1042/BSR20150060]. [PMID: 26285803].
[68]
Luque-Ortega JR, van’t Hof W, Veerman EC, Saugar JM, Rivas L. Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania. FASEB J 2008; 22(6): 1817-28. [http://dx.doi.org/10.1096/fj.07-096081]. [PMID: 18230684].
[69]
Abdossamadi Z, Taheri T, Seyed N, et al. Live Leishmania tarentolae secreting HNP1 as an immunotherapeutic tool against Leishmania infection in BALB/c mice. Immunotherapy 2017; 9(13): 1089-102. [http://dx.doi.org/10.2217/imt-2017-0076]. [PMID: 29032739].
[70]
Campos-Salinas J, Caro M, Cavazzuti A, et al. Protective role of the neuropeptide Urocortin II against experimental sepsis and leishmaniasis by direct killing of pathogens. J Immunol 2013; 191: 6040-51. [http://dx.doi.org/10.4049/jimmunol.1301921].
[71]
Campos-Salinas J, Cavazzuti A, O’Valle F, et al. Therapeutic efficacy of stable analogues of vasoactive intestinal peptide against pathogens. J Biol Chem 2014; 289(21): 14583-99. [http://dx.doi.org/10.1074/jbc.M114.560573]. [PMID: 24706753].
[72]
Marr AK, Cen S, Hancock REW, McMaster WR. Identification of Synthetic and Natural Host Defense Peptides with Leishmanicidal Activity. Antimicrob Agents Chemother 2016; 60(4): 2484-91. [http://dx.doi.org/10.1128/AAC.02328-15]. [PMID: 26883699].
[73]
Erfe MCB, David CV, Huang C, et al. Efficacy of synthetic peptides RP-1 and AA-RP-1 against Leishmania species in vitro and in vivo. Antimicrob Agents Chemother 2012; 56(2): 658-65. [http://dx.doi.org/10.1128/AAC.05349-11]. [PMID: 22123683].
[74]
Fang RH, Zhang L. Nanoparticle-Based Modulation of the Immune System. Annu Rev Chem Biomol Eng 2016; 7: 305-26. [http://dx.doi.org/10.1146/annurev-chembioeng-080615-034446]. [PMID: 27146556].
[75]
Fang RH, Kroll AV, Zhang L. Nanoparticle-Based Manipulation of Antigen-Presenting Cells for Cancer Immunotherapy. Small 2015; 11(41): 5483-96. [http://dx.doi.org/10.1002/smll.201501284]. [PMID: 26331993].
[76]
Youan BB. Impact of nanoscience and nanotechnology on controlled drug delivery. Nanomedicine 2008; 3(4): 401-6. [http://dx.doi.org/10.2217/17435889.3.4.401]. [PMID: 18694301].
[77]
Prasad M, Lambe UP, Brar B, et al. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 2018; 97: 1521-37. [http://dx.doi.org/10.1016/j.biopha.2017.11.026]. [PMID: 29793315].
[78]
Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 2017; 128: 69-83. [http://dx.doi.org/10.1016/j.biomaterials.2017.02.041]. [PMID: 28292726].
[79]
Fang RH, Hu CM, Zhang L. Nanoparticles disguised as red blood cells to evade the immune system. Expert Opin Biol Ther 2012; 12(4): 385-9. [http://dx.doi.org/10.1517/14712598.2012.661710]. [PMID: 22332936].
[80]
Zhang S, Gao H, Bao G. Physical Principles of Nanoparticle Cellular Endocytosis. ACS Nano 2015; 9(9): 8655-71. [http://dx.doi.org/10.1021/acsnano.5b03184]. [PMID: 26256227].
[81]
Baek S, Singh RK, Khanal D, et al. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale 2015; 7(34): 14191-216. [http://dx.doi.org/10.1039/C5NR02730F]. [PMID: 26260245].
[82]
Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces 2017; 159: 217-31. [http://dx.doi.org/10.1016/j.colsurfb.2017.07.038]. [PMID: 28797972].
[83]
Peres C, Matos AI, Conniot J, et al. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomater 2017; 48: 41-57. [http://dx.doi.org/10.1016/j.actbio.2016.11.012]. [PMID: 27826003].
[84]
Nomura T, Routh AF. Benign preparation of aqueous core poly lactic-co-glycolic acid (PLGA) microcapsules. J Colloid Interface Sci 2018; 513: 1-9. [http://dx.doi.org/10.1016/j.jcis.2017.11.007]. [PMID: 29128617].
[85]
Athanasiou E, Agallou M, Tastsoglou S, et al. A Poly(Lactic-co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8+ T Cells Essential for the Protection against Experimental Visceral Leishmaniasis. Front Immunol 2017; 8: 684. [http://dx.doi.org/10.3389/fimmu.2017.00684]. [PMID: 28659922].
[86]
Hilchie AL, Wuerth K, Hancock RE. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol 2013; 9(12): 761-8. [http://dx.doi.org/10.1038/nchembio.1393]. [PMID: 24231617].
[87]
Kamhawi S, Oliveira F, Valenzuela JG. Using humans to make a human leishmaniasis vaccine. Sci Transl Med 2014; 6(234)234fs18 [http://dx.doi.org/10.1126/scitranslmed.3009118]. [PMID: 24786322].
[88]
Rivas-Santiago B, Rivas-Santiago C, Sada E, Hernández-Pando R. Prophylactic potential of defensins and L-isoleucine in tuberculosis household contacts: An experimental model. Immunotherapy 2015; 7(3): 207-13. [http://dx.doi.org/10.2217/imt.14.119]. [PMID: 25804474].
[89]
Xia X, Zhang L, Wang Y. The antimicrobial peptide cathelicidin-BF could be a potential therapeutic for Salmonella typhimurium infection. Microbiol Res 2015; 171: 45-51. [http://dx.doi.org/10.1016/j.micres.2014.12.009]. [PMID: 25644952].
[90]
Abdossamadi Z, Seyed N, Zahedifard F, et al. Human Neutrophil Peptide 1 as immunotherapeutic agent against Leishmania infected BALB/c mice. PLoS Negl Trop Dis 2017; 11(12)e0006123 [http://dx.doi.org/10.1371/journal.pntd.0006123]. [PMID: 29253854].
[91]
Das S, Sardar AH, Abhishek K, Kumar A, Rabidas VN, Das P. Cathelicidin augments VDR-dependent anti-leishmanial immune response in Indian Post-Kala-Azar Dermal Leishmaniasis. Int Immunopharmacol 2017; 50: 130-8. [http://dx.doi.org/10.1016/j.intimp.2017.06.010]. [PMID: 28662432].
[92]
McGwire BS, Olson CL, Tack BF, Engman DM. Killing of African trypanosomes by antimicrobial peptides. J Infect Dis 2003; 188(1): 146-52. [http://dx.doi.org/10.1086/375747]. [PMID: 12825184].