Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

The Effects of Hydroalcoholic Extract from Alhagi on Matrix Metalloproteinase- 9 Production in Peripheral Blood Mononuclear Cells from Patients with Rheumatoid Arthritis

Author(s): Mahbouba Ahmadi, Reyhane Ebrahimi, Mohammad Ansari, Masoumeh Akhlaghi, Mahdi Mahmoudi, Gholamreza Amin and Solaleh Emamgholipour*

Volume 10, Issue 4, 2020

Page: [440 - 445] Pages: 6

DOI: 10.2174/2210315509666190624154106

Price: $65

Abstract

Background: The up-regulation of matrix metalloproteinase 9 (MMP-9) along with the imbalanced ratio of MMP-9 to tissue inhibitor of metalloproteinase 1 (TIMP-1) is important in the pathogenesis of Rheumatoid Arthritis (RA). Here, we investigated whether hydroalcoholic extract from the root of Alhagi camelorum Fisch can affect the levels of MMP-9 and TIMP-1 in peripheral blood mononuclear cells (PBMCs) of RA patients.

Objective: In the current study, we suggest that Alhagi may have an inhibitory effect on MMP-9 production, which is mainly responsible for joint destruction in RA. In addition, we would like to stress that our findings, along with others, can provide the basis for future studies, which might help in determining the role of chemical ingredients of Alhagi as therapeutic targets for RA treatment.

Methods: PBMCs were isolated from 12 RA patients and 12 healthy subjects and treated with two concentrations of Alhagi extract (100 and 500 μg/ml) for 24 h. MMP-9 gene expression and protein production, TIMP-1 levels and nitric oxide (NO) production were evaluated using standard methods.

Results: Alhagi (500 μg/ml) caused a significant reduction in the expression and activity of MMP-9 in PBMCs from healthy (p=0.003 for both of them) and patient (p= 0.05 and p=0.02 respectively) subjects. Moreover, Alhagi (100 μg/ml) decreased MMP-9 production in the healthy subjects’ group (p=0.02).

Conclusion: The present study reveals the inhibitory effects of Alhagi on the production of MMP-9 as the main responsible cause of joint destruction in RA.

Keywords: Matrix Metalloproteinase 9 (MMP-9), Tissue Inhibitor of Metalloproteinase 1 (TIMP-1), Rheumatoid Arthritis (RA), Alhagi camelorum Fisch, Peripheral Blood Mononuclear Cells (PBMCs), inhibitory effects.

Graphical Abstract

[1]
Asghari, M.H.; Fallah, M.; Moloudizargari, M.; Mehdikhani, F.; Sepehrnia, P.; Moradi, B. A systematic and mechanistic review on the phytopharmacological properties of Alhagi species. Anc. Sci. Life, 2016, 36(2), 65-71.
[http://dx.doi.org/10.4103/asl.ASL_37_16] [PMID: 28446826]
[2]
Batanouny, K.; Aboutabl, E.; Shabana, M.; Soliman, F. Wild Medicinal Plants in Egypt Swiss Development Co-operation (SDC). Academy of Scientific Research and Technology, Egypt. The World Conservation Union; IUCN: Switzerland, 1999, pp. 102-104.
[3]
Srivastava, B. Alhagi pseudalhagi: A review of its phytochemistry, pharmacology, folklore claims and Ayurvedic studies. Int. J. Herbal Med., 2014, 2(2), 47-51.
[4]
Nold, M.; Goede, A.; Eberhardt, W.; Pfeilschifter, J.; Mühl, H. IL-18 initiates release of matrix metalloproteinase-9 from peripheral blood mononuclear cells without affecting tissue inhibitor of matrix metalloproteinases-1: Suppression by TNF alpha blockage and modulation by IL-10. Naunyn Schmiedebergs Arch. Pharmacol., 2003, 367(1), 68-75.
[http://dx.doi.org/10.1007/s00210-002-0648-5] [PMID: 12616343]
[5]
Sarén, P.; Welgus, H.G.; Kovanen, P.T. TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages. J. Immunol., 1996, 157(9), 4159-4165.
[PMID: 8892653]
[6]
Yoshihara, Y.; Nakamura, H.; Obata, K.; Yamada, H.; Hayakawa, T.; Fujikawa, K.; Okada, Y. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann. Rheum. Dis., 2000, 59(6), 455-461.
[http://dx.doi.org/10.1136/ard.59.6.455] [PMID: 10834863]
[7]
Singh, V.P.; Yadav, B.; Pandey, V.B. Flavanone glycosides from Alhagi pseudalhagi. Phytochemistry, 1999, 51(4), 587-590.
[http://dx.doi.org/10.1016/S0031-9422(99)00010-2] [PMID: 10389270]
[8]
Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., III; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; Combe, B.; Costenbader, K.H.; Dougados, M.; Emery, P.; Ferraccioli, G.; Hazes, J.M.; Hobbs, K.; Huizinga, T.W.; Kavanaugh, A.; Kay, J.; Kvien, T.K.; Laing, T.; Mease, P.; Ménard, H.A.; Moreland, L.W.; Naden, R.L.; Pincus, T.; Smolen, J.S.; Stanislawska-Biernat, E.; Symmons, D.; Tak, P.P.; Upchurch, K.S.; Vencovský, J.; Wolfe, F.; Hawker, G. 2010 Rheumatoid arthritis classification criteria: An American college of rheumatology/European league against rheumatism collaborative initiative. Arthritis Rheum., 2010, 62(9), 2569-2581.
[http://dx.doi.org/10.1002/art.27584] [PMID: 20872595]
[9]
Batanouny, K. Wild medicinal plants in Egypt. Academy of Scientific Research and Technology, Egypt and International Union for Conservation; IUCN: Switzerland, 1999, pp. 166-167.
[10]
Nagy, G.; Koncz, A.; Telarico, T.; Fernandez, D.; Ersek, B.; Buzás, E.; Perl, A. Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and systemic Lupus erythematosus. Arthritis Res. Ther., 2010, 12(3), 210-210.
[http://dx.doi.org/10.1186/ar3045] [PMID: 20609263]
[11]
Ahmad, N. Traditional uses and pharmacological properties of Alhagi maurorum: A review. Asian Pac. J. Trop. Dis., 2015, 5(11), 856-861.
[http://dx.doi.org/10.1016/S2222-1808(15)60945-8]
[12]
Farzaei, M.H.; Farzaei, F.; Abdollahi, M.; Abbasabadi, Z.; Abdolghaffari, A.H.; Mehraban, B. A mechanistic review on medicinal plants used for rheumatoid arthritis in traditional Persian medicine. J. Pharm. Pharmacol., 2016, 68(10), 1233-1248.
[http://dx.doi.org/10.1111/jphp.12606] [PMID: 27417522]
[13]
Neamah, N.F. A pharmacological evaluation of aqueous extract of Alhagi maurorum. Glob. J. Pharmacol., 2012, 6(1), 41-46.
[14]
Ibrahim, M.T. Anti-inflammatory effect and phenolic isolates of Alhagi graecorum Boiss (Family Fabaceae). J. Am. Sci., 2015, 11(5)
[15]
Yu, F.; Kamada, H.; Niizuma, K.; Endo, H.; Chan, P.H. Induction of mmp-9 expression and endothelial injury by oxidative stress after spinal cord injury. J. Neurotrauma, 2008, 25(3), 184-195.
[http://dx.doi.org/10.1089/neu.2007.0438] [PMID: 18352832]
[16]
De Leo, M.E.; Tranghese, A.; Passantino, M.; Mordente, A.; Lizzio, M.M.; Galeotti, T.; Zoli, A. Manganese superoxide dismutase, glutathione peroxidase, and total radical trapping antioxidant capacity in active rheumatoid arthritis. J. Rheumatol., 2002, 29(10), 2245-2246.
[PMID: 12375348]
[17]
Eggleton, P.; Wang, L.; Penhallow, J.; Crawford, N.; Brown, K.A. Differences in oxidative response of subpopulations of neutrophils from healthy subjects and patients with rheumatoid arthritis. Ann. Rheum. Dis., 1995, 54(11), 916-923.
[http://dx.doi.org/10.1136/ard.54.11.916] [PMID: 7492242]
[18]
Hughes, S.; Ketheesan, N.; Haleagrahara, N. The therapeutic potential of plant flavonoids on rheumatoid arthritis. Crit. Rev. Food Sci. Nutr., 2017, 57(17), pp. 3601-3613.
[19]
Laghari, A.H. Alhagi maurorum: A convenient source of lupeol. Ind. Crops Prod., 2011, 34(1), 1141-1145.
[http://dx.doi.org/10.1016/j.indcrop.2011.03.031]
[20]
Nguemfo, E.L.; Dimo, T.; Dongmo, A.B.; Azebaze, A.G.; Alaoui, K.; Asongalem, A.E.; Cherrah, Y.; Kamtchouing, P. Anti-oxidative and anti-inflammatory activities of some isolated constituents from the stem bark of Allanblackia monticola Staner L.C (Guttiferae). Inflammopharmacology, 2009, 17(1), 37-41.
[http://dx.doi.org/10.1007/s10787-008-8039-2] [PMID: 19127347]
[21]
Annabi, B.; Vaillancourt-Jean, E.; Béliveau, R. MT1-MMP expression level status dictates the in vitro action of lupeol on inflammatory biomarkers MMP-9 and COX-2 in medulloblastoma cells. Inflammopharmacology, 2013, 21(1), 91-99.
[http://dx.doi.org/10.1007/s10787-012-0142-8] [PMID: 22707305]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy