[1]
Deininger, M.W. Diagnosing and managing advanced chronic myeloid leukemia. Am. Soc. Clin. Oncol. Educ. Book, 2015, 35, e381-e388.
[2]
Granatowicz, A.; Piatek, C.I.; Moschiano, E.; El-Hemaidi, I.; Armitage, J.D.; Akhtari, M. An overview and update of chronic myeloid leukemia for primary care physicians. Korean J. Fam. Med., 2015, 36(5), 197-202.
[3]
Baccarani, M.; Pileri, S.; Steegmann, J-L.; Muller, M.; Soverini, S.; Dreyling, M. Chronic myeloid leukemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol., 2012, 23(Suppl. 7), vii72-vii77.
[4]
Matutes, E.; Pickl, W.F.; Van’t Veer, M.; Morilla, R.; Swansbury, J.; Strobl, H.; Attarbaschi, A.; Hopfinger, G.; Ashley, S.; Bene, M.C.; Porwit, A.; Orfao, A.; Lemez, P.; Schabath, R.; Ludwig, W.D. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood, 2011, 117(11), 3163-3171.
[5]
Clark, S.S.; McLaughlin, J.; Timmons, M.; Pendergast, A.M.; Ben-Neriah, Y.; Dow, L.W.; Crist, W.; Rovera, G.; Smith, S.D.; Witte, O.N. Expression of a distinctive BCR-ABL oncogene in Ph1-positive acute lymphocytic leukemia (ALL). Science, 1988, 239(4841 Pt 1), 775-777.
[6]
Konopka, J.B.; Watanabe, S.M.; Witte, O.N. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell, 1984, 37(3), 1035-1042.
[7]
Laneuville, P. Abl tyrosine protein kinase. Semin. Immunol., 1995, 7(4), 255-266.
[8]
Liu, J.; Campbell, M.; Guo, J.Q.; Lu, D.; Xian, Y.M.; Andersson, B.S.; Arlinghaus, R.B. BCR-ABL tyrosine kinase is autophosphorylated or transphosphorylates P160 BCR on tyrosine predominantly within the first BCR exon. Oncogene, 1993, 8(1), 101-109.
[9]
Pendergast, A.M.; Quilliam, L.A.; Cripe, L.D.; Bassing, C.H.; Dai, Z.; Li, N.; Batzer, A.; Rabun, K.M.; Der, C.J.; Schlessinger, J. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell, 1993, 75(1), 175-185.
[10]
Ben-Neriah, Y.; Daley, G.Q.; Mes-Masson, A.M.; Witte, O.N.; Baltimore, D. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science, 1986, 233(4760), 212-214.
[11]
Yang, J.; Campobasso, N.; Biju, M.P.; Fisher, K.; Pan, X-Q.; Cottom, J.; Galbraith, S.; Ho, T.; Zhang, H.; Hong, X.; Ward, P.; Hofmann, G.; Siegfried, B.; Zappacosta, F.; Washio, Y.; Cao, P.; Qu, J.; Bertrand, S.; Wang, D.Y.; Head, M.S.; Li, H.; Moores, S.; Lai, Z.; Johanson, K.; Burton, G.; Erickson-Miller, C.; Simpson, G.; Tummino, P.; Copeland, R.A.; Oliff, A. Discovery and characterization of a cell-permeable, small-molecule c-Abl kinase activator that binds to the myristoyl binding site. Chem. Biol., 2011, 18(2), 177-186.
[12]
Nagar, B.; Hantschel, O.; Young, M.A.; Scheffzek, K.; Veach, D.; Bornmann, W.; Clarkson, B.; Superti-Furga, G.; Kuriyan, J. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell, 2003, 112(6), 859-871.
[13]
Wylie, A.; Schoepfer, J.; Berellini, G.; Cai, H.; Caravatti, G.; Cotesta, S.; Dodd, S.; Donovan, D.; Erb, B.; Furet, P.; Gangal, G.; Grotzfeld, R.; Hassan, Q.; Hood, T.; Iyer, I.; Jacob, S.; Ja, W. ABL001, a potent allosteric inhibitor of BCR-ABL, prevents emergence of resistant disease when administered in combination with nilotinib in an in vivo murine model of chronic myeloid leukemia. Blood, 2014, 124, 398-398.
[14]
Eadie, L.N.; Saunders, V.A.; Leclercq, T.M.; Branford, S.; White, D.L.; Hughes, T.P. The allosteric inhibitor ABL001 is susceptible to resistance in vitro mediated by overexpression of the drug efflux transporters ABCB1 and ABCG2. Blood, 2015, 126(23), 4841-4841.
[15]
Wylie, A.A.; Schoepfer, J.; Jahnke, W.; Cowan-Jacob, S.W.; Loo, A.; Furet, P.; Marzinzik, A.L.; Pelle, X.; Donovan, J.; Zhu, W.; Buonamici, S.; Hassan, A.Q.; Lombardo, F.; Iyer, V.; Palmer, M.; Berellini, G.; Dodd, S.; Thohan, S.; Bitter, H.; Branford, S.; Ross, D.M.; Hughes, T.P.; Petruzzelli, L.; Vanasse, K.G.; Warmuth, M.; Hofmann, F.; Keen, N.J.; Sellers, W.R. The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1. Nature, 2017, 543(7647), 733-737.
[16]
Ottmann, O.G.; Alimena, G.; DeAngelo, D.J.; Goh, Y-T.; Heinrich, M.C.; Hochhaus, A.; Hughes, T.P.; Mahon, F-X.; Mauro, M.J.; Minami, H. ABL001, a Potent, allosteric inhibitor of BCR-ABL, exhibits safety and promising single- agent activity in a phase i study of patients with CML with failure of prior TKI therapy. Blood, 2015, 126(23), 138-138.
[17]
Hughes, T.P.; Goh, Y-T.; Ottmann, O.G.; Minami, H.; Rea, D.; Lang, F.; Mauro, M.J.; DeAngelo, D.J.; Talpaz, M.; Hochhaus, A. Expanded phase 1 study of ABL001, a Potent, allosteric inhibitor of BCR-ABL, reveals significant and durable responses in patients with CML-chronic phase with failure of prior TKI therapy. Blood, 2016, 128(22), 625-625.
[18]
Druker, B.J.; Sawyers, C.L.; Kantarjian, H.; Resta, D.J.; Reese, S.F.; Ford, J.M.; Capdeville, R.; Talpaz, M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med., 2001, 344(14), 1038-1042.
[19]
Hassan, A.Q.; Sharma, S.V.; Warmuth, M. Allosteric inhibition of BCR-ABL. Cell Cycle, 2010, 9(18), 3710-3714.
[20]
Giles, F.J.; le Coutre, P.D.; Pinilla-Ibarz, J.; Larson, R.A.; Gattermann, N.; Ottmann, O.G.; Hochhaus, A.; Radich, J.P.; Saglio, G.; Hughes, T.P.; Martinelli, G.; Kim, D.W.; Novick, S.; Gillis, K.; Fan, X.; Cortes, J.; Baccarani, M.; Kantarjian, H.M. Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. Leukemia, 2013, 27(1), 107-112.
[21]
Rogers, G.; Hoyle, M.; Thompson Coon, J.; Moxham, T.; Liu, Z.; Pitt, M.; Stein, K. Dasatinib and nilotinib for imatinib-resistant or -intolerant chronic myeloid leukaemia: A systematic review and economic evaluation. Health Technol. Assess., 2012, 16(22), 1-410.
[22]
Jarkowski, A.; Sweeney, R.P. Nilotinib: A new tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Pharmacotherapy, 2008, 28(11), 1374-1382.
[23]
Blay, J.Y.; von Mehren, M. Nilotinib: A novel, selective tyrosine kinase inhibitor. Semin. Oncol., 2011, 3(Suppl. 1), S3-S9.
[24]
Bleeker, F.E.; Bardelli, A. Genomic landscapes of cancers: Prospects for targeted therapies. Pharmacogenomics, 2007, 8(12), 1629-1633.
[25]
Cowan-Jacob, S.W. The role of structure and biophysics in the discovery of allosteric kinase inhibitors: ABL001, a potent and specific inhibitor of BCR-ABL. Acta Crystallogr., 2016, 72(a1), s4-s5.
[26]
Schoepfer, J.; Jahnke, W.; Berellini, G.; Buonamici, S.; Cotesta, S.; Cowan-Jacob, S.W.; Dodd, S.; Drueckes, P.; Fabbro, D.; Gabriel, T.; Groell, J.M.; Grotzfeld, R.M.; Hassan, A.Q.; Henry, C.; Iyer, V.; Jones, D.; Lombardo, F.; Loo, A.; Manley, P.W.; Pellé, X.; Rummel, G.; Salem, B.; Warmuth, M.; Wylie, A.A.; Zoller, T.; Marzinzik, A.L.; Furet, P. Discovery of Asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J. Med. Chem., 2018, 61(18), 8120-8135.
[27]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.; Bishayee, A.; Blain, S.W.; Block, P.B.; Boosani, C.S.; Carey, T.E.; Carnero, A.; Carotenuto, M.; Casey, S.C.; Chakrabarti, M.; Chaturvedi, R.; Chen, G.Z.; Chen, H.; Chen, S.; Chen, Y.C.; Choi, B.K.; Ciriolo, M.R.; Coley, H.M.; Collins, A.R.; Connell, M.; Crawford, S.; Curran, C.S.; Dabrosin, C.; Damia, G.; Dasgupta, S.; DeBerardinis, R.J.; Decker, W.K.; Dhawan, P.; Diehl, A.M.E.; Dong, J.T.; Dou, Q.P.; Drew, J.E.; Elkord, E.; El-Rayes, B.; Feitelson, M.A.; Felsher, D.W.; Ferguson, L.R.; Fimognari, C.; Firestone, G.L.; Frezza, C.; Fujii, H.; Fuster, M.M.; Generali, D.; Georgakilas, A.G.; Gieseler, F.; Gilbertson, M.; Green, M.F.; Grue, B.; Guha, G.; Halicka, D.; Helferich, W.G.; Heneberg, P.; Hentosh, P.; Hirschey, M.D.; Hofseth, L.J.; Holcombe, R.F.; Honoki, K.; Hsu, H.Y.; Huang, G.S.; Jensen, L.D.; Jiang, W.G.; Jones, L.W.; Karpowicz, P.A.; Keith, W.N.; Kerkar, S.P.; Khan, G.N.; Khatami, M.; Ko, Y.H.; Kucuk, O.; Kulathinal, R.J.; Kumar, N.B.; Kwon, B.S.; Le, A.; Lea, M.A.; Lee, H.Y.; Lichtor, T.; Lin, L.T.; Locasale, J.W.; Lokeshwar, B.L.; Longo, V.D.; Lyssiotis, C.A.; MacKenzie, K.L.; Malhotra, M.; Marino, M.; Martinez-Chantar, M.L.; Matheu, A.; Maxwell, C.; McDonnell, E.; Meeker, A.K.; Mehrmohamadi, M.; Mehta, K.; Michelotti, G.A.; Mohammad, R.M.; Mohammed, S.I.; Morre, D.J.; Muralidhar, V.; Muqbil, I.; Murphy, M.P.; Nagaraju, G.P.; Nahta, R.; Niccolai, E.; Nowsheen, S.; Panis, C.; Pantano, F.; Parslow, V.R.; Pawelec, G.; Pedersen, P.L.; Poore, B.; Poudyal, D.; Prakash, S.; Prince, M.; Raffaghello, L.; Rathmell, J.C.; Rathmell, W.K.; Ray, S.K.; Reichrath, J.; Rezazadeh, S.; Ribatti, D.; Ricciardiello, L.; Robey, R.B.; Rodier, F.; Rupasinghe, H.P.V.; Russo, G.L.; Ryan, E.P.; Samadi, A.K.; Sanchez-Garcia, I.; Sanders, A.J.; Santini, D.; Sarkar, M.; Sasada, T.; Saxena, N.K.; Shackelford, R.E.; Shantha Kumara, H.M.C.; Sharma, D.; Shin, D.M.; Sidransky, D.; Siegelin, M.D.; Signori, E.; Singh, N.; Sivanand, S.; Sliva, D.; Smythe, C.; Spagnuolo, C.; Stafforini, D.M.; Stagg, J.; Subbarayan, P.R.; Sundin, T.; Talib, W.H.; Thompson, S.K.; Tran, P.T.; Ungefroren, H.; Vander Heiden, M.G.; Venkateswaran, V.; Vinay, D.S.; Vlachostergios, P.J.; Wang, Z.; Wellen, K.E.; Whelan, R.L.; Yang, E.S.; Yang, H.; Yang, X.; Yaswen, P.; Yedjou, C.; Yin, X.; Zhu, J.; Zollo, M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol., 2015, 35(Suppl. 3), S276-S304.
[28]
Petrelli, A.; Giordano, S. From single- to multi-target drugs in cancer therapy: When aspecificity becomes an advantage. Curr. Med. Chem., 2008, 15(5), 422-432.
[29]
Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; Fagan, P.; Marvin, J.; Padilla, D.; Ravichandran, V.; Schneider, B.; Thanki, N.; Weissig, H.; Westbrook, J.D.; Zardecki, C. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr., 2002, 58(Pt 6 No 1), 899-907.
[30]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[31]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[32]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[33]
Adcock, S.A.; McCammon, J.A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev., 2006, 106(5), 1589-1615.
[34]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[35]
Ramharack, P.; Soliman, M.E.S. Zika virus NS5 protein potential inhibitors: An enhanced in silico approach in drug discovery. J. Biomol. Struct. Dyn., 2018, 36(5), 1118-1133.
[36]
El Rashedy, A.A.; Olotu, F.A.; Soliman, M.E.S. Dual drug targeting of mutant Bcr-Abl induces inactive conformation: New strategy for the treatment of chronic myeloid leukemia and overcoming monotherapy resistance. Chem. Biodivers., 2018, 15(3)e170053
[37]
Ramharack, P.; Oguntade, S.; Soliman, M.E.S. Delving into zika virus structural dynamics – a closer look at NS3 helicase loop flexibility and its role in drug discovery. RSC Adv, 2017, 7(36), 22133-22144.
[38]
Roe, D.R.; Cheatham, T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[39]
Ylilauri, M.; Pentikäinen, O.T. MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. J. Chem. Inf. Model., 2013, 53(10), 2626-2633.
[40]
Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the performance of the MM/PBSA and MM/GBSA methods. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model., 2011, 51(1), 69-82.
[41]
Hayes, J.M.; Archontis, G. MM-GB; SA calculations of protein-ligand binding free energies; InTech: PB, 2011, pp. 171-190.
[42]
Agoni, C.; Ramharack, P.; Soliman, M.E.S. Co-inhibition as a strategic therapeutic approach to overcome rifampin resistance in tuberculosis therapy: Atomistic insights. Future Med. Chem., 2018, 10(14), 1665-1675.
[43]
Eadie, L.N.; Saunders, V.A.; Branford, S.; White, D.L.; Hughes, T.P. The new allosteric inhibitor asciminib is susceptible to resistance mediated by ABCB1 and ABCG2 overexpression in vitro. Oncotarget, 2018, 9(17), 13423-13437.
[44]
Reddy, E.P.; Aggarwal, A.K. The ins and outs of BCR-ABL inhibition. Genes Cancer, 2012, 3(5-6), 447-454.
[45]
Pan, L.; Patterson, J.C.; Deshpande, A.; Cole, G.; Frautschy, S. Molecular dynamics study of Zn(aβ) and Zn(aβ)2. PLoS One, 2013, 8(9)e70681
[46]
Wijffels, G.; Dalrymple, B.; Kongsuwan, K.; Dixon, N.E. Conservation of eubacterial replicases. IUBMB Life, 2005, 57(6), 413-419.
[47]
Panjarian, S.; Iacob, R.E.; Chen, S.; Engen, J.R.; Smithgall, T.E. Structure and dynamic regulation of Abl kinases. J. Biol. Chem., 2013, 288(8), 5443-5450.
[48]
Maru, Y. Molecular biology of chronic myeloid leukemia. Cancer Sci., 2012, 103(9), 1601-1610.
[49]
Marsh, J.A.; Teichmann, S.A. Relative solvent accessible surface area predicts protein conformational changes upon binding. Structure, 2011, 19(6), 859-867.