Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Shcbp1在信号传导和疾病中的作用

卷 19, 期 11, 2019

页: [854 - 862] 页: 9

弟呕挨: 10.2174/1568009619666190620114928

价格: $65

摘要

Src同系物和胶原同系物(Shc)蛋白已被鉴定为与细胞表面受体相关的衔接蛋白,并已显示在信号传导和疾病中起重要作用。 Shcbp1充当Shc SH2域结合蛋白1,并参与信号转导通路的调节,例如FGF,NF-κB,MAPK / ERK,PI3K / AKT,TGF-β1/ Smad和β-catenin信号转导。 Shcbp1参与有丝分裂和减数分裂过程中的T细胞发育,下游信号转导通路的调控和胞质分裂。另外,已经证实Shcbp1与伯基特样淋巴瘤,乳腺癌,肺癌,神经胶质瘤,滑膜肉瘤,人肝细胞癌和其他疾病有关。 Shcbp1可能在肿瘤发生和发展中起重要作用。因此,本文综述了最近的研究,以讨论和解释Shcbp1在正常细胞增殖和分化,肿瘤发生和发展及其与蛋白质的相互作用中的作用。

关键词: 信号,肿瘤,疾病,肺癌,胶质瘤。

图形摘要

[1]
Lebiedzinska-Arciszewska, M.; Oparka, M.; Vega-Naredo, I.; Karkucinska-Wieckowska, A.; Pinton, P.; Duszynski, J.; Wieckowski, M.R. The interplay between p66Shc, reactive oxygen species and cancer cell metabolism. Eur. J. Clin. Invest., 2015, 45(Suppl. 1), 25-31.
[http://dx.doi.org/10.1111/eci.12364] [PMID: 25524583]
[2]
Wills, M.K.; Jones, N. Teaching an old dogma new tricks: Twenty years of Shc adaptor signalling. Biochem. J., 2012, 447(1), 1-16.
[http://dx.doi.org/10.1042/BJ20120769] [PMID: 22970934]
[3]
Schmandt, R.; Liu, S.K.; McGlade, C.J. Cloning and characterization of mPAL, a novel Shc SH2 domain-binding protein expressed in proliferating cells. Oncogene, 1999, 18(10), 1867-1879.
[http://dx.doi.org/10.1038/sj.onc.1202507] [PMID: 10086341]
[4]
Ahmed, S.B.M.; Prigent, S.A. Insights into the Shc family of adaptor proteins. J. Mol. Signal., 2017, 12, 2.
[http://dx.doi.org/10.5334/1750-2187-12-2] [PMID: 30210578]
[5]
Ravichandran, K.S. Signaling via Shc family adapter proteins. Oncogene, 2001, 20(44), 6322-6330.
[http://dx.doi.org/10.1038/sj.onc.1204776] [PMID: 11607835]
[6]
Peng, C.; Zhao, H.; Song, Y.; Chen, W.; Wang, X.; Liu, X.; Zhang, C.; Zhao, J.; Li, J.; Cheng, G.; Wu, D.; Gao, C.; Wang, X. SHCBP1 promotes synovial sarcoma cell metastasis via targeting TGF-β1/Smad signaling pathway and is associated with poor prognosis. J. Exp. Clin. Cancer Res., 2017, 36(1), 141.
[http://dx.doi.org/10.1186/s13046-017-0616-z] [PMID: 29020987]
[7]
Zheng, Y.; Zhang, C.; Croucher, D.R.; Soliman, M.A.; St-Denis, N.; Pasculescu, A.; Taylor, L.; Tate, S.A.; Hardy, W.R.; Colwill, K.; Dai, A.Y.; Bagshaw, R.; Dennis, J.W.; Gingras, A.C.; Daly, R.J.; Pawson, T. Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature, 2013, 499(7457), 166-171.
[http://dx.doi.org/10.1038/nature12308] [PMID: 23846654]
[8]
Asano, E.; Hasegawa, H.; Hyodo, T.; Ito, S.; Maeda, M.; Takahashi, M.; Hamaguchi, M.; Senga, T. The Aurora-B-mediated phosphorylation of SHCBP1 regulates cytokinetic furrow ingression. J. Cell Sci., 2013, 126(Pt 15), 3263-3270.
[http://dx.doi.org/10.1242/jcs.124875] [PMID: 23704356]
[9]
Colak, D.; Nofal, A.; Albakheet, A.; Nirmal, M.; Jeprel, H.; Eldali, A.; Al-Tweigeri, T.; Tulbah, A.; Ajarim, D.; Malik, O.A.; Inan, M.S.; Kaya, N.; Park, B.H.; Bin Amer, S.M. Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. PLoS One, 2013, 8(5)e63204
[http://dx.doi.org/10.1371/journal.pone.0063204] [PMID: 23704896]
[10]
Tao, H.C.; Wang, H.X.; Dai, M.; Gu, C.Y.; Wang, Q.; Han, Z.G.; Cai, B. Targeting SHCBP1 inhibits cell proliferation in human hepatocellular carcinoma cells. Asian Pac. J. Cancer Prev., 2013, 14(10), 5645-5650.
[http://dx.doi.org/10.7314/APJCP.2013.14.10.5645] [PMID: 24289556]
[11]
Peng, C.; Zhao, H.; Chen, W.; Song, Y.; Wang, X.; Li, J.; Qiao, Y.; Wu, D.; Ma, S.; Wang, X.; Gao, C. Identification of SHCBP1 as a novel downstream target gene of SS18-SSX1 and its functional analysis in progression of synovial sarcoma. Oncotarget, 2016, 7(41), 66822-66834.
[http://dx.doi.org/10.18632/oncotarget.11651] [PMID: 27572315]
[12]
Montembault, E.; Zhang, W.; Przewloka, M.R.; Archambault, V.; Sevin, E.W.; Laue, E.D.; Glover, D.M.; D’Avino, P.P. Nessun Dorma, a novel centralspindlin partner, is required for cytokinesis in Drosophila spermatocytes. J. Cell Biol., 2010, 191(7), 1351-1365.
[http://dx.doi.org/10.1083/jcb.201007060] [PMID: 21187330]
[13]
Feng, W.; Li, H.C.; Xu, K.; Chen, Y.F.; Pan, L.Y.; Mei, Y.; Cai, H.; Jiang, Y.M.; Chen, T.; Feng, D.X. SHCBP1 is over-expressed in breast cancer and is important in the proliferation and apoptosis of the human malignant breast cancer cell line. Gene, 2016, 587(1), 91-97.
[http://dx.doi.org/10.1016/j.gene.2016.04.046] [PMID: 27129942]
[14]
Doe, C.Q. Neural stem cells: Balancing self-renewal with differentiation. Development, 2008, 135(9), 1575-1587.
[http://dx.doi.org/10.1242/dev.014977] [PMID: 18356248]
[15]
Kang, W.; Wong, L.C.; Shi, S.H.; Hébert, J.M. The transition from radial glial to intermediate progenitor cell is inhibited by FGF signaling during corticogenesis. J. Neurosci., 2009, 29(46), 14571-14580.
[http://dx.doi.org/10.1523/JNEUROSCI.3844-09.2009] [PMID: 19923290]
[16]
Diez del Corral, R.; Breitkreuz, D.N.; Storey, K.G. Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signalling. Development, 2002, 129(7), 1681-1691.
[PMID: 11923204]
[17]
Chen, J.; Lai, F.; Niswander, L. The ubiquitin ligase mLin41 temporally promotes neural progenitor cell maintenance through FGF signaling. Genes Dev., 2012, 26(8), 803-815.
[http://dx.doi.org/10.1101/gad.187641.112] [PMID: 22508726]
[18]
Zhou, Y.; Tan, Z.; Chen, K.; Wu, W.; Zhu, J.; Wu, G.; Cao, L.; Zhang, X.; Zeng, X.; Li, J.; Zhang, W. Overexpression of SHCBP1 promotes migration and invasion in gliomas by activating the NF-κB signaling pathway. Mol. Carcinog., 2018, 57(9), 1181-1190.
[http://dx.doi.org/10.1002/mc.22834] [PMID: 29745440]
[19]
Pronk, G.J.; de Vries-Smits, A.M.; Buday, L.; Downward, J.; Maassen, J.A.; Medema, R.H.; Bos, J.L. Involvement of Shc in insulin- and epidermal growth factor-induced activation of p21ras. Mol. Cell. Biol., 1994, 14(3), 1575-1581.
[http://dx.doi.org/10.1128/MCB.14.3.1575] [PMID: 8114695]
[20]
Velazquez, L.; Gish, G.D.; van Der Geer, P.; Taylor, L.; Shulman, J.; Pawson, T. The shc adaptor protein forms interdependent phosphotyrosine-mediated protein complexes in mast cells stimulated with interleukin 3. Blood, 2000, 96(1), 132-138.
[http://dx.doi.org/10.1182/blood.V96.1.132] [PMID: 10891441]
[21]
Chen, Y.; Grall, D.; Salcini, A.E.; Pelicci, P.G.; Pouysségur, J.; Van Obberghen-Schilling, E. Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor. EMBO J., 1996, 15(5), 1037-1044.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00441.x] [PMID: 8605873]
[22]
Friedrichs, N.; Trautmann, M.; Endl, E.; Sievers, E.; Kindler, D.; Wurst, P.; Czerwitzki, J.; Steiner, S.; Renner, M.; Penzel, R.; Koch, A.; Larsson, O.; Tanaka, S.; Kawai, A.; Schirmacher, P.; Mechtersheimer, G.; Wardelmann, E.; Buettner, R.; Hartmann, W. Phosphatidylinositol-3′-kinase/AKT signaling is essential in synovial sarcoma. Int. J. Cancer, 2011, 129(7), 1564-1575.
[http://dx.doi.org/10.1002/ijc.25829] [PMID: 21128248]
[23]
Qi, Y.; Wang, C.C.; He, Y.L.; Zou, H.; Liu, C.X.; Pang, L.J.; Hu, J.M.; Jiang, J.F.; Zhang, W.J.; Li, F. The correlation between morphology and the expression of TGF-β signaling pathway proteins and epithelial-mesenchymal transition-related proteins in synovial sarcomas. Int. J. Clin. Exp. Pathol., 2013, 6(12), 2787-2799.
[PMID: 24294365]
[24]
Fabregat, I.; Fernando, J.; Mainez, J.; Sancho, P. TGF-beta signaling in cancer treatment. Curr. Pharm. Des., 2014, 20(17), 2934-2947.
[http://dx.doi.org/10.2174/13816128113199990591] [PMID: 23944366]
[25]
Wu, Y.Y.; Peck, K.; Chang, Y.L.; Pan, S.H.; Cheng, Y.F.; Lin, J.C.; Yang, R.B.; Hong, T.M.; Yang, P.C. SCUBE3 is an endogenous TGF-β receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer. Oncogene, 2011, 30(34), 3682-3693.
[http://dx.doi.org/10.1038/onc.2011.85] [PMID: 21441952]
[26]
Taylor, M.A.; Parvani, J.G.; Schiemann, W.P. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J. Mammary Gland Biol. Neoplasia, 2010, 15(2), 169-190.
[http://dx.doi.org/10.1007/s10911-010-9181-1] [PMID: 20467795]
[27]
Yu, R.; Han, L.; Ni, X.; Wang, M.; Xue, P.; Zhang, L.; Yuan, M. Kruppel-like factor 4 inhibits non-small cell lung cancer cell growth and aggressiveness by stimulating transforming growth factor-β1-meidated ERK/JNK/NF-κB signaling pathways. Tumour Biol., 2017, 39(6)1010428317705574
[http://dx.doi.org/10.1177/1010428317705574] [PMID: 28631556]
[28]
Sokol, S.Y. Maintaining embryonic stem cell pluripotency with Wnt signaling. Development, 2011, 138(20), 4341-4350.
[http://dx.doi.org/10.1242/dev.066209] [PMID: 21903672]
[29]
Bahrami, A.; Amerizadeh, F. ShahidSales, S.; Khazaei, M.; Ghayour-Mobarhan, M.; Sadeghnia, H.R.; Maftouh, M.; Hassanian, S.M.; Avan, A. Therapeutic potential of targeting Wnt/β-Catenin pathway in treatment of colorectal cancer: rational and progress. J. Cell. Biochem., 2017, 118(8), 1979-1983.
[http://dx.doi.org/10.1002/jcb.25903] [PMID: 28109136]
[30]
Duffy, D.J.; Krstic, A.; Schwarzl, T.; Halasz, M.; Iljin, K.; Fey, D.; Haley, B.; Whilde, J.; Haapa-Paananen, S.; Fey, V.; Fischer, M.; Westermann, F.; Henrich, K.O.; Bannert, S.; Higgins, D.G.; Kolch, W. Wnt signalling is a bi-directional vulnerability of cancer cells. Oncotarget, 2016, 7(37), 60310-60331.
[http://dx.doi.org/10.18632/oncotarget.11203] [PMID: 27531891]
[31]
Liu, L.; Yang, Y.; Liu, S.; Tao, T.; Cai, J.; Wu, J.; Guan, H.; Zhu, X.; He, Z.; Li, J.; Song, E.; Zeng, M. EGF-induced nuclear localization of SHCBP1 activates beta-catenin signaling and promotes cancer progression. oncogene, 2018, 38(5), 747-764.
[32]
Fang, D.; Hawke, D.; Zheng, Y.; Xia, Y.; Meisenhelder, J.; Nika, H.; Mills, G.B.; Kobayashi, R.; Hunter, T.; Lu, Z. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J. Biol. Chem., 2007, 282(15), 11221-11229.
[http://dx.doi.org/10.1074/jbc.M611871200] [PMID: 17287208]
[33]
Asano, E.; Hasegawa, H.; Hyodo, T.; Ito, S.; Maeda, M.; Chen, D.; Takahashi, M.; Hamaguchi, M.; Senga, T. SHCBP1 is required for midbody organization and cytokinesis completion. Cell Cycle, 2014, 13(17), 2744-2751.
[http://dx.doi.org/10.4161/15384101.2015.945840] [PMID: 25486361]
[34]
Liu, Z.; Weiner, O.D. Positioning the cleavage furrow: All you need is Rho. J. Cell Biol., 2016, 213(6), 605-607.
[http://dx.doi.org/10.1083/jcb.201606010] [PMID: 27325786]
[35]
Miller, A.L.; Bement, W.M. Regulation of cytokinesis by Rho GTPase flux. Nat. Cell Biol., 2009, 11(1), 71-77.
[http://dx.doi.org/10.1038/ncb1814] [PMID: 19060892]
[36]
Breznau, E.B.; Semack, A.C.; Higashi, T.; Miller, A.L. MgcRacGAP restricts active RhoA at the cytokinetic furrow and both RhoA and Rac1 at cell-cell junctions in epithelial cells. Mol. Biol. Cell, 2015, 26(13), 2439-2455.
[http://dx.doi.org/10.1091/mbc.E14-11-1553] [PMID: 25947135]
[37]
Lekomtsev, S.; Su, K.C.; Pye, V.E.; Blight, K.; Sundaramoorthy, S.; Takaki, T.; Collinson, L.M.; Cherepanov, P.; Divecha, N.; Petronczki, M. Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis. Nature, 2012, 492(7428), 276-279.
[http://dx.doi.org/10.1038/nature11773] [PMID: 23235882]
[38]
Macůrek, L.; Lindqvist, A.; Lim, D.; Lampson, M.A.; Klompmaker, R.; Freire, R.; Clouin, C.; Taylor, S.S.; Yaffe, M.B.; Medema, R.H. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature, 2008, 455(7209), 119-123.
[http://dx.doi.org/10.1038/nature07185] [PMID: 18615013]
[39]
Hu, C.K.; Coughlin, M.; Mitchison, T.J. Midbody assembly and its regulation during cytokinesis. Mol. Biol. Cell, 2012, 23(6), 1024-1034.
[http://dx.doi.org/10.1091/mbc.e11-08-0721] [PMID: 22278743]
[40]
Zhang, D.; Glotzer, M. The RhoGAP activity of CYK-4/MgcRacGAP functions non-canonically by promoting RhoA activation during cytokinesis. eLife, 2015, 4, 4.
[http://dx.doi.org/10.7554/eLife.08898] [PMID: 26252513]
[41]
Liu, M.; Shi, X.; Bi, Y.; Qi, L.; Guo, X.; Wang, L.; Zhou, Z.; Sha, J. SHCBP1L, a conserved protein in mammals, is predominantly expressed in male germ cells and maintains spindle stability during meiosis in testis. Mol. Hum. Reprod., 2014, 20(6), 463-475.
[http://dx.doi.org/10.1093/molehr/gau014] [PMID: 24557841]
[42]
Liang, P.; MacRae, T.H. Molecular chaperones and the cytoskeleton. J. Cell Sci., 1997, 110(Pt 13), 1431-1440.
[PMID: 9224761]
[43]
Widłak, W.; Markkula, M.; Krawczyk, Z.; Kananen, K.; Huhtaniemi, I.A. 252 bp upstream region of the rat spermatocyte-specific hst70 gene is sufficient to promote expression of the hst70-CAT hybrid gene in testis and brain of transgenic mice. Biochim. Biophys. Acta, 1995, 1264(2), 191-200.
[http://dx.doi.org/10.1016/0167-4781(95)00135-4] [PMID: 7495863]
[44]
Scieglińska, D.; Widłak, W.; Rusin, M.; Markkula, M.; Krawczyk, Z. Expression of the testis-specific HSP70-related gene (hst70 gene) in somatic non-testicular rat tissues revealed by RT-PCR and transgenic mice analysis. Cell Biol. Int., 1997, 21(12), 813-821.
[http://dx.doi.org/10.1006/cbir.1997.0195] [PMID: 9812345]
[45]
Scieglinska, D.; Gogler-Piglowska, A.; Butkiewicz, D.; Chekan, M.; Malusecka, E.; Harasim, J.; Habryka, A.; Krawczyk, Z. HSPA2 is expressed in human tumors and correlates with clinical features in non-small cell lung carcinoma patients. Anticancer Res., 2014, 34(6), 2833-2840.
[PMID: 24922646]
[46]
Jagadish, N.; Parashar, D.; Gupta, N.; Agarwal, S.; Suri, V.; Kumar, R.; Suri, V.; Sadasukhi, T.C.; Gupta, A.; Ansari, A.S.; Lohiya, N.K.; Suri, A. Heat shock protein 70-2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth. BMC Cancer, 2016, 16, 561.
[http://dx.doi.org/10.1186/s12885-016-2592-7] [PMID: 27473057]
[47]
Garg, M.; Kanojia, D.; Seth, A.; Kumar, R.; Gupta, A.; Surolia, A.; Suri, A. Heat-shock protein 70-2 (HSP70-2) expression in bladder urothelial carcinoma is associated with tumour progression and promotes migration and invasion. Eur. J. Cancer, 2010, 46(1), 207-215.
[http://dx.doi.org/10.1016/j.ejca.2009.10.020] [PMID: 19914824]
[48]
Garg, M.; Kanojia, D.; Saini, S.; Suri, S.; Gupta, A.; Surolia, A.; Suri, A. Germ cell-specific heat shock protein 70-2 is expressed in cervical carcinoma and is involved in the growth, migration, and invasion of cervical cells. Cancer, 2010, 116(16), 3785-3796.
[http://dx.doi.org/10.1002/cncr.25218] [PMID: 20564126]
[49]
Huang, Z.; Duan, H.; Li, H. Identification of gene expression pattern related to breast cancer survival using integrated TCGA datasets and genomic tools. BioMed Res. Int., 2015.2015878546
[http://dx.doi.org/10.1155/2015/878546] [PMID: 26576432]
[50]
Scieglinska, D.; Krawczyk, Z. Expression, function, and regulation of the testis-enriched heat shock HSPA2 gene in rodents and humans. Cell Stress Chaperones, 2015, 20(2), 221-235.
[http://dx.doi.org/10.1007/s12192-014-0548-x] [PMID: 25344376]
[51]
Zhang, H.; Chen, W.; Duan, C.J.; Zhang, C.F. Overexpression of HSPA2 is correlated with poor prognosis in esophageal squamous cell carcinoma. World J. Surg. Oncol., 2013, 11, 141.
[http://dx.doi.org/10.1186/1477-7819-11-141] [PMID: 23777267]
[52]
Fu, Y.; Zhao, H.; Li, X.S.; Kang, H.R.; Ma, J.X.; Yao, F.F.; Du, N. Expression of HSPA2 in human hepatocellular carcinoma and its clinical significance. Tumour Biol., 2014, 35(11), 11283-11287.
[http://dx.doi.org/10.1007/s13277-014-2430-y] [PMID: 25117073]
[53]
Zhang, H.; Gao, H.; Liu, C.; Kong, Y.; Wang, C.; Zhang, H. Expression and clinical significance of HSPA2 in pancreatic ductal adenocarcinoma. Diagn. Pathol., 2015, 10, 13.
[http://dx.doi.org/10.1186/s13000-015-0253-9] [PMID: 25890028]
[54]
Bester, J.C. Measles and measles vaccination: A review. JAMA Pediatr., 2016, 170(12), 1209-1215.
[http://dx.doi.org/10.1001/jamapediatrics.2016.1787] [PMID: 27695849]
[55]
Nakatsu, Y.; Takeda, M.; Ohno, S.; Shirogane, Y.; Iwasaki, M.; Yanagi, Y. Measles virus circumvents the host interferon response by different actions of the C and V proteins. J. Virol., 2008, 82(17), 8296-8306.
[http://dx.doi.org/10.1128/JVI.00108-08] [PMID: 18562542]
[56]
Nakatsu, Y.; Ma, X.; Seki, F.; Suzuki, T.; Iwasaki, M.; Yanagi, Y.; Komase, K.; Takeda, M. Intracellular transport of the measles virus ribonucleoprotein complex is mediated by Rab11A-positive recycling endosomes and drives virus release from the apical membrane of polarized epithelial cells. J. Virol., 2013, 87(8), 4683-4693.
[http://dx.doi.org/10.1128/JVI.02189-12] [PMID: 23408617]
[57]
Ito, M.; Iwasaki, M.; Takeda, M.; Nakamura, T.; Yanagi, Y.; Ohno, S. Measles virus nonstructural C protein modulates viral RNA polymerase activity by interacting with host protein SHCBP1. J. Virol., 2013, 87(17), 9633-9642.
[http://dx.doi.org/10.1128/JVI.00714-13] [PMID: 23804634]
[58]
Heng, T.S.; Painter, M.W. The immunological genome project: Networks of gene expression in immune cells. Nat. Immunol., 2008, 9(10), 1091-1094.
[http://dx.doi.org/10.1038/ni1008-1091] [PMID: 18800157]
[59]
Buckley, M.W.; Arandjelovic, S.; Trampont, P.C.; Kim, T.S.; Braciale, T.J.; Ravichandran, K.S. Unexpected phenotype of mice lacking Shcbp1, a protein induced during T cell proliferation. PLoS One, 2014, 9(8)e105576
[http://dx.doi.org/10.1371/journal.pone.0105576] [PMID: 25153088]
[60]
Janas, M.L.; Varano, G.; Gudmundsson, K.; Noda, M.; Nagasawa, T.; Turner, M. Thymic development beyond beta-selection requires phosphatidylinositol 3-kinase activation by CXCR4. J. Exp. Med., 2010, 207(1), 247-261.
[http://dx.doi.org/10.1084/jem.20091430] [PMID: 20038597]
[61]
Aifantis, I.; Raetz, E.; Buonamici, S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat. Rev. Immunol., 2008, 8(5), 380-390.
[http://dx.doi.org/10.1038/nri2304] [PMID: 18421304]
[62]
Vacca, A.; Felli, M.P.; Palermo, R.; Di Mario, G.; Calce, A.; Di Giovine, M.; Frati, L.; Gulino, A.; Screpanti, I. Notch3 and pre-TCR interaction unveils distinct NF-kappaB pathways in T-cell development and leukemia. EMBO J., 2006, 25(5), 1000-1008.
[http://dx.doi.org/10.1038/sj.emboj.7600996] [PMID: 16498412]
[63]
Bellavia, D.; Campese, A.F.; Checquolo, S.; Balestri, A.; Biondi, A.; Cazzaniga, G.; Lendahl, U.; Fehling, H.J.; Hayday, A.C.; Frati, L.; von Boehmer, H.; Gulino, A.; Screpanti, I. Combined expression of pTalpha and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc. Natl. Acad. Sci. USA, 2002, 99(6), 3788-3793.
[http://dx.doi.org/10.1073/pnas.062050599] [PMID: 11891328]
[64]
Truffinet, V.; Pinaud, E.; Cogné, N.; Petit, B.; Guglielmi, L.; Cogné, M.; Denizot, Y. The 3′ IgH locus control region is sufficient to deregulate a c-myc transgene and promote mature B cell malignancies with a predominant Burkitt-like phenotype. J. Immunol., 2007, 179(9), 6033-6042.
[http://dx.doi.org/10.4049/jimmunol.179.9.6033] [PMID: 17947677]
[65]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[66]
Pikarsky, E.; Porat, R.M.; Stein, I.; Abramovitch, R.; Amit, S.; Kasem, S.; Gutkovich-Pyest, E.; Urieli-Shoval, S.; Galun, E.; Ben-Neriah, Y. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 2004, 431(7007), 461-466.
[http://dx.doi.org/10.1038/nature02924] [PMID: 15329734]
[67]
Burkitt, M.D.; Hanedi, A.F.; Duckworth, C.A.; Williams, J.M.; Tang, J.M.; O’Reilly, L.A.; Putoczki, T.L.; Gerondakis, S.; Dimaline, R.; Caamano, J.H.; Pritchard, D.M. NF-κB1, NF-κB2 and c-Rel differentially regulate susceptibility to colitis-associated adenoma development in C57BL/6 mice. J. Pathol., 2015, 236(3), 326-336.
[http://dx.doi.org/10.1002/path.4527] [PMID: 25727407]
[68]
Karin, M.; Greten, F.R. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol., 2005, 5(10), 749-759.
[http://dx.doi.org/10.1038/nri1703] [PMID: 16175180]
[69]
Jiang, C.; Zhu, Y.; Zhou, Z.; Gumin, J.; Bengtsson, L.; Wu, W.; Songyang, Z.; Lang, F.F.; Lin, X. TMEM43/LUMA is a key signaling component mediating EGFR-induced NF-κB activation and tumor progression. Oncogene, 2017, 36(20), 2813-2823.
[http://dx.doi.org/10.1038/onc.2016.430] [PMID: 27991920]
[70]
Zanotto-Filho, A.; Gonçalves, R.M.; Klafke, K.; de Souza, P.O.; Dillenburg, F.C.; Carro, L.; Gelain, D.P.; Moreira, J.C. Inflammatory landscape of human brain tumors reveals an NFκB dependent cytokine pathway associated with mesenchymal glioblastoma. Cancer Lett., 2017, 390, 176-187.
[http://dx.doi.org/10.1016/j.canlet.2016.12.015] [PMID: 28007636]
[71]
Kadoch, C.; Crabtree, G.R. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell, 2013, 153(1), 71-85.
[http://dx.doi.org/10.1016/j.cell.2013.02.036] [PMID: 23540691]
[72]
Michels, S.; Trautmann, M.; Sievers, E.; Kindler, D.; Huss, S.; Renner, M.; Friedrichs, N.; Kirfel, J.; Steiner, S.; Endl, E.; Wurst, P.; Heukamp, L.; Penzel, R.; Larsson, O.; Kawai, A.; Tanaka, S.; Sonobe, H.; Schirmacher, P.; Mechtersheimer, G.; Wardelmann, E.; Büttner, R.; Hartmann, W. SRC signaling is crucial in the growth of synovial sarcoma cells. Cancer Res., 2013, 73(8), 2518-2528.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3023] [PMID: 23580575]
[73]
Guillou, L.; Coindre, J.; Gallagher, G.; Terrier, P.; Gebhard, S.; de Saint Aubain Somerhausen, N.; Michels, J.; Jundt, G.; Vince, D.R.; Collin, F.; Trassard, M.; Le Doussal, V.; Benhattar, J. Detection of the synovial sarcoma translocation t(X;18) (SYT;SSX) in paraffin-embedded tissues using reverse transcriptase-polymerase chain reaction: a reliable and powerful diagnostic tool for pathologists. A molecular analysis of 221 mesenchymal tumors fixed in different fixatives. Hum. Pathol., 2001, 32(1), 105-112.
[http://dx.doi.org/10.1053/hupa.2001.21130] [PMID: 11172303]
[74]
Yasui, H.; Naka, N.; Imura, Y.; Outani, H.; Kaneko, K.; Hamada, K.; Sasagawa, S.; Araki, N.; Ueda, T.; Itoh, K.; Myoui, A.; Yoshikawa, H. Tailored therapeutic strategies for synovial sarcoma: receptor tyrosine kinase pathway analyses predict sensitivity to the mTOR inhibitor RAD001. Cancer Lett., 2014, 347(1), 114-122.
[http://dx.doi.org/10.1016/j.canlet.2014.01.027] [PMID: 24491407]
[75]
Fricke, A.; Ullrich, P.V.; Heinz, J.; Pfeifer, D.; Scholber, J.; Herget, G.W.; Hauschild, O.; Bronsert, P.; Stark, G.B.; Bannasch, H.; Eisenhardt, S.U.; Braig, D. Identification of a blood-borne miRNA signature of synovial sarcoma. Mol. Cancer, 2015, 14, 151.
[http://dx.doi.org/10.1186/s12943-015-0424-z] [PMID: 26250552]
[76]
Lu, Z.; Ghosh, S.; Wang, Z.; Hunter, T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 2003, 4(6), 499-515.
[http://dx.doi.org/10.1016/S1535-6108(03)00304-0] [PMID: 14706341]
[77]
Xu, M.; He, J.; Li, J.; Feng, W.; Zhou, H.; Wei, H.; Zhou, M.; Lu, Y.; Zeng, J.; Peng, W.; Du, F.; Gong, A. Methyl-CpG-binding domain 3 inhibits epithelial-mesenchymal transition in pancreatic cancer cells via TGF-β/Smad signalling. Br. J. Cancer, 2017, 116(1), 91-99.
[http://dx.doi.org/10.1038/bjc.2016.397] [PMID: 27898661]
[78]
Che, Y.L.; Luo, S.J.; Li, G.; Cheng, M.; Gao, Y.M.; Li, X.M.; Dai, J.M.; He, H.; Wang, J.; Peng, H.J.; Zhang, Y.; Li, W.Y.; Wang, H.; Liu, B.; Linghu, H. The C3G/Rap1 pathway promotes secretion of MMP-2 and MMP-9 and is involved in serous ovarian cancer metastasis. Cancer Lett., 2015, 359(2), 241-249.
[http://dx.doi.org/10.1016/j.canlet.2015.01.019] [PMID: 25617801]
[79]
Arai, R.; Tsuda, M.; Watanabe, T.; Ose, T.; Obuse, C.; Maenaka, K.; Minami, A.; Ohba, Y. Simultaneous inhibition of Src and Aurora kinases by SU6656 induces therapeutic synergy in human synovial sarcoma growth, invasion and angiogenesis in vivo. Eur. J. Cancer, 2012, 48(15), 2417-2430.
[http://dx.doi.org/10.1016/j.ejca.2011.12.028] [PMID: 22244830]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy