Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Chitosan-Coated Alginate Nanoparticles Enhanced Absorption Profile of Insulin Via Oral Administration

Author(s): Mohd H.M. Jaafar and Khuriah A. Hamid*

Volume 16, Issue 7, 2019

Page: [672 - 686] Pages: 15

DOI: 10.2174/1567201816666190620110748

Price: $65

Abstract

Background: In this study, four nanoparticle formulations (F1 to F4) comprising varying ratios of alginate, Pluronic F-68 and calcium chloride with a constant amount of insulin and chitosan as a coating material were prepared using polyelectrolyte complexation and ionotropic gelation methods to protect insulin against enzymatic degradation.

Methods: This study describes the formulation design, optimisation, characterisation and evaluation of insulin concentration via oral delivery in rats. A reversed-phase high-performance liquid chromatography (HPLC) method was developed and validated to quantify insulin concentration in rat plasma. The proposed method produced a linear response over the concentration range of 0.39 to 50 µg/ml.

Results: In vitro release study showed that dissolution of insulin in simulated gastric juice of pH 1.2 was prevented by alginate core and chitosan coating but rapidly released in simulated intestinal fluid (pH 6.8). Additionally, Formulation 3 (F3) has a particle size of 340.40 ± 2.39 nm with narrow uniformity exhibiting encapsulation efficiency (EE) of 72.78 ± 1.25 % produced highest absorption profile of insulin with a bioavailability of 40.23 ±1.29% and reduced blood glucose after its oral administration in rats.

Conclusion: In conclusion, insulin oral delivery system containing alginate and chitosan as a coating material has the ability to protect the insulin from enzymatic degradation thus enhance its absorption in the intestine. However, more work should be done for instance to involve human study to materialise this delivery system for human use.

Keywords: Chitosan, alginate, nanoparticles, insulin, oral delivery, pharmacokinetic profile.

« Previous
Graphical Abstract

[1]
Norman, A.W.; Henry, H.L. Hormones; Elsevier, 2015.
[http://dx.doi.org/10.1016/B978-0-08-091906-5.00007-0]
[2]
Kumar, K.; Greenfield, S.; Raza, K.; Gill, P.; Stack, R. Understanding adherence-related beliefs about medicine amongst patients of south asian origin with diabetes and cardiovascular disease patients: A qualitative synthesis. BMC Endocr. Disord., 2016, 16(1), 1-11.
[http://dx.doi.org/10.1186/s12902-016-0103-0]
[3]
Penno, G.; Garofolo, M.; Del Prato, S. Dipeptidyl Peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury. Nutr. Metab. Cardiovasc. Dis., 2016, 26(5), 361-373.
[http://dx.doi.org/10.1016/j.numecd.2016.01.001]
[4]
Sebastião, I.; Candeias, E.; Santos, M.S.; Oliveira, C.R.; Moreira, P.I.; Duarte, A.I. Unpuzzling the comorbid type 2 diabetes and hypertension-related cognitive dysfunction and stroke; Springer: Cham, 2017, pp. 711-731.
[http://dx.doi.org/10.1007/978-3-319-45345-3_31]
[5]
Sasongko, M.B.; Widyaputri, F.; Agni, A.N.; Wardhana, F.S.; Kotha, S.; Gupta, P.; Widayanti, T.W.; Haryanto, S.; Widyaningrum, R.; Wong, T.Y.; Kawasaki, R.; Wang, J.J. Prevalence of diabetic retinopathy and blindness in indonesian adults with type 2 diabetes. Am. J. Ophthalmol., 2017, 181, 79-87.
[http://dx.doi.org/10.1016/j.ajo.2017.06.019]
[6]
Boiroux, D.; Madsen, H.; Duun-Henriksen, A.K.; Poulsen, N.K.; Jørgensen, J.B.; Nørgaard, K.; Schmidt, S. Adaptive control in an artificial pancreas for people with type 1 diabetes. Control Eng. Pract., 2016, 58, 332-342.
[http://dx.doi.org/10.1016/j.conengprac.2016.01.003]
[7]
Thakkar, B.; Aronis, K.N.; Vamvini, M.T.; Shields, K.; Mantzoros, C.S. Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: A meta-analysis using primary data of published studies. Metabolism, 2013, 62(7), 922-934.
[http://dx.doi.org/10.1016/j.metabol.2013.01.014]
[8]
Trung, V.N.; Yamamoto, H.; Yamaguchi, T.; Murata, S.; Aimi, Y.; Kuwahara, A.; Tani, T. Intact neural system of the portal vein is important for maintaining normal glucose metabolism by regulating glucagon-like peptide-1 and insulin sensitivity. Peptides, 2014, 52, 38-43.
[http://dx.doi.org/10.1016/j.peptides.2013.12.003]
[9]
Chen, M-C.; Sonaje, K.; Chen, K-J.; Sung, H-W. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials, 2011, 32(36), 9826-9838.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.087]
[10]
Sheng, J.; He, H.; Han, L.; Qin, J.; Chen, S.; Ru, G.; Li, R.; Yang, P.; Wang, J.; Yang, V.C. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J. Control. Release, 2016, 233, 181-190.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.015]
[11]
Asghari, F.; Samiei, M.; Adibkia, K.; Akbarzadeh, A.; Davaran, S. Biodegradable and biocompatible polymers for tissue engineering application: A review. Artif. Cells Nanomed. Biotechnol., 2017, 45(2), 185-192.
[http://dx.doi.org/10.3109/21691401.2016.1146731]
[12]
Andreani, T.; Kiill, C.P.; de Souza, A.L.R.; Fangueiro, J.F.; Fernandes, L.; Doktorovová, S.; Santos, D.L.; Garcia, M.L.; Gremião, M.P.D.; Souto, E.B.; Silva, A.M. Surface engineering of silica nanoparticles for oral insulin delivery: Characterization and cell toxicity studies. Colloids Surf. B Biointerfaces, 2014, 123, 916-923.
[http://dx.doi.org/10.1016/j.colsurfb.2014.10.047]
[13]
Li, P.; Tan, A.; Prestidge, C.A.; Nielsen, H.M.; Müllertz, A. Self-nanoemulsifying drug delivery systems for oral insulin delivery: in vitro and in vivo evaluations of enteric coating and drug loading. Int. J. Pharm., 2014, 477(1-2), 390-398.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.039]
[14]
Karamanidou, T.; Karidi, K.; Bourganis, V.; Kontonikola, K.; Kammona, O.; Kiparissides, C. Effective incorporation of insulin in mucus permeating self-nanoemulsifying drug delivery systems. Eur. J. Pharm. Biopharm., 2015, 97, 223-229.
[http://dx.doi.org/10.1016/j.ejpb.2015.04.013]
[15]
Sakloetsakun, D.; Dünnhaupt, S.; Barthelmes, J.; Perera, G.; Bernkop-Schnürch, A. Combining two technologies: Multifunctional polymers and self-nanoemulsifying drug delivery system (SNEDDS) for oral insulin administration. Int. J. Biol. Macromol., 2013, 61, 363-372.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.002]
[16]
Aluani, D.; Tzankova, V.; Kondeva-burdina, M.; Yordanov, Y.; Nikolova, E.; Odzhakov, F.; Apostolov, A.; Markova, T. Evaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. Int. J. Biol. Macromol., 2017, 103, 771-782.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.062]
[17]
Ahsan, S.M.; Thomas, M.; Reddy, K.K.; Gopal, S.; Asthana, A.; Bhatnagar, I. Chitosan as biomaterial in drug delivery and tissue engineering. Int. J. Biol. Macromol., 2018, 110, 97-109.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.140]
[18]
Lopes, M.; Shrestha, N.; Correia, A.; Shahbazi, M.A.; Sarmento, B.; Hirvonen, J.; Veiga, F.; Seiça, R.; Ribeiro, A.; Santos, H.A. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J. Control. Release, 2016, 232, 29-41.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.012]
[19]
Wang, J.; Kong, M.; Zhou, Z.; Yan, D.; Yu, X.; Cheng, X.; Feng, C.; Liu, Y.; Chen, X. Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydr. Polym., 2017, 157, 596-602.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.021]
[20]
Lim, H.; Ooi, C.; Tey, B.; Chan, E. Controlled delivery of oral insulin aspart using pH-responsive alginate / κ - carrageenan composite hydrogel beads. React. Funct. Polym., 2017, 120, 20-29.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.08.015]
[21]
Maity, S.; Mukhopadhyay, P.; Paban, P.; Sankar, A. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals - An in vitro and in vivo approach. Carbohydr. Polym., 2017, 170, 124-132.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.066]
[22]
Woitiski, C.B.; Neufeld, R.J.; Veiga, F.; Carvalho, R.A.; Figueiredo, I.V. Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles. Eur. J. Pharm. Sci., 2010, 41(3-4), 556-563.
[http://dx.doi.org/10.1016/j.ejps.2010.08.009]
[23]
Yu, F.; Li, Y.; Liu, C.S.; Chen, Q.; Wang, G.H.; Guo, W.; Wu, X.E.; Li, D.H.; Wu, W.D.; Chen, X.D. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-Lipid-PEG nanoparticles for oral delivery of insulin. Int. J. Pharm., 2015, 484(1-2), 181-191.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.055]
[24]
Sheng, J.; Han, L.; Qin, J.; Ru, G.; Li, R.; Wu, L.; Cui, D.; Yang, P.; He, Y.; Wang, J. N -Trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Appl. Mater. Interfaces, 2015, 7(28), 15430-15441.
[http://dx.doi.org/10.1021/acsami.5b03555]
[25]
El-Sherbiny, I.M. Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drugs: Preparation and in-vitro assessment. Carbohydr. Polym., 2010, 80(4), 1125-1136.
[http://dx.doi.org/10.1016/j.carbpol.2010.01.034]
[26]
Yin, R.; Tong, Z.; Yang, D.; Nie, J. Glucose and pH dual-responsive concanavalin a based microhydrogels for insulin delivery. Int. J. Biol. Macromol., 2011, 49(5), 1137-1142.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.09.014]
[27]
Ravi, H.; Baskaran, V. Biodegradable chitosan-glycolipid hybrid nanogels: A novel approach to encapsulate fucoxanthin for improved stability and bioavailability. Food Hydrocoll., 2015, 43, 717-725.
[http://dx.doi.org/10.1016/j.foodhyd.2014.08.004]
[28]
Schafroth, N.; Arpagaus, C.; Jadhav, U.Y.; Makne, S.; Douroumis, D. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process. Colloids Surf. B Biointerfaces, 2012, 90, 8-15.
[http://dx.doi.org/10.1016/j.colsurfb.2011.09.038]
[29]
Jaafar, M.H.M.; Hamid, K.A.; Mohd, M.; Liza, S.; Mj, S.; Be, T.J. A simple and sensitive HPLC method for the determination of insulin in rat plasma and its application in pharmacokinetic study. Int. J. Pharm. Pharm. Sci., 2013, 5, 1-5.
[30]
Barbari, G.R.; Dorkoosh, F.; Amini, M.; Bahari Javan, N.; Sharifzadeh, M.; Atyabi, F.; Balalaie, S.; Tehrani, R.N.; Tehrani, R.M. Synthesis and characterization of a novel peptide-grafted Cs and evaluation of its nanoparticles for the oral delivery of insulin, in vitro, and in vivo study. Int. J. Nanomed, 2018, 13, 5127-5138.
[http://dx.doi.org/10.2147/IJN.S161240]
[31]
Woitiski, C.B.; Veiga, F.; Ribeiro, A.; Neufeld, R. Design for optimization of nanoparticles integrating biomaterials for orally dosed insulin. Eur. J. Pharm. Biopharm., 2009, 73(1), 25-33.
[http://dx.doi.org/10.1016/j.ejpb.2009.06.002]
[32]
Hamid, K.A.; Katsumi, H.; Sakane, T.; Yamamoto, A. The effects of common solubilizing agents on the intestinal membrane barrier functions and membrane toxicity in rats. Int. J. Pharm., 2009, 379(1-2), 100-108.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.018]
[33]
Alalaiwe, A.; Roberts, G.; Carpinone, P.; Munson, J.; Roberts, S. Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats. Drug Deliv., 2017, 24(1), 591-598.
[http://dx.doi.org/10.1080/10717544.2017.1282554]
[34]
Dai, L.; Zhan, X.; Wei, Y.; Sun, C.; Mao, L.; Julian, D.; Gao, Y. Food hydrocolloids composite zein - propylene glycol alginate particles prepared using solvent evaporation : Characterization and application as pickering emulsion stabilizers. Food Hydrocoll., 2018, 85(17), 281-290.
[http://dx.doi.org/10.1016/j.foodhyd.2018.07.013]
[35]
Douglas, K.L.; Piccirillo, C.A.; Tabrizian, M. Effects of alginate inclusion on the vector properties of chitosan-based nanoparticles. J. Control. Release, 2006, 115(3), 354-361.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.021]
[36]
Israeli-lev. G.; Pitchkhadze, M.; Nevo, S.; Fahoum, L.; Meyron-holtz, E.; Livney, Y.D. Harnessing proteins to control crystal size and morphology, for improved delivery performance of hydrophobic bioactives, using genistein as a model. Food Hydrocoll., 2017, 63, 97-107.
[http://dx.doi.org/10.1016/j.foodhyd.2016.08.026]
[37]
Lee, B.; Bhandari, B.R.; Howes, T. Gelation of an alginate film via spraying of calcium chloride droplets. Chem. Eng. Sci., 2018, 183, 1-12.
[http://dx.doi.org/10.1016/j.ces.2018.02.049]
[38]
Sabri, F.; Berthomier, K.; Marion, A.; Fradette, L.; Tavares, J.R.; Virgilio, N. Sodium alginate-grafted submicrometer particles display enhanced reversible aggregation / disaggregation properties. Carbohydr. Polym., 2018, 194, 61-68.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.012]
[39]
Hood, M.A.; Landfester, K.; Muñoz-Espí, R. Chitosan nanoparticles affect polymorph selection in crystallization of calcium carbonate. Colloids Surf. A Physicochem. Eng. Asp., 2018, 540, 48-52.
[http://dx.doi.org/10.1016/j.colsurfa.2017.12.048]
[40]
Higashitani, K.; Nakamura, K.; Shimamura, T.; Fukasawa, T.; Tsuchiya, K.; Mori, Y. Orders of magnitude reduction of rapid coagulation rate with decreasing size of silica nanoparticles. Langmuir, 2017, 33(20), 5046-5051.
[http://dx.doi.org/10.1021/acs.langmuir.7b00932]
[41]
Rho, H.; Chon, K.; Cho, J. Surface charge characterization of nanofiltration membranes by potentiometric titrations and electrophoresis: functionality vs. zeta potential. Desalination, 2018, 427, 19-26.
[http://dx.doi.org/10.1016/j.desal.2017.11.003]
[42]
Li, Y.; McClements, D.J. Influence of non-ionic surfactant on electrostatic complexation of protein-coated oil droplets and ionic biopolymers (alginate and chitosan). Food Hydrocoll., 2013, 33(2), 368-375.
[http://dx.doi.org/10.1016/j.foodhyd.2013.04.016]
[43]
Plazinski, W. Molecular basis of calcium binding by polyguluronate chains. revising the egg-box model. J. Comput. Chem., 2011, 32(14), 2988-2995.
[http://dx.doi.org/10.1002/jcc.21880]
[44]
Azari, S.; Zou, L. Fouling resistant zwitterionic surface modification of reverse osmosis membranes using amino acid L-cysteine. Desalination, 2013, 324, 79-86.
[http://dx.doi.org/10.1016/j.desal.2013.06.005]
[45]
Eilleia, S.Y.; Soliman, M.E.; Mansour, S.; Geneidi, A.S. Novel technique of insulin loading into porous carriers for oral delivery. Asian J. Pharm. Sci., 2018, 13(4), 297-309.
[http://dx.doi.org/10.1016/j.ajps.2018.03.003]
[46]
Shamaeli, E.; Alizadeh, N. Functionalized gold nanoparticle-polypyrrole nanobiocomposite with high effective surface area for electrochemical/pH dual stimuli-responsive smart release of insulin. Colloids Surf. B Biointerfaces, 2015, 126, 502-509.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.003]
[47]
Plapied, L.; Duhem, N.; des Rieux, A.; Préat, V. Fate of polymeric nanocarriers for oral drug delivery. Curr. Opin. Colloid Interface Sci., 2011, 16(3), 228-237.
[http://dx.doi.org/10.1016/j.cocis.2010.12.005]
[48]
Palazzo, C.; Trapani, G.; Ponchel, G.; Trapani, A.; Vauthier, C. Mucoadhesive properties of low molecular weight chitosan- or glycol chitosan- and corresponding thiomer-coated poly(isobutylcyanoacrylate) core-shell nanoparticles. Eur. J. Pharm. Biopharm., 2017, 117, 315-323.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.020]
[49]
Lei, L.; Zhang, Y.; He, L.; Wu, S.; Li, B.; Li, Y. Fabrication of nanoemulsion-filled alginate hydrogel to control the digestion behavior of hydrophobic nobiletin. LWT - Food Sci. Technol.,, 2017, 82, 260-267.
[http://dx.doi.org/10.1016/j.lwt.2017.04.051]
[50]
Yu, C-Y.; Yin, B-C.; Zhang, W.; Cheng, S-X.; Zhang, X-Z.; Zhuo, R-X. Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pH-sensitive drug release property. Colloids Surf. B Biointerfaces, 2009, 68(2), 245-249.
[http://dx.doi.org/10.1016/j.colsurfb.2008.10.013]
[51]
Manconi, M.; Letizia, M.; Valenti, D.; Escribano, E.; Hillaireau, H.; Maria, A.; Fattal, E. Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin. Int. J. Pharm., 2017, 525(1), 203-210.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.044]
[52]
Hasan, M.; Ben Messaoud, G.; Michaux, F.; Tamayol, A.; Kahn, C.J.F.; Belhaj, N.; Linder, M.; Arab-Tehrany, E. Chitosan-coated liposomes encapsulating curcumin: study of lipid-polysaccharide interactions and nanovesicle behavior. RSC Advances, 2016, 6(51), 45290-45304.
[http://dx.doi.org/10.1039/C6RA05574E]
[53]
Bhattacharyya, A.; Mukherjee, D.; Mishra, R.; Kundu, P.P. Preparation of polyurethane-alginate/chitosan core shell nanoparticles for the purpose of oral insulin delivery. Eur. Polym. J., 2017, 92, 294-313.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.05.015]
[54]
Chen, H.; Xing, X.; Tan, H.; Jia, Y.; Zhou, T.; Chen, Y.; Ling, Z.; Hu, X. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater. Sci. Eng. C, 2017, 70, 287-295.
[http://dx.doi.org/10.1016/j.msec.2016.08.086]
[55]
Liu, J.; Xiao, J.; Li, F.; Shi, Y.; Li, D.; Huang, Q. Chitosan-sodium alginate nanoparticle as a delivery system for ε-Polylysine: Preparation, characterization and antimicrobial activity. Food Control, 2018, 91, 302-310.
[http://dx.doi.org/10.1016/j.foodcont.2018.04.020]
[56]
Fernandez-Lima, F.A.; Blase, R.C.; Russell, D.H. A study of ion-neutral collision cross section values for low charge states of peptides, proteins, and peptide/protein complexes. Int. J. Mass Spectrom., 2010, 298(1-3), 111-118.
[http://dx.doi.org/10.1016/j.ijms.2009.10.009]
[57]
Wang, Q.; Hu, X.; Du, Y.; Kennedy, J.F. Alginate/starch blend fibers and their properties for drug controlled release. Carbohydr. Polym., 2010, 82(3), 842-847.
[http://dx.doi.org/10.1016/j.carbpol.2010.06.004]
[58]
Li, L.; Fang, Y.; Vreeker, R.; Appelqvist, I.; Mendes, E. Reexamining the egg-box model in calcium-alginate gels with X-ray diffraction. Biomacromolecules, 2007, 8(2), 464-468.
[http://dx.doi.org/10.1021/bm060550a]
[59]
Ionita, M.; Pandele, M.A.; Iovu, H. Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr. Polym., 2013, 94(1), 339-344.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.065]
[60]
Xie, M.; Olderøy, M.Ø.; Andreassen, J-P.; Selbach, S.M.; Strand, B.L.; Sikorski, P. Alginate-controlled formation of nanoscale calcium carbonate and hydroxyapatite mineral phase within hydrogel networks. Acta Biomater., 2010, 6(9), 3665-3675.
[http://dx.doi.org/10.1016/j.actbio.2010.03.034]
[61]
Han, J.; Zhou, Z.; Yin, R.; Yang, D.; Nie, J. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization. Int. J. Biol. Macromol., 2010, 46(2), 199-205.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.11.004]
[62]
Tandya, A.; Zhuang, H.Q.; Mammucari, R.; Foster, N.R. Supercritical fluid micronization techniques for gastroresistant insulin formulations. J. Supercrit. Fluids, 2016, 107, 9-16.
[http://dx.doi.org/10.1016/j.supflu.2015.08.009]
[63]
Cui, F.; Shi, K.; Zhang, L.; Tao, A.; Kawashima, Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: Preparation, in vitro characterization and in vivo evaluation. J. Control. Release, 2006, 114(2), 242-250.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.013]
[64]
Yang, J.; Chen, J.; Pan, D.; Wan, Y.; Wang, Z. pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr. Polym., 2013, 92(1), 719-725.
[http://dx.doi.org/10.1016/j.carbpol.2012.09.036]
[65]
Li, P.; Luo, Z.; Liu, P.; Gao, N.; Zhang, Y.; Pan, H.; Liu, L.; Wang, C.; Cai, L.; Ma, Y. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J. Control. Release, 2013, 168(3), 271-279.
[http://dx.doi.org/10.1016/j.jconrel.2013.03.025]
[66]
Nagarwal, R.C.; Kumar, R.; Pandit, J.K. Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: In vitro characterization and in vivo study in rabbit eye. Eur. J. Pharm. Sci., 2012, 47(4), 678-685.
[http://dx.doi.org/10.1016/j.ejps.2012.08.008]
[67]
Reis, C.P.; Ribeiro, A.J.; Houng, S.; Veiga, F.; Neufeld, R.J. Nanoparticulate delivery system for insulin: Design, characterization and in vitro/in vivo bioactivity. Eur. J. Pharm. Sci., 2007, 30(5), 392-397.
[http://dx.doi.org/10.1016/j.ejps.2006.12.007]
[68]
Yin, L.; Ding, J.; He, C.; Cui, L.; Tang, C.; Yin, C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials, 2009, 30(29), 5691-5700.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.055]
[69]
Jabeen, S.; Maswal, M.; Chat, O.A.; Rather, G.M.; Dar, A.A. Rheological behavior and ibuprofen delivery applications of pH responsive composite alginate hydrogels. Colloids Surf. B Biointerfaces, 2016, 139, 211-218.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.013]
[70]
Mukhopadhyay, P.; Sarkar, K.; Chakraborty, M.; Bhattacharya, S.; Mishra, R.; Kundu, P.P. Oral insulin delivery by self-assembled chitosan nanoparticles: In vitro and in vivo studies in diabetic animal model. Mater. Sci. Eng. C, 2013, 33(1), 376-382.
[http://dx.doi.org/10.1016/j.msec.2012.09.001]
[71]
Song, M.; Wang, H.; Chen, K.; Zhang, S.; Yu, L.; Elshazly, E.H.; Ke, L.; Gong, R. Oral insulin delivery by carboxymethyl-β-cyclodextrin-grafted chitosan nanoparticles for improving diabetic treatment. Artif. Cells Nanomed. Biotechnol., 2018, 1-9.
[http://dx.doi.org/10.1080/21691401.2018.1511575]
[72]
Thompson, C.J.; Tetley, L.; Cheng, W.P. the influence of polymer architecture on the protective effect of novel comb shaped amphiphilic poly(allylamine) against in vitro enzymatic degradation of insulin--towards oral insulin delivery. Int. J. Pharm., 2010, 383(1-2), 216-227.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.018]
[73]
Li, X.; Zhu, Q.; Fan, W.; Xia, D.; Guo, S.; Gan, Y.; Hovgaard, L.; Yang, M.; He, S.; Zhu, C. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials, 2017, 151, 13-23.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.022]
[74]
Lai, S.K.; Wang, Y-Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev., 2009, 61(2), 158-171.
[http://dx.doi.org/10.1016/j.addr.2008.11.002]
[75]
George, M.; Abraham, T.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review. J. Control. Release, 2006, 114(1), 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.017]
[76]
Mladenovska, K.; Raicki, R.S.; Janevik, E.I.; Ristoski, T.; Pavlova, M.J.; Kavrakovski, Z.; Dodov, M.G.; Goracinova, K. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. Int. J. Pharm., 2007, 342(1-2), 124-136.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.028]
[77]
Ways, M.T.; Lau, W.; Khutoryanskiy, V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers (Basel), 2018, 10(3), 267.
[http://dx.doi.org/10.3390/polym10030267]
[78]
Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res., 2007, 24(12), 2198-2206.
[http://dx.doi.org/10.1007/s11095-007-9367-4]
[79]
Presas, E.; McCartney, F.; Sultan, E.; Hunger, C.; Nellen, S.; Alvarez, V.C.; Werner, U.; Bazile, D.; Brayden, D.J.; O’Driscoll, C.M. Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin. J. Control. Release, 2018, 286, 402-414.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.045]
[80]
Treenate, P.; Monvisade, P. In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug. Int. J. Biol. Macromol., 2017, 99, 71-78.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.061]
[81]
Davidovich-Pinhas, M.; Bianco-Peled, H. Alginate-PEGAc: A new mucoadhesive polymer. Acta Biomater., 2011, 7(2), 625-633.
[http://dx.doi.org/10.1016/j.actbio.2010.09.021]
[82]
Costa, I. dos S.M.; Abranches, R.P.; Garcia, M.T.J.; Pierre, M.B.R. Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer’s treatment. J. Photochem. Photobiol. B, 2014, 140, 266-275.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.08.005]
[83]
Rekha, M.R.; Sharma, C.P. Oral delivery of therapeutic protein/peptide for diabetes--future perspectives. Int. J. Pharm., 2013, 440(1), 48-62.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.056]
[84]
Rahmani, V.; Sheardown, H. Protein-alginate complexes as pH-/ion-sensitive carriers of proteins. Int. J. Pharm., 2018, 535(1-2), 452-461.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.039]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy