[1]
Chua KB. Nipah virus: A recently emergent deadly paramyxovirus. Science 2000; 288(5470): 1432-5. [http://dx.doi.org/10.1126/science.288.5470.1432].
[2]
Hsu VP, Hossain MJ, Parashar UD, et al. Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 2004; 10(12): 2082-7. [http://dx.doi.org/10.3201/eid1012.040701]. [PMID: 15663842].
[3]
Wong KT, Shieh WJ, Zaki SR, Tan CT. Nipah virus infection, an emerging paramyxoviral zoonosis. Springer Semin Immunopathol 2002; 24(2): 215-28. [http://dx.doi.org/10.1007/s00281-002-0106-y]. [PMID: 12503066].
[4]
Sharma V, Kaushik S, Kumar R, Yadav JP, Kaushik S. Emerging trends of Nipah virus: A review. Rev Med Virol 2019; 29(1): e2010. [http://dx.doi.org/10.1002/rmv.2010]. [PMID: 30251294].
[5]
Satterfield BA, Dawes BE, Milligan GN. Status of vaccine research and development of vaccines for Nipah virus. Vaccine 2016; 34(26): 2971-5. [http://dx.doi.org/10.1016/j.vaccine.2015.12.075]. [PMID: 26973068].
[6]
Centers for Disease Control and Prevention (CDC) Update: outbreak of Nipah virus--Malaysia and Singapore, 1999. MMWR Morb Mortal Wkly Rep 1999; 48(16): 335-7. [PMID: 10366143].
[7]
Clayton BA, Middleton D, Bergfeld J, et al. Transmission routes for nipah virus from Malaysia and Bangladesh. Emerg Infect Dis 2012; 18(12): 1983-93. [http://dx.doi.org/10.3201/eid1812.120875]. [PMID: 23171621].
[8]
Homaira N, Rahman M, Hossain MJ, et al. Evidence of person-to-person transmission of nipah virus through casual contact. Lancet 2018; 12(1): 99. [http://dx.doi.org/10.1016/j.ijid.2008.05.248].
[9]
Chew MHL, Arguin PM, Shay DK, et al. Risk factors for Nipah virus infection among abattoir workers in Singapore. J Infect Dis 2000; 181(5): 1760-3. [http://dx.doi.org/10.1086/315443]. [PMID: 10823780].
[10]
Hsu VP. Nipah and hendra viruses. Perspect Med Virol 2006; 16: 179-99. [http://dx.doi.org/10.1016/S0168-7069(06)16009-7].
[11]
Li Y, Wang J, Hickey AC, et al. Antibodies to Nipah or Nipah-like viruses in bats, China. Emerg Infect Dis 2008; 14(12): 1974-6. [http://dx.doi.org/10.3201/eid1412.080359]. [PMID: 19046545].
[12]
Kulkarni DD, Tosh C, Venkatesh G, Senthil Kumar D. Nipah virus infection: current scenario. Indian J Virol 2013; 24(3): 398-408. [http://dx.doi.org/10.1007/s13337-013-0171-y]. [PMID: 24426305].
[13]
Verma MK, Verma P, Singh S, Gaur P, Siddiqui AH, Pandey S. Nipah virus- infectious agent. An Overview 2018; 4(3): 1844-50.
[14]
Aguilar HC, Iorio RM. Henipavirus membrane fusion and viral entry. Curr Top Microbiol Immunol 2012; 359(2): 79-94. [http://dx.doi.org/10.1007/82_2012_200]. [PMID: 22427111].
[15]
Deka MA, Morshed N. Mapping disease transmission risk of nipah virus in south and southeast asia. Trop Med Infect Dis 2018; 3(2): 57. [http://dx.doi.org/10.3390/tropicalmed3020057]. [PMID: 30274453].
[16]
Directorate of Health Services. Kerala Nipah Virus infection- Guidelines 2018; 1-15.
[17]
Wong KT, Grosjean I, Brisson C, et al. A golden hamster model for human acute Nipah virus infection. Am J Pathol 2003; 163(5): 2127-37. [http://dx.doi.org/10.1016/S0002-9440(10)63569-9]. [PMID: 14578210].
[18]
Middleton DJ, Westbury HA, Morrissy CJ, et al. Experimental Nipah virus infection in pigs and cats. J Comp Pathol 2002; 126(2-3): 124-36. [http://dx.doi.org/10.1053/jcpa.2001.0532]. [PMID: 11945001].
[19]
Wong KT, Shieh W-J, Kumar S, Zaki SR. Nipah virus : An update on prevention and control strategies with special reference to the latest outbreak in india. Am J Pathol 2018; 161(6): 2153-67. [http://dx.doi.org/10.1016/S0002-9440(10)64493-8]. [PMID: 12466131].
[20]
Escaffre O, Borisevich V, Rockx B. Pathogenesis of Hendra and Nipah virus infection in humans. J Infect Dev Ctries 2013; 7(4): 308-11. [http://dx.doi.org/10.3855/jidc.3648]. [PMID: 23592639].
[21]
Ganguly S, Kumar SV, Pagrut N, Faran NK. Nipah virus: An update on prevention and control strategies with special reference to the latest outbreak in India. Int J Vet Sci Anim Husbandry 2018; 3(3): 20-1.
[22]
World Health Organization (WHO) Nipah Virus Infection 2007; 1-7.
[23]
Rockx B, Winegar R, Freiberg AN. Recent progress in henipavirus research: molecular biology, genetic diversity, animal models. Antiviral Res 2012; 95(2): 135-49. [http://dx.doi.org/10.1016/j.antiviral.2012.05.008]. [PMID: 22643730].
[24]
Yoneda M, Guillaume V, Ikeda F, et al. Establishment of a Nipah virus rescue system. Proc Natl Acad Sci USA 2006; 103(44): 16508-13. [http://dx.doi.org/10.1073/pnas.0606972103]. [PMID: 17053073].
[25]
Sun Y, Guo Y, Lou Z. A versatile building block: the structures and functions of negative-sense single-stranded RNA virus nucleocapsid proteins. Protein Cell 2012; 3(12): 893-902. [http://dx.doi.org/10.1007/s13238-012-2087-5]. [PMID: 23136065].
[26]
Kranzusch PJ, Whelan SPJ. Architecture and regulation of negative-strand viral enzymatic machinery. RNA Biol 2012; 9(7): 941-8. [http://dx.doi.org/10.4161/rna.20345]. [PMID: 22767259].
[27]
Huang M, Sato H, Hagiwara K, et al. Determination of a phosphorylation site in Nipah virus nucleoprotein and its involvement in virus transcription. J Gen Virol 2011; 92(Pt 9): 2133-41. [http://dx.doi.org/10.1099/vir.0.032342-0]. [PMID: 21613447].
[28]
Harcourt BH, Tamin A, Halpin K, et al. Molecular characterization of the polymerase gene and genomic termini of Nipah virus. Virology 2001; 287(1): 192-201. [http://dx.doi.org/10.1006/viro.2001.1026]. [PMID: 11504554].
[29]
Green TJ, Luo M. Structure of the vesicular stomatitis virus nucleocapsid in complex with the nucleocapsid-binding domain of the small polymerase cofactor, P. Proc Natl Acad Sci USA 2009; 106(28): 11713-8. [http://dx.doi.org/10.1073/pnas.0903228106]. [PMID: 19571006].
[30]
Hayman DTS, Johnson N. Nipah virus: A virus with multiple pathways of emergence the role of animals in emerging viral diseases. Elsevier 2014; pp. 293-315. [http://dx.doi.org/10.1016/B978-0-12-405191-1.00011-9]
[31]
Sleeman K, Bankamp B, Hummel KB, Lo MK, Bellini WJ, Rota PA. The C, V and W proteins of Nipah virus inhibit minigenome replication. J Gen Virol 2008; 89(Pt 5): 1300-8. [http://dx.doi.org/10.1099/vir.0.83582-0]. [PMID: 18420809].
[32]
Chua KB, Bellini WJ, Rota PA, et al. Nipah virus: a recently emergent deadly paramyxovirus. Science 2000; 288(5470): 1432-5. [http://dx.doi.org/10.1126/science.288.5470.1432]. [PMID: 10827955].
[33]
Yoneda M, Guillaume V, Sato H, et al. The nonstructural proteins of Nipah virus play a key role in pathogenicity in experimentally infected animals. PLoS One 2010; 5(9): e12709. [http://dx.doi.org/10.1371/journal.pone.0012709]. [PMID: 20856799].
[34]
Sazzad HMS, Hossain MJ, Gurley ES, et al. Nipah virus infection outbreak with nosocomial and corpse-to-human transmission, bangladesh. Emerg Infect Des J 2013; 19(2): 1-14. [http://dx.doi.org/10.3201/eid1902.120971].
[35]
Watkinson RE, Lee B. Nipah virus matrix protein: expert hacker of cellular machines. FEBS Lett 2016; 590(15): 2494-511. [http://dx.doi.org/10.1002/1873-3468.12272]. [PMID: 27350027].
[36]
Battisti AJ, Meng G, Winkler DC, et al. Structure and assembly of a paramyxovirus matrix protein. Proc Natl Acad Sci USA 2012; 109(35): 13996-4000. [http://dx.doi.org/10.1073/pnas.1210275109]. [PMID: 22891297].
[37]
Diederich S, Sauerhering L, Weis M, et al. Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. J Virol 2012; 86(7): 3736-45. [http://dx.doi.org/10.1128/JVI.06628-11]. [PMID: 22278224].
[38]
Weis M, Maisner A. Nipah virus fusion protein: Importance of the cytoplasmic tail for endosomal trafficking and bioactivity. Eur J Cell Biol 2015; 94(7-9): 316-22. [http://dx.doi.org/10.1016/j.ejcb.2015.05.005]. [PMID: 26059400].
[39]
Pager CT, Craft WW Jr, Patch J, Dutch RE. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology 2006; 346(2): 251-7. [http://dx.doi.org/10.1016/j.virol.2006.01.007]. [PMID: 16460775].
[40]
Negrete OA, Levroney EL, Aguilar HC, et al. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 2005; 436(7049): 401-5. [http://dx.doi.org/10.1038/nature03838]. [PMID: 16007075].
[41]
Bowden TA, Crispin M, Harvey DJ, Jones EY, Stuart DI. Dimeric architecture of the Hendra virus attachment glycoprotein: evidence for a conserved mode of assembly. J Virol 2010; 84(12): 6208-17. [http://dx.doi.org/10.1128/JVI.00317-10]. [PMID: 20375167].
[42]
Talekar A, Pessi A, Porotto M. Infection of primary neurons mediated by nipah virus envelope proteins: role of host target cells in antiviral action. J Virol 2011; 85(16): 8422-6. [http://dx.doi.org/10.1128/JVI.00452-11]. [PMID: 21653662].
[43]
Steffen DL, Xu K, Nikolov DB, Broder CC. Henipavirus mediated membrane fusion, virus entry and targeted therapeutics. Viruses 2012; 4(2): 280-308. [http://dx.doi.org/10.3390/v4020280]. [PMID: 22470837].
[44]
Deffrasnes C, Marsh GA, Foo CH, et al. Genome-wide siRNA screening at biosafety level 4 reveals a crucial role for fibrillarin in henipavirus infection. PLoS Pathog 2016; 12(3): e1005478. [http://dx.doi.org/10.1371/journal.ppat.1005478]. [PMID: 27010548].
[45]
Bochenek ML, Dickinson S, Astin JW, Adams RH, Nobes CD. Ephrin-B2 regulates endothelial cell morphology and motility independently of Eph-receptor binding. J Cell Sci 2010; 123(Pt 8): 1235-46. [http://dx.doi.org/10.1242/jcs.061903]. [PMID: 20233847].
[46]
Bossart KN, Broder CC. Developments towards effective treatments for Nipah and Hendra virus infection. Expert Rev Anti Infect Ther 2006; 4(1): 43-55. [http://dx.doi.org/10.1586/14787210.4.1.43]. [PMID: 16441208].
[47]
Martinez-Gil L, Vera-Velasco NM, Mingarro I. Exploring the human-nipah virus protein-protein interactome. J Virol 2017; 91(23): 01461-17. [http://dx.doi.org/10.1128/JVI.01461-17]. [PMID: 28904190].
[48]
Ang BSP, Lim TCC, Wang L. Nipah virus infection. J Clin Microbiol 2018; 56(6): 1875-7. [http://dx.doi.org/10.1128/JCM.01875-17]. [PMID: 29643201].
[49]
Satterfield BA. The future of preventing and treating Nipah virus infection. Future Sci OA 2017; 3(4): 1-4. [http://dx.doi.org/10.4155/fsoa-2017-0056].
[50]
Mire CE, Versteeg KM, Cross RW, et al. Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease. Virol J 2013; 10: 353. [http://dx.doi.org/10.1186/1743-422X-10-353]. [PMID: 24330654].
[51]
Mire CE, Geisbert JB, Agans KN, et al. A recombinant Hendra virus G glycoprotein subunit vaccine protects nonhuman primates against Hendra virus challenge. J Virol 2014; 88(9): 4624-31. [http://dx.doi.org/10.1128/JVI.00005-14]. [PMID: 24522928].
[52]
Kurup D, Wirblich C, Feldmann H, Marzi A, Schnell MJ. Rhabdovirus-based vaccine platforms against henipaviruses. J Virol 2015; 89(1): 144-54. [http://dx.doi.org/10.1128/JVI.02308-14]. [PMID: 25320306].
[53]
Middleton D, Pallister J, Klein R, et al. Hendra virus vaccine, a one health approach to protecting horse, human, and environmental health. Emerg Infect Dis 2014; 20(3): 372-9. [http://dx.doi.org/10.3201/eid2003.131159]. [PMID: 24572697].
[54]
Hoffmann M, Nehlmeier I, Brinkmann C, et al. Tetherin inhibits nipah virus but not ebola virus replication in fruit bat cells. J Virol 2019; 93(3): 1-12. [PMID: 30429347].
[55]
Chong HT, Kamarulzaman A, Tan CT, et al. Treatment of acute Nipah encephalitis with ribavirin. Ann Neurol 2001; 49(6): 810-3. [http://dx.doi.org/10.1002/ana.1062]. [PMID: 11409437].
[56]
Freiberg AN, Worthy MN, Lee B, Holbrook MR. Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection. J Gen Virol 2010; 91(Pt 3): 765-72. [http://dx.doi.org/10.1099/vir.0.017269-0]. [PMID: 19889926].
[57]
Porotto M, Moscona A, Horvat B, Mathieu C, Keys AL. Inhibitors of fusion between viral and cell membranes as well as compositions and methods of using them 2019. WO2015171924
[58]
Niedermeier S, Singethan K, Rohrer SG, et al. A small-molecule inhibitor of Nipah virus envelope protein-mediated membrane fusion. J Med Chem 2009; 52(14): 4257-65. [http://dx.doi.org/10.1021/jm900411s]. [PMID: 19499921].
[59]
Tigabu B, Rasmussen L, White EL, et al. A BSL-4 high-throughput screen identifies sulfonamide inhibitors of Nipah virus. Assay Drug Dev Technol 2014; 12(3): 155-61. [http://dx.doi.org/10.1089/adt.2013.567]. [PMID: 24735442].
[60]
Dawes BE, Kalveram B, Ikegami T, et al. Favipiravir (T-705) protects against Nipah virus infection in the hamster model. Sci Rep 2018; 8(1): 7604. [http://dx.doi.org/10.1038/s41598-018-25780-3]. [PMID: 29765101].
[61]
Hotard AL, He B, Nichol ST, Spiropoulou CF, Lo MK. 4′-Azidocytidine (R1479) inhibits henipaviruses and other paramyxoviruses with high potency. Antiviral Res 2017; 144(2): 147-52. [http://dx.doi.org/10.1016/j.antiviral.2017.06.011]. [PMID: 28629988].
[62]
Lo MK, Jordan PC, Stevens S, et al. Susceptibility of paramyxoviruses and filoviruses to inhibition by 2′-monofluoro- and 2′-difluoro-4′-azidocytidine analogs. Antiviral Res 2018; 153: 101-13. [http://dx.doi.org/10.1016/j.antiviral.2018.03.009]. [PMID: 29601894].
[63]
Ramharack P, Soliman MES. Bioinformatics-based tools in drug discovery: the cartography from single gene to integrative biological networks. Drug Discov Today 2018; 23(9): 1658-65. [http://dx.doi.org/10.1016/j.drudis.2018.05.041]. [PMID: 29864527].
[64]
Ramharack P, Soliman MES. Zika virus drug targets: a missing link in drug design and discovery - a route map to fill the gap. RSC Advances 2016; 6(73): 68719-31. [http://dx.doi.org/10.1039/C6RA12142J].
[65]
Bethesda (MD): National Library of Medicine (US) National Center for Biotechnology Information (NCBI) [Internet] Accessed [11/03/2018] 1988.
[66]
Chan YP, Chua KB, Koh CL, Lim ME, Lam SK. Complete nucleotide sequences of Nipah virus isolates from Malaysia. J Gen Virol 2001; 82(Pt 9): 2151-5. [http://dx.doi.org/10.1099/0022-1317-82-9-2151]. [PMID: 11514724].
[67]
Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 2014; 42(Web Server issue). : W252-8. [http://dx.doi.org/10.1093/nar/gku340] [PMID: 24782522]
[68]
Munsamy G, Soliman MES. Homology modeling in drug discovery-an update on the last decade. Lett Drug Des Discov 2017; 14(9): 1099-111. [http://dx.doi.org/10.2174/1570180814666170110122027].
[69]
Ramharack P, Soliman MES. Zika virus NS5 protein potential inhibitors: an enhanced in silico approach in drug discovery. J Biomol Struct Dyn 2018; 36(5): 1118-33. [http://dx.doi.org/10.1080/07391102.2017.1313175]. [PMID: 28351337].
[70]
Maharaj Y, Soliman MES. Identification of novel gyrase B inhibitors as potential anti-TB drugs: homology modelling, hybrid virtual screening and molecular dynamics simulations. Chem Biol Drug Des 2013; 82(2): 205-15. [http://dx.doi.org/10.1111/cbdd.12152]. [PMID: 23614896].
[71]
Velkov T, Carbone V, Akter J, et al. The RNA-dependent-RNA polymerase, an emerging antiviral drug target for the Hendra virus. Curr Drug Targets 2014; 15(1): 103-13. [http://dx.doi.org/10.2174/1389450114888131204163210]. [PMID: 24102407].
[72]
Hernandez M, Ghersi D, Sanchez R. SITEHOUND-web: a server for ligand binding site identification in protein structures. Nucleic Acids Res 2009; 37(Web Server issue). : W413-6. [http://dx.doi.org/10.1093/nar/gkp281] [PMID: 19398430]
[73]
Ravichandran L, Venkatesan A, Febin Prabhu Dass J. Epitope-based immunoinformatics approach on RNA-dependent RNA polymerase (RdRp) protein complex of Nipah virus (NiV). J Cell Biochem 2018; 4: 1-14. [PMID: 30417438].
[74]
Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 1995; 8(2): 127-34. [http://dx.doi.org/10.1093/protein/8.2.127]. [PMID: 7630882].
[75]
Koes DRC, Camacho CJ. ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res 2012; 40(Web Server issue). : W409-14. [http://dx.doi.org/10.1093/nar/gks378] [PMID: 22553363]