Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Bioactivities of Natural Catalpol Derivatives

Author(s): Liu-Qiang Zhang, Kai-Xian Chen* and Yi-Ming Li*

Volume 26, Issue 33, 2019

Page: [6149 - 6173] Pages: 25

DOI: 10.2174/0929867326666190620103813

Price: $65

Abstract

Catalpol, a famous molecule of iridoids, possesses extensive pharmacological activities. Our studies found that compounds with low-polarity substituents at the 6-O position of catalpol exhibited higher NF-κB inhibitory potency than catalpol. However, catalpol derivatives are not much focused. Here this review provides extensive coverage of naturally occurring catalpol derivatives discovered from 1888 until 2018. It covers their distribution, chemotaxonomic significance, chemical structures, and bioactivities from more than 200 peer-reviewed articles, and highlights the structure-activity relationship of catalpol derivatives.

Keywords: Catalpol derivatives, 6-O substituent, Structure-activity relationship, anti-inflammatory activity, antioxidative activity, NF-κB inhibitory potency.

[1]
Dong, T.J.; Cui, Y.L.; Tian, J.S.; Yao, K.D. Advances in studies on natural iridoids. Chin. Tradit. Herbal Drugs, 2011, 42(1), 185-194.
[2]
Villasenor, I.M. Bioactivities of iridoids. Antiinflamm. Antiallergy Agents Med. Chem., 2007, 6(4), 307-314.
[http://dx.doi.org/10.2174/187152307783220040]
[3]
El-Naggar, L.J.; Beal, J.L. Iridoids. A review. J. Nat. Prod., 1980, 43(6), 649-707.
[http://dx.doi.org/10.1021/np50012a001] [PMID: 20707392]
[4]
Boros, C.A.; Stermitz, F.R. Iridoids. An updated review. Part I. J. Nat. Prod., 1990, 53(5), 1055-1147.
[http://dx.doi.org/10.1021/np50071a001]
[5]
Boros, C.A.; Stermitz, F.R. Iridoids. An updated review. Part II. J. Nat. Prod., 1991, 54(5), 1173-1246.
[http://dx.doi.org/10.1021/np50077a001]
[6]
Al-Hazimi, H.M.G.; Alkhathlan, H.Z. Naturally occurring iridoids during the period 1990-1993. J. Chem. Soc. Pak., 1996, 18(4), 336-357.
[7]
Dinda, B.; Debnath, S.; Harigaya, Y. Naturally occurring iridoids. A review, part 1. Chem. Pharm. Bull. (Tokyo), 2007, 55(2), 159-222.
[http://dx.doi.org/10.1248/cpb.55.159] [PMID: 17268091]
[8]
Dinda, B.; Debnath, S.; Harigaya, Y. Naturally occurring secoiridoids and bioactivity of naturally occurring iridoids and secoiridoids. A review, part 2. Chem. Pharm. Bull. (Tokyo), 2007, 55(5), 689-728.
[http://dx.doi.org/10.1248/cpb.55.689] [PMID: 17473457]
[9]
Dinda, B.; Chowdhury, D.R.; Mohanta, B.C. Naturally occurring iridoids, secoiridoids and their bioactivity. An updated review, part 3. Chem. Pharm. Bull. (Tokyo), 2009, 57(8), 765-796.
[http://dx.doi.org/10.1248/cpb.57.765] [PMID: 19652401]
[10]
Dinda, B.; Debnath, S.; Banik, R. Naturally occurring iridoids and secoiridoids. An updated review, part 4. Chem. Pharm. Bull. (Tokyo), 2011, 59(7), 803-833.
[http://dx.doi.org/10.1248/cpb.59.803] [PMID: 21720031]
[11]
Claassen, E. Catalpin, a bitter principle. Am.Chem. J., 1888, 10, 328-330.
[12]
Liu, Z.H.; Wen, X.S. A systematic review of a naturally occurring iridoid: catalpol. Curr. Bioact. Compd., 2013, 9(4), 306-323.
[http://dx.doi.org/10.2174/1573407209666131230233706]
[13]
Zhang, L.; Zhu, T.; Qian, F.; Xu, J.; Dorje, G.; Zhao, Z.; Guo, F.; Li, Y. Iridoid glycosides isolated from Scrophularia dentata Royle ex Benth. and their anti-inflammatory activity. Fitoterapia, 2014, 98, 84-90.
[http://dx.doi.org/10.1016/j.fitote.2014.07.005] [PMID: 25016952]
[14]
Zhu, T.; Zhang, L.; Ling, S.; Duan, J.; Qian, F.; Li, Y.; Xu, J.W. Scropolioside B inhibits IL-1β and cytokines expression through NF-κB and inflammasome NLRP3 pathways. Mediators Inflamm., 2014, •••2014819053
[http://dx.doi.org/10.1155/2014/819053] [PMID: 25386048]
[15]
Zhu, T.; Zhang, L.; Ling, S.; Qian, F.; Li, Y.; Xu, J.W. Anti-Inflammatory Activity Comparison among Scropoliosides-Catalpol Derivatives with 6-O-Substituted Cinnamyl Moieties. Molecules, 2015, 20(11), 19823-19836.
[http://dx.doi.org/10.3390/molecules201119659] [PMID: 26540037]
[16]
Viljoen, A.; Mncwangi, N.; Vermaak, I. Anti-inflammatory iridoids of botanical origin. Curr. Med. Chem., 2012, 19(14), 2104-2127.
[http://dx.doi.org/10.2174/092986712800229005] [PMID: 22414102]
[17]
Li, H.; Yang, S.Q.; Wang, H.; Tian, J.; Gao, W.Y. Biosynthesis of the iridoid glucoside, lamalbid, in Lamium barbatum. Phytochemistry, 2010, 71(14-15), 1690-1694.
[http://dx.doi.org/10.1016/j.phytochem.2010.06.019] [PMID: 20656306]
[18]
Sun, P.; Song, S.; Zhou, L.; Zhang, B.; Qi, J.; Li, X. Transcriptome analysis reveals putative genes involved in iridoid biosynthesis in Rehmannia glutinosa. Int. J. Mol. Sci., 2012, 13(10), 13748-13763.
[http://dx.doi.org/10.3390/ijms131013748] [PMID: 23202979]
[19]
Geu-Flores, F.; Sherden, N.H.; Courdavault, V.; Burlat, V.; Glenn, W.S.; Wu, C.; Nims, E.; Cui, Y.; O’Connor, S.E. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature, 2012, 492(7427), 138-142.
[http://dx.doi.org/10.1038/nature11692] [PMID: 23172143]
[20]
Damtoft, S.; Jensen, S.R.; Jessen, C.U.; Knudsen, T.B. Late stages in the biosynthesis of aucubin in Scrophularia. Phytochemistry, 1993, 33(5), 1089-1093.
[http://dx.doi.org/10.1016/0031-9422(93)85028-P]
[21]
Worawittayanon, P.; Ruadreo, J.; Disadee, W.; Sahakitpichan, P.; Sitthimonchai, S.; Thasana, N.; Ruchirawat, S.; Kanchanapoom, T. Iridoid and flavone glycosides from Asystasia gangetica subsp. micrantha and Asystasia salicifolia and their antioxidant activities. Biochem. Syst. Ecol., 2012, 40, 38-42.
[http://dx.doi.org/10.1016/j.bse.2011.08.016]
[22]
Ren, F.C.; Wang, L.X.; Wang, F.; Li, B.C. Chemical constituents from Scilla scilloides. Zhongcaoyao, 2014, 45(14), 1984-1988.
[http://dx.doi.org/10.7501/j.issn.0253-2670.2014.14.004]
[23]
Kapoor, S.K.; Kohli, J.M.; Zaman, A.; Amphicoside, I. New bitter glycoside from Amphicome emodi. Tetrahedron Lett., 1971, 12(30), 2839-2840.
[http://dx.doi.org/10.1016/S0040-4039(01)97057-1]
[24]
Maksudov, M.S.; Umarov, R.U.; Saatov, Z. Iridoids from Catalpa bignonioides. Chem. Nat. Compd., 1995, 31(5), 632-633.
[http://dx.doi.org/10.1007/BF01164897]
[25]
Tetsuo, I.; Toshiyuki, H.; Shigetoshi, K.; Tsunao, H.; Tsutomu, O.; Mujo, K. Iridoids from Catalpa bignonioides. Phytochemistry, 1991, 30(12), 4057-4060.
[http://dx.doi.org/10.1016/0031-9422(91)83466-X]
[26]
Dal Piaz, F.; Vassallo, A.; Temraz, A.; Cotugno, R.; Belisario, M.A.; Bifulco, G.; Chini, M.G.; Pisano, C.; De Tommasi, N.; Braca, A. A chemical-biological study reveals C9-type iridoids as novel heat shock protein 90 (Hsp90) inhibitors. J. Med. Chem., 2013, 56(4), 1583-1595.
[http://dx.doi.org/10.1021/jm301398y] [PMID: 23362862]
[27]
Henri, C.; Georges, T.; Marie-Magdeleine, C. Catalposide, a heteroside of the catalpa fruit. Compt. Rend., 1943, 216, 677-679.
[28]
Young, H.S.; Kim, M.S.; Park, H.J.; Chung, H.Y.; Choi, J.S. Phytochemical study on Catalpa ovata. Arch. Pharm. Res., 1992, 15(4), 322-327.
[http://dx.doi.org/10.1007/BF02974106]
[29]
Machida, K.; Ogawa, M.; Kikuchi, M. Studies on the constituents of Catalpa species. II. Iridoids from Catalpae Fructus. Chem. Pharm. Bull. (Tokyo), 1998, 46(6), 1056-1057.
[http://dx.doi.org/10.1248/cpb.46.1056]
[30]
Han, X.H.; Lee, C.; Lee, J.W.; Jin, Q.; Jang, H.; Lee, H.J.; Lee, D.; Lee, S.J.; Hong, J.T.; Lee, M.K.; Hwang, B.Y. Two new iridoids from the stem of Catalpa ovata. Helv. Chim. Acta, 2015, 98(3), 381-385.
[http://dx.doi.org/10.1002/hlca.201400203]
[31]
Park, S.; Shin, H.; Park, Y.; Choi, I.; Park, B.; Lee, K.Y. Characterization of inhibitory constituents of NO production from Catalpa ovata using LC-MS coupled with a cell-based assay. Bioorg. Chem., 2018, 80, 57-63.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.023] [PMID: 29874630]
[32]
Kil, Y.S.; Kim, S.M.; Kang, U.; Chung, H.Y.; Seo, E.K. Peroxynitrite-Scavenging Glycosides from the Stem Bark of Catalpa ovata. J. Nat. Prod., 2017, 80(8), 2240-2251.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00139] [PMID: 28787158]
[33]
El-Naggar, S.F.; Doskotch, R.W. Specioside: a new iridoid glycoside from Catalpa speciose. J. Nat. Prod., 1980, 43(4), 524-526.
[http://dx.doi.org/10.1021/np50010a015]
[34]
Ramírez-Cisneros, M.A.; Rios, M.Y.; Aguilar-Guadarrama, A.B.; Rao, P.P.N.; Aburto-Amar, R.; Rodríguez-López, V. In vitro COX-1 and COX-2 enzyme inhibitory activities of iridoids from Penstemon barbatus, Castilleja tenuiflora, Cresentia alata and Vitex mollis. Bioorg. Med. Chem. Lett., 2015, 25(20), 4505-4508.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.075] [PMID: 26351040]
[35]
Felicio, J.D.; Lins, A.P.; Simoni, I.C.; Goncalves, C.R. Constituents of Cybistax antisiphylitica. Fitoterapia, 1994, 65(3), 281-282.
[36]
Kaewkongpan, C.; Sahakitpichan, P.; Ruchirawat, S.; Kanchanapoom, T. Iridoid and phenylethanoid glycosides from Heterophragma sulfureum. Phytochem. Lett., 2015, 12, 277-281.
[http://dx.doi.org/10.1016/j.phytol.2015.04.016]
[37]
Picerno, P.; Autore, G.; Marzocco, S.; Meloni, M.; Sanogo, R.; Aquino, R.P. Anti-inflammatory activity of verminoside from Kigelia africana and evaluation of cutaneous irritation in cell cultures and reconstituted human epidermis. J. Nat. Prod., 2005, 68(11), 1610-1614.
[http://dx.doi.org/10.1021/np058046z] [PMID: 16309308]
[38]
Bharti, N.; Singh, S.; Naqvi, F.; Azam, A. Isolation and in vitro antiamoebic activity of iridoids isolated from Kigelia pinnata. ARKIVOC, 2006, 2006, 69-76.
[http://dx.doi.org/10.3998/ark.5550190.0007.a09]
[39]
Ramakrishna, E.; Dev, K.; Kothari, P.; Tripathi, A.K.; Trivedi, R.; Maurya, R. Phytochemical investigation of Kigelia pinnata leaves and identification of osteogenic agents. Med. Chem. Res., 2017, 26(5), 940-946.
[http://dx.doi.org/10.1007/s00044-017-1807-z]
[40]
Bonini, C.; Davini, E.; Iavarone, C.; Trogolo, C. Cynanchoside, a highly oxygenated iridoid glucoside from Macfadyena cynanchoides. Phytochemistry, 1981, 20(7), 1587-1590.
[http://dx.doi.org/10.1016/S0031-9422(00)98537-6]
[41]
Guo, H.; Li, B.G.; Qi, H.Y.; Zhang, G.L. A new meroditerpenoid from Mayodendron igeum. J. Asian Nat. Prod. Res., 2007, 9(1), 1-5.
[http://dx.doi.org/10.1080/10286020500289311] [PMID: 17365181]
[42]
Riviere, C.; Goossens, L.; Guerardel, Y.; Maes, E.; Garenaux, E.; Pommery, J.; Pommery, N.; Desire, O.; Lemoine, A.; Telliez, A.; Delelis, A.; Hénichart, J.P. Chemotaxonomic interest of iridoids isolated from a Malagasy species: Perichlaena richardii. Biochem. Syst. Ecol., 2011, 39(4-6), 797-825.
[http://dx.doi.org/10.1016/j.bse.2011.07.016]
[43]
Rasamison, V.E.; Okunade, A.L. Iridoid glucoside from Phyllarthron bernierianum. ACGC Chem. Res. Commun., 2002, 14, 26-30.
[44]
Harinantenaina, L.R.R.; Kasai, R.; Rakotovao, M.; Yamasaki, K. New iridoid and phenethyl glycosides from Malagasy medicinal plant, Phyllarthron madagascarrense. Nat. Med. (Tokyo, Japan), 2001, 55(4), 187-192.
[45]
Iwagawa, T.; Asai, H.; Hase, T.; Sako, S.; Su, R.; Hagiwara, N.; Kim, M. Monoterpenoids from Radermachia sinica. Phytochemistry, 1990, 29(6), 1913-1916.
[http://dx.doi.org/10.1016/0031-9422(90)85039-I]
[46]
Gouda, Y.G. Iridoids from Spathodea campanulata P. Beauvais leaves. Nat. Prod. Commun., 2009, 4(6), 753-756.
[http://dx.doi.org/10.1177/1934578X0900400602] [PMID: 19634315]
[47]
Ramsay, K.S.T.; Wafo, P.; Ali, Z.; Khan, A.; Oluyemisi, O.O.; Marasini, B.P.; Khan, I.A.; Bonaventure, N.T.; Choudhary, M.I. Atta-ur-Rahman, Chemical constituents of Stereospermum acuminatissimum and their urease and α-chymotrypsin inhibitions. Fitoterapia, 2012, 83(1), 204-208.
[http://dx.doi.org/10.1016/j.fitote.2011.10.014] [PMID: 22062354]
[48]
Kanchanapoom, T.; Noiarsa, P.; Otsuka, H.; Ruchirawat, S. Lignan, phenolic and iridoid glycosides from Stereospermum cylindricum. Phytochemistry, 2006, 67(5), 516-520.
[http://dx.doi.org/10.1016/j.phytochem.2005.10.009] [PMID: 16310232]
[49]
Kumar, U.S.; Tiwari, A.K.; Reddy, S.V.; Aparna, P.; Rao, R.J.; Ali, A.Z.; Rao, J.M. Free-radical-scavenging and xanthine oxidase inhibitory constituents from Stereospermum personatum. J. Nat. Prod., 2005, 68(11), 1615-1621.
[http://dx.doi.org/10.1021/np058036y] [PMID: 16309309]
[50]
Takahashi, S.; Kawakami, S.; Sugimoto, S.; Matsunami, K.; Otsuka, H. Lignan glycosides and phenolic compound glycosides from the branches of Tabebuia chrysotricha. Am. J. Plant Sci., 2015, 6(5), 676-684.
[http://dx.doi.org/10.4236/ajps.2015.65073]
[51]
Bishay, D.W.; Abdel-Baky, A.M.; Ross, S.A.; Ibrahim, Z.Z. Phytochemical study of Tabebuia pentaphylla Hemsl. cultivated in Egypt. Bull. Pharm. Sci., 1987, 10(2), 1-20.
[52]
Compadre, C.M.; Jáuregui, J.F.; Nathan, P.J.; Enríquez, R.G. Isolation of 6-O-(p-coumaroyl)-catalpol from Tabebuia rosea. Planta Med., 1982, 46(1), 42-44.
[http://dx.doi.org/10.1055/s-2007-970016] [PMID: 17396938]
[53]
Joshi, K.C.; Prakash, L.; Singh, L.B. 6-O-veratryl catalposide, a new iridoid glucoside from Tecomella undulata. Phytochemistry, 1975, 14(5-6), 1441-1442.
[http://dx.doi.org/10.1016/S0031-9422(00)98654-0]
[54]
Zhou, Z.L.; Yin, W.Q.; Zhang, H.L.; Yang, H.Y.; Lin, S.Q.; Xia, J.M. Chemical constituents from rhizomes of Cyperus rotundus. Zhongcaoyao, 2013, 44(10), 1226-1230.
[55]
Taskova, R.M.; Gotfredsen, C.H.; Jensen, S.R. Chemotaxonomy of Veroniceae and its allies in the Plantaginaceae. Phytochemistry, 2006, 67(3), 286-301.
[http://dx.doi.org/10.1016/j.phytochem.2005.11.011] [PMID: 16386770]
[56]
Sarg, T.; Salama, O.; El-Domiaty, M.; Bishr, M.; Mansour, E.S.S.; Weight, E. Iridoid glucosides from Gentiana kurroo Royle. Alexandria J. Pharm. Sci., 1991, 5(1), 82-86.
[57]
Siciliano, T.; Bader, A.; Vassallo, A.; Braca, A.; Morelli, I.; Pizza, C.; De Tommasi, N. Secondary metabolites from Ballota undulata (Lamiaceae). Biochem. Syst. Ecol., 2005, 33(4), 341-351.
[http://dx.doi.org/10.1016/j.bse.2004.10.013]
[58]
Feng, S.X.; Yi, B.; Zhang, M.; Xu, J.; Lin, H.; Xu, W.T. Iridoid glycosides from Callicarpa nudiflora Hook. Nat. Prod. Res., 2017, 31(2), 181-189.
[http://dx.doi.org/10.1080/14786419.2016.1224872] [PMID: 27650129]
[59]
Wang, J.; Fu, H.Z.; Luo, Y.H.; Ma, Y.Y.; Huang, B.; Ma, S.C. Two new iridoid glycosides from the leaves of Callicarpa nudiflora. J. Asian Nat. Prod. Res., 2018, 20(3), 242-248.
[http://dx.doi.org/10.1080/10286020.2017.1323884] [PMID: 28537085]
[60]
Hosny, M.; Rosazza, J.P.N. Gmelinosides A-L, twelve acylated iridoid glycosides from Gmelina arborea. J. Nat. Prod., 1998, 61(6), 734-742.
[http://dx.doi.org/10.1021/np970447u] [PMID: 9644056]
[61]
Kawamura, F.; Ohara, S. Antifungal activity of iridoid glycosides from the heartwood of Gmelina arborea. Holzforschung, 2005, 59(2), 153-155.
[http://dx.doi.org/10.1515/HF.2005.023]
[62]
Tiwari, N.; Yadav, A.K.; Srivastava, P.; Shanker, K.; Verma, R.K.; Gupta, M.M. Iridoid glycosides from Gmelina arborea. Phytochemistry, 2008, 69(12), 2387-2390.
[http://dx.doi.org/10.1016/j.phytochem.2008.06.016] [PMID: 18684476]
[63]
Gu, W.; Hao, X.J.; Liu, H.X.; Wang, Y.H.; Long, C.L. Acylated iridoid glycosides and acylated rhamnopyranoses from Gmelina arborea flowers. Phytochem. Lett., 2013, 6(4), 681-685.
[http://dx.doi.org/10.1016/j.phytol.2013.08.016]
[64]
Helfrich, E.; Rimpler, H. Iridoid glycosides from Gmelina philippensis. Phytochemistry, 2000, 54(2), 191-199.
[http://dx.doi.org/10.1016/S0031-9422(00)00060-1] [PMID: 10872210]
[65]
Chen, J.J.; Cheng, M.J.; Liao, H.R.; Sung, P.J.; Wang, T.C.; Chang, T.H.; Lim, Y.P. Gmelinoiridoside, a new iridoid glycoside from Gmelina philippensis. Chem. Nat. Compd., 2014, 50(6), 1005-1008.
[http://dx.doi.org/10.1007/s10600-014-1147-x]
[66]
Helfrich, E.; Rimpler, H. Iridoid glycosides and phenolic glycosides from Holmskioldia sanguinea. Phytochemistry, 1999, 50(4), 619-627.
[http://dx.doi.org/10.1016/S0031-9422(98)00559-7]
[67]
Hang, N.T.B.; Ky, P.T.; Van Minh, C.; Cuong, N.X.; Thao, N.P.; Van Kiem, P. Study on the chemical constituents of Premna integrifolia L. Nat. Prod. Commun., 2008, 3(9), 1449-1452.
[http://dx.doi.org/10.1177/1934578X0800300909]
[68]
Otsuka, H.; Sasaki, Y.; Yamasaki, K.; Takeda, Y.; Seki, T. Iridoid diglycoside monoacyl esters from the leaves of Premna japonica. J. Nat. Prod., 1990, 53(1), 107-111.
[http://dx.doi.org/10.1021/np50067a014]
[69]
Otsuka, H.; Kubo, N.; Sasaki, Y.; Yamasaki, K.; Takeda, Y.; Seki, T. Iridoid diglycoside monoacyl esters from stems of Premna japonica. Phytochemistry, 1991, 30(6), 1917-1920.
[http://dx.doi.org/10.1016/0031-9422(91)85040-7]
[70]
Otsuka, H.; Sasaki, Y.; Kubo, N.; Yamasaki, K.; Takeda, Y.; Seki, T. Isolation and structure elucidation of mono- and diacyl-iridoid diglycosides from leaves of Premna japonica. J. Nat. Prod., 1991, 54(2), 547-553.
[http://dx.doi.org/10.1021/np50074a030]
[71]
Otsuka, H.; Kubo, N.; Yamasaki, K.; Padolina, W.G. Two iridoid glycoside caffeoyl esters from Premna odorata. Phytochemistry, 1989, 28(2), 513-515.
[http://dx.doi.org/10.1016/0031-9422(89)80044-5]
[72]
Otsuka, H.; Kubo, N.; Yamasaki, K.; Padolina, W.G. Premnosides A-D: diacyl 6-O-α-L-rhamnopyranosylcatalpols from Premna odorata. Phytochemistry, 1989, 28(11), 3063-3067.
[http://dx.doi.org/10.1016/0031-9422(89)80281-X]
[73]
Elmaidomy, A.H.; Mohyeldin, M.M.; Ibrahim, M.M.; Hassan, H.M.; Amin, E.; Rateb, M.E.; Hetta, M.H.; El Sayed, K.A.K.A. Acylated iridoids and rhamnopyranoses from Premna odorata (Lamiaceae) as novel mesenchymal-epithelial transition factor receptor inhibitors for the control of breast cancer. Phytother. Res., 2017, 31(10), 1546-1556.
[http://dx.doi.org/10.1002/ptr.5882] [PMID: 28809058]
[74]
Gousiadou, C.; Karioti, A.; Heilmann, J.; Skaltsa, H. Iridoids from Scutellaria albida ssp. albida. Phytochemistry, 2007, 68(13), 1799-1804.
[http://dx.doi.org/10.1016/j.phytochem.2007.04.014] [PMID: 17532352]
[75]
Gousiadou, C.; Gotfredsen, C.H.; Matsa, M.; Hadjipavlou-Litina, D.; Skaltsa, H. Minor iridoids from Scutellaria albida ssp. albida. Inhibitory potencies on lipoxygenase, linoleic acid lipid peroxidation and antioxidant activity of iridoids from Scutellaria sp. J. Enzyme Inhib. Med. Chem., 2013, 28(4), 704-710.
[http://dx.doi.org/10.3109/14756366.2012.672415] [PMID: 22630074]
[76]
Gousiadou, C.; Gotfredsen, C.H.; Jensen, S.R.; Tsoukalas, M. Iridoids from Scutellaria goulimyi Rech. f., Lamiaceae. Morphological and chemical relations with Scutellaria albida L. ssp. albida. Biochem. Syst. Ecol., 2012, 43, 139-141.
[http://dx.doi.org/10.1016/j.bse.2012.03.004]
[77]
Dellar, J.E.; Conn, B.J.; Cole, M.D.; Waterman, P.G. Cinnamate esters of catalpol from Westringia fruticosa and Westringia viminalis. Biochem. Syst. Ecol., 1996, 24(1), 65-69.
[http://dx.doi.org/10.1016/0305-1978(95)00091-7]
[78]
Li, X.N.; Sun, J.; Shi, H.; Yu, L.L.; Ridge, C.D.; Mazzola, E.P.; Okunji, C.; Iwu, M.M.; Michel, T.K.; Chen, P. Profiling hydroxycinnamic acid glycosides, iridoid glycosides, and phenylethanoid glycosides in baobab fruit pulp (Adansonia digitata). Food Res. Int., 2017, 99(Pt 1), 755-761.
[http://dx.doi.org/10.1016/j.foodres.2017.06.025] [PMID: 28784541]
[79]
Zhao, G.Q.; Yin, Z.F.; Liu, Y.C.; Li, H.B. Iridoid glycosides from buds of Jasminum officinale L. var. grandiflorum Yao Xue Xue Bao, 2011, 46(10), 1221-1224.
[PMID: 22242454]
[80]
Stermitz, F.R.; Ianiro, T.T.; Robinson, R.D.; Gardner, D.R. Chemistry of the Scrophulariaceae. Part 19. 6-O-acetylmelittoside and other iridoids from Castilleja Species. J. Nat. Prod., 1991, 54(2), 626-628.
[http://dx.doi.org/10.1021/np50074a050]
[81]
Gardner, D.R.; Narum, J.; Zook, D.; Stermitz, F.R. Chemistry of the Scrophulariaceae. Part 9. New iridoid glucosides from Castilleja and Besseya: 6-hydroxyadoxoside and 6-isovanillylcatapol. J. Nat. Prod., 1987, 50(3), 485-489.
[http://dx.doi.org/10.1021/np50051a024]
[82]
Liu, Y.F.; Shi, G.R.; Wang, X.; Zhang, C.L.; Wang, Y.; Chen, R.Y.; Yu, D.Q. Bioactive iridoid glycosides from the whole plants of Rehmannia chingii. J. Nat. Prod., 2016, 79(2), 428-433.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01126] [PMID: 26859776]
[83]
Oshio, H.; Inouye, H. Iridoid glycosides of Rehmannia glutinosa. Phytochemistry, 1981, 21(1), 133-138.
[http://dx.doi.org/10.1016/0031-9422(82)80029-0]
[84]
Bianco, A.; Guiso, M.; Iavarone, C.; Poccia, L.; Trogolo, C. Iridoids. XXVII. Calycinoside (5-O-β-glucosylmacfadienoside), a new iridoid from Antirrhinum orontium L. var. calycinum (Lam.). Gazz. Chim. Ital., 1979, 109, 561-563.
[85]
Bianco, A.; Guiso, M.; Pellegrini, G.; Nicoletti, M.; Serafini, M. Muralioside, an iridoid from Cymbalaria muralis. Phytochemistry, 1997, 44(8), 1515-1517.
[http://dx.doi.org/10.1016/S0031-9422(96)00717-0]
[86]
Taskova, R.M.; Gotfredsen, C.H.; Jensen, S.R. Chemotaxonomic markers in Digitalideae (Plantaginaceae). Phytochemistry, 2005, 66(12), 1440-1447.
[http://dx.doi.org/10.1016/j.phytochem.2005.04.020] [PMID: 15907957]
[87]
Jensen, S.R.; Gotfredsen, C.H.; Pierce, S. Iridoid glucosides of Paederota bonarota and the relationships between Paederota and Veronica. Biochem. Syst. Ecol., 2007, 35(8), 501-505.
[http://dx.doi.org/10.1016/j.bse.2007.01.004]
[88]
Albach, D.C.; Gotfredsen, C.H.; Jensen, S.R. Iridoid glucosides of Paederota lutea and the relationships between Paederota and Veronica. Phytochemistry, 2004, 65(14), 2129-2134.
[http://dx.doi.org/10.1016/j.phytochem.2004.05.022] [PMID: 15279984]
[89]
Arslanian, R.L.; Anderson, T.; Stermitz, F.R. Chemistry of the Scrophulariaceae. Part 16. Iridoid glucosides of Penstemon ambiguous. J. Nat. Prod., 1990, 53(6), 1485-1489.
[http://dx.doi.org/10.1021/np50072a013]
[90]
Dominguez, M.; Keck, A.S.; Jeffery, E.H.; Cespedes, C.L. Effects of extracts, flavonoids and iridoids from Penstemon gentianoides (Plantaginaceae) on inhibition of inducible nitric oxide synthase (iNOS),cyclooxygenase-2 (COX-2) in LPS-activated RAW 264.7 macrophage cells and their antioxidant activity. Bio. Latinoam. Caribe Plant. Med. Aromat., 2010, 9(5), 397-413.
[91]
Junior, P. Nemoroside and nemorososide, new iridoid glucosides from Penstemon nemorosus Planta Med., 1983, 47(2), 67-70.
[http://dx.doi.org/10.1055/s-2007-969953] [PMID: 17405095]
[92]
Zaghloul, M.G.; Zaghloul, A.M. A new phenylpropanoid glycoside from the aerial parts of Plantago crassifolia Forssk. Mansoura J. Pharm. Sci., 2000, 16(1), 56-68.
[93]
Ochi, M.; Matsunami, K.; Otsuka, H.; Takeda, Y. A new iridoid glycoside and NO production inhibitory activity of compounds isolated from Russelia equisetiformis. J. Nat. Med., 2012, 66(1), 227-232.
[http://dx.doi.org/10.1007/s11418-011-0569-z] [PMID: 21822607]
[94]
Taskova, R.; Handjieva, N.; Peev, D.; Popov, S. Iridoid glucosides from three Veronica species. Phytochemistry, 1998, 49(5), 1323-1327.
[http://dx.doi.org/10.1016/S0031-9422(98)00090-9]
[95]
Moreno-Escobar, J.A.; Alvarez, L.; Rodriguez-Lopez, V.; Bahena, S.M. Cytotoxic glucosydic iridoids from Veronica americana. Phytochem. Lett., 2013, 6(4), 610-613.
[http://dx.doi.org/10.1016/j.phytol.2013.07.017]
[96]
Lahloub, M.F.; Zaghloul, M.G.; Afifi, M.S.; Sticher, O. Iridoid glucosides from Veronica anagallis-aquatica. Phytochemistry, 1993, 33(2), 401-405.
[http://dx.doi.org/10.1016/0031-9422(93)85528-Y]
[97]
Harput, U.S.; Varel, M.; Nagatsu, A.; Saracoglu, I. Acylated iridoid glucosides from Veronica anagallis-aquatica. Phytochemistry, 2004, 65(14), 2135-2139.
[http://dx.doi.org/10.1016/j.phytochem.2004.05.012] [PMID: 15279985]
[98]
Johansen, M.; Larsen, T.S.; Mattebjerg, M.A.; Gotfredsen, C.H.; Jensen, S.R. Chemical markers in Veronica sect. Hebe. Biochem. Syst. Ecolo., 2007, 35, 614-620.
[http://dx.doi.org/10.1016/j.bse.2007.04.010]
[99]
Jensen, S.R.; Gotfredsen, C.H.; Grayer, R.J. Unusual iridoid glycosides in Veronica sects. Hebe and Labiatoides. Biochem. Syst. Ecolo., 2008, 36, 207-215.
[http://dx.doi.org/10.1016/j.bse.2007.09.011]
[100]
Gao, K.; Li, X.Q.; Liu, A.; Jia, Z.J. Chemical constituents of Veronica ciliate, as a psychrophyte from Northwest China. Xibei Zhiwu Xuebao, 2003, 23(4), 633-636.
[101]
Saracoglu, I.; Oztunca, F.H.; Nagatsu, A.; Harput, U.S. Iridoid content and biological activities of Veronica cuneifolia subsp. cuneifolia and V. cymbalaria. Pharm. Biol., 2011, 49(11), 1150-1157.
[http://dx.doi.org/10.3109/13880209.2011.575790] [PMID: 21595571]
[102]
Pedersen, P.; Gotfredsen, C.H.; Wagstaff, S.J.; Jensen, S.R. Chemical markers in Veronica sect. Hebe. II. Biochem. Syst. Ecol., 2007, 35, 777-784.
[http://dx.doi.org/10.1016/j.bse.2007.06.011]
[103]
Taskova, R.; Handjieva, N.; Evstatieva, L.; Popov, S. Iridoid glucosides from Plantago cornuti, Plantago major and Veronica cymbalaria. Phytochemistry, 1999, 52(8), 1443-1445.
[http://dx.doi.org/10.1016/S0031-9422(99)00182-X]
[104]
Wang, C.Z.; Jia, Z.J.; Liao, J.C. Flavonoid and iridoid glycosides from Veronica didyma Tenore. Indian J. Chem. Sect. B, 1995, 34B(10), 914-916.
[105]
Lahloub, M.F. Iridoid glucosides from Veronica filiformis Sm. Mansoura J. Pharm. Sci., 1992, 8(1), 56-67.
[106]
Ozipek, M.; Saracoglu, I.; Maruyama, M.; Takeda, T.; Calis, I. Iridoid glucosides from Veronica fuhsii. Hacettepe Universitesi Eczacilik Fakultesi Dergisi, 1998, 18(1), 9-14.
[107]
Harput, U.S.; Saracoglu, I.; Nagatsu, A.; Ogihara, Y. Iridoid glucosides from Veronica hederifolia. Chem. Pharm. Bull. (Tokyo), 2002, 50(8), 1106-1108.
[http://dx.doi.org/10.1248/cpb.50.1106] [PMID: 12192146]
[108]
Tomassini, L.; Brkic, D.; Serafini, M.; Nicoletti, M. Constituents of Veronica hederifolia and Veronica polita. Fitoterapia, 1995, 66(4), 382.
[109]
Taskova, R.M.; Kokubun, T.; Garnock-Jones, P.J.; Jensen, S.R. Iridoid and phenylethanoid glycosides in the New Zealand sun hebes (Veronica; Plantaginaceae). Phytochemistry, 2012, 77, 209-217.
[http://dx.doi.org/10.1016/j.phytochem.2012.02.001] [PMID: 22386576]
[110]
Taskova, R.M.; Kokubun, T.; Ryan, K.G.; Garnock-Jones, P.J.; Jensen, S.R. Iridoid and phenylethanoid glucosides from Veronica lavaudiana. J. Nat. Prod., 2011, 74(6), 1477-1483.
[http://dx.doi.org/10.1021/np200233p] [PMID: 21568305]
[111]
Oh, S.R.; Lee, M.Y.; Ahn, K.; Park, B.Y.; Kwon, O.K.; Joung, H.; Lee, J.; Kim, D.Y.; Lee, S.; Kim, J.H.; Lee, H.K. Suppressive effect of verproside isolated from Pseudolysimachion longifolium on airway inflammation in a mouse model of allergic asthma. Int. Immunopharmacol., 2006, 6(6), 978-986.
[http://dx.doi.org/10.1016/j.intimp.2006.01.010] [PMID: 16644484]
[112]
Jensen, S.R.; Gotfredsen, C.H.; Harput, U.S.; Saracoglu, I. Chlorinated iridoid glucosides from Veronica longifolia and their antioxidant activity. J. Nat. Prod., 2010, 73(9), 1593-1596.
[http://dx.doi.org/10.1021/np100366k] [PMID: 20806928]
[113]
Ozipek, M.; Saracoglu, I.; Calis, I.; Kojima, K.; Ogihara, Y. Catalpol derivative iridoids from the roots of Veronica multifidi. Hacettepe Universitesi Eczacilik Fakultesi Dergisi, 2000, 20(1), 1-6.
[114]
Afifi-Yazar, F.U.; Sticher, O. Verproside, a new iridoid glucoside from Veronica officinalis L. (Scrophulariaceae). Helv. Chim. Acta, 1980, 63(7), 1905-1907.
[http://dx.doi.org/10.1002/hlca.19800630716]
[115]
Harput, U.S.; Nagatsu, A.; Ogihara, Y.; Saracoglu, I. Iridoid glucosides from Veronica pectinata var. glandulosa. Z. Natforsch. C J. Biosci., 2003, 58(7-8), 481-484.
[http://dx.doi.org/10.1515/znc-2003-7-806] [PMID: 12939031]
[116]
Kwak, J.H.; Kim, H.J.; Lee, K.H.; Kang, S.C.; Zee, O.P. Antioxidative iridoid glycosides and phenolic compounds from Veronica peregrina. Arch. Pharm. Res., 2009, 32(2), 207-213.
[http://dx.doi.org/10.1007/s12272-009-1137-x] [PMID: 19280150]
[117]
Harput, U.S.; Saracoglu, I.; Inoue, M.; Ogihara, Y. Phenylethanoid and iridoid glycosides from Veronica persica. Chem. Pharm. Bull. (Tokyo), 2002, 50(6), 869-871.
[http://dx.doi.org/10.1248/cpb.50.869] [PMID: 12045353]
[118]
Kroll-Møller, P.; Pedersen, K.D.; Gousiadou, C.; Kokubun, T.; Albach, D.; Taskova, R.; Garnock-Jones, P.J.; Gotfredsen, C.H.; Jensen, S.R. Iridoid glucosides in the genus Veronica (Plantaginaceae) from New Zealand. Phytochemistry, 2017, 140, 174-180.
[http://dx.doi.org/10.1016/j.phytochem.2017.04.025] [PMID: 28550715]
[119]
Stermitz, F.R.; Gardner, D.R.; Odendaal, F.J.; Ehrlich, P.R. Chemistry of the Scrophulariaceae. 5. Euphydryas anicia (Lepidoptera: Nymphalidae) utilization of iridoid glycosides from Castilleja and Besseya (Scrophulariaceae) host plants. J. Chem. Ecol., 1986, 12(6), 1459-1468.
[http://dx.doi.org/10.1007/BF01012364] [PMID: 24307124]
[120]
Taskova, R.M.; Kokubun, T.; Ryan, K.G.; Garnock-Jones, P.J.; Jensen, S.R. Phenylethanoid and iridoid glycosides in the New Zealand snow hebes (Veronica, Plantaginaceae). Chem. Pharm. Bull. (Tokyo), 2010, 58(5), 703-711.
[http://dx.doi.org/10.1248/cpb.58.703] [PMID: 20460800]
[121]
Teng, J.; Zhang, F.G.; Zhang, Y.W.; Takaishi, Y.; Duan, H.Q. A new iridoid glycoside from Veronica sibirica. Chin. Chem. Lett., 2008, 19(4), 450-452.
[http://dx.doi.org/10.1016/j.cclet.2008.01.035]
[122]
Kostadinova, E.P.; Alipieva, K.I.; Kokubun, T.; Taskova, R.M.; Handjieva, N.V. Phenylethanoids, iridoids and a spirostanol saponin from Veronica turrilliana. Phytochemistry, 2007, 68(9), 1321-1326.
[http://dx.doi.org/10.1016/j.phytochem.2007.02.014] [PMID: 17399747]
[123]
Aoshima, H.; Miyase, T.; Ueno, A. Phenylethanoid glycoside from Veronica undulata. Phytochemistry, 1994, 36(6), 1557-1558.
[http://dx.doi.org/10.1016/S0031-9422(00)89764-2] [PMID: 7765439]
[124]
Lee, S.Y.; Yu, S.J.; Chi, H.J. Chemical components of the root of Veronicastrum sibiricum Pennell. Saengyak Hakhoechi, 1987, 18(3), 168-176.
[125]
Lin, W.H.; Wang, T.X.; Cai, M.S.; Shang, E.N. Structures of new cinnamoyl glucoside from the roots of Veronicastrum sibiricum. Yao Xue Xue Bao, 1995, 30(10), 752-756.
[126]
Kim, M.I.; Kim, C.Y. Four New acylated iridoid glycosides from the aerial part of Veronicastrum sibiricum and their antioxidant response element-inducing activity. Chem. Biodivers., 2018, 15(1)e1700447
[http://dx.doi.org/10.1002/cbdv.201700447] [PMID: 29164786]
[127]
Jensen, S.R.; Gotfredsen, C.H.; Zidorn, C. Iridoids and phenylethanoids in Lagotis integrifolia and Wulfeniopsis amherstiana (Plantaginaceae). Biochem. Syst. Ecol., 2009, 37(4), 421-425.
[http://dx.doi.org/10.1016/j.bse.2009.04.013]
[128]
Arnold, U.W.; Zidorn, C.; Ellmerer, E.P.; Stuppner, H. Iridoid and phenolic glycosides from Wulfenia carinthiaca. Z. Natforsch. C J. Biosci., 2002, 57(11-12), 969-975.
[http://dx.doi.org/10.1515/znc-2002-11-1202] [PMID: 12562078]
[129]
Mutschlechner, B.; Rainer, B.; Schwaiger, S.; Stuppner, H. Tyrosinase inhibitors from the aerial parts of Wulfenia carinthiaca Jacq. Chem. Biodivers., 2018, 15(4)e1800014
[http://dx.doi.org/10.1002/cbdv.201800014] [PMID: 29521030]
[130]
Li, C.; Zhang, C. Z.; Yao, H. Iridoids from fountain butterflybush (Buddleja alternifolia). Zhongcaoyao, 1994, 25(5), 227-228. 271
[131]
El-Domiaty, M.M.; Wink, M.; Abdel Aal, M.M.; Abou-Hashem, M.M.; Abd-Alla, R.H. Antihepatotoxic activity and chemical constituents of Buddleja asiatica Lour. Z. Natforsch. C J. Biosci., 2009, 64(1-2), 11-19.
[http://dx.doi.org/10.1515/znc-2009-1-203] [PMID: 19323260]
[132]
Houghton, P.J.; Hikino, H. Anti-hepatotoxic activity of extracts and constituents of Buddleja species. Planta Med., 1989, 55(2), 123-126.
[http://dx.doi.org/10.1055/s-2006-961903] [PMID: 2748726]
[133]
Miyase, T.; Akahori, C.; Kohsaka, H.; Ueno, A. Acylated iridoid glycosides from Buddleja japonica Hemsl. Chem. Pharm. Bull. (Tokyo), 1991, 39(11), 2944-2951.
[http://dx.doi.org/10.1248/cpb.39.2944]
[134]
Emam, A.M.; Moussa, A.M.; Faure, R.; Debrauwer, L.; Elias, R.; Balansard, G. Iridoids from Buddleja madagascariensis Lam. Pharm. Pharmacol. Lett., 1995, 5(3), 103-104.
[135]
El-Awady, M.S.; Said, E.; Baraka, H.N. Acylated catalpol diglycoside ameliorates lipopolysaccharides-induced acute lung injury through inhibition of iNOS and TNF-α expression. J. Biochem. Mol. Toxicol., 2018, 32(11)e22214
[http://dx.doi.org/10.1002/jbt.22214] [PMID: 30194743]
[136]
Tai, B.H.; Nhiem, N.X.; Quang, T.H.; Ngan, N.T.; Tung, N.H.; Kim, Y.; Lee, J.J.; Myung, C.S.; Cuong, N.M.; Kim, Y.H. A new iridoid and effect on the rat aortic vascular smooth muscle cell proliferation of isolated compounds from Buddleja officinalis. Bioorg. Med. Chem. Lett., 2011, 21(11), 3462-3466.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.078] [PMID: 21524582]
[137]
Perez Gutierrez, R.M.; Rangel, R.F. Baez, E.G. Identification of iridoid and sesquiterpenes from Buddleia parviflora by NMR spectra. Chem. Nat. Compd., 2008, 44(1), 35-38.
[http://dx.doi.org/10.1007/s10600-008-0010-3]
[138]
El-Gamal, A.; Al-Massarani, S.; Fawzy, G.; Ati, H.; Al-Rehaily, A.; Basudan, O.; Abdel-Kader, M.; Tabanca, N.; Becnel, J. Chemical composition of Buddleja polystachya aerial parts and its bioactivity against Aedes aegypti. Nat. Prod. Res., 2017, 25, 1-8.
[PMID: 28942684]
[139]
Gutierrez, R.M.P.; Solis, R.V. Baez, E.G.; Martinez, F.M. Effect on capillary permeability in rabbits of iridoids from Buddleia scordioides. Phytother. Res., 2006, 20(7), 542-545.
[http://dx.doi.org/10.1002/ptr.1893] [PMID: 16619344]
[140]
Pennacchio, M.; Syah, Y.M.; Ghisalberti, E.L.; Alexander, E. Cardioactive iridoid glycosides from Eremophila species. Phytomedicine, 1997, 4(4), 325-330.
[http://dx.doi.org/10.1016/S0944-7113(97)80041-4] [PMID: 23195582]
[141]
Yang, L.J.; Zhang, N.; Liu, N.; Yang, X.D. Iridoid glycosides from Lagotis alutacea. Z. Naturforsch. B: Chem. Sci., 2014, 69(7), 835-838.
[http://dx.doi.org/10.5560/znb.2014-4093]
[142]
Yang, X.D.; Zhao, J.F.; Yang, L.J.; Mei, S.X.; Li, L. Study on identification of iridoid glucosides from Lagotis yunnanensis. Zhongguo Yaoxue Zazhi, 2004, 39(2), 101-103.
[143]
Yang, X.D.; Yang, L.J.; Guo, J.; Li, C.H.; Zhao, J.F.; Li, L. Study on identification of iridoid glucosides from Lagotis yunnanensis. Zhongguo Yaoxue Zazhi, 2005, 40(1), 16-18.
[144]
Yang, X.D.; Yang, L.J.; Yang, S.; Zhao, J.F.; Li, L. Identification of iridoid glucosides from Lagotis yunnanensis III. Zhongguo Yaoxue Zazhi, 2007, 42(9), 658-660.
[145]
Yang, X.D.; Yang, L.J.; Yang, S.; Zhao, J.F.; Zhang, H.B.; Li, L. Two new iridoid glycosides from Lagotis yunnanensis. Z. Naturforsch. B: Chem. Sci., 2007, 62(5), 749-752.
[http://dx.doi.org/10.1515/znb-2007-0522]
[146]
Stuppner, H.; Wagner, H. Minor iridoid and phenol glycosides of Picrorhiza kurrooa. Planta Med., 1989, 55(5), 467-469.
[http://dx.doi.org/10.1055/s-2006-962066] [PMID: 17262460]
[147]
Mandal, S.; Mukhopadhyay, S. New iridoid glucoside from Picrorhiza kurroa Royle ex Benth. Indian J. Chem. Sect. B, 2004, 43B(5), 1023-1025.
[http://dx.doi.org/10.1002/chin.200436178]
[148]
Dharmender, R.; Madhavi, T.; Reena, A.; Anandjiwala, S. Isolation, characterization, and simultaneous quantification of picroside I and kutkoside using HPTLC from Picrorhiza kurrooa Benth. J. Liq. Chromatogr. Relat. Technol., 2011, 34(5), 360-374.
[http://dx.doi.org/10.1080/10826076.2011.551607]
[149]
Huang, S.X.; Zhou, Y.; Nie, Q.J.; Ding, L.S.; Peng, S.L. Two new iridoid glucosides from Picrorhiza scrophulariiflora. J. Asian Nat. Prod. Res., 2006, 8(3), 259-263.
[http://dx.doi.org/10.1080/10286020500034543] [PMID: 16864432]
[150]
Giner, R.M.; Villalba, M.L.; Recio, M.C.; Máñez, S.; Gray, A.I.; Ríos, J.L. A new iridoid from Scrophularia auriculata ssp. pseudoauriculata. J. Nat. Prod., 1998, 61(9), 1162-1163.
[http://dx.doi.org/10.1021/np980067o] [PMID: 9748391]
[151]
Giner, R.M.; Sanz, M.J.; Ferrandiz, M.L.; Recio, M.C.; Terencio, M.C.; Rios, J.L. Topical anti-inflamatory activity of some iridoids and phenylpropanoids. Planta Med., 1991, 57(Suppl.), A53.
[http://dx.doi.org/10.1055/s-2006-960312]
[152]
Caliş, I.; Sezgin, Y.; Dönmez, A.A.; Rüedi, P.; Tasdemir, D. Crypthophilic acids A, B, and C: resin glycosides from aerial parts of Scrophularia crypthophila. J. Nat. Prod., 2007, 70(1), 43-47.
[http://dx.doi.org/10.1021/np060511k] [PMID: 17253848]
[153]
Stavri, M.; Mathew, K.T.; Gibbons, S. Antimicrobial constituents of Scrophularia deserti. Phytochemistry, 2006, 67(14), 1530-1533.
[http://dx.doi.org/10.1016/j.phytochem.2006.05.011] [PMID: 16797620]
[154]
Ahmed, B.; Al-Rehaily, A.J.; Al-Howiriny, T.A.; El-Sayed, K.A.; Ahmad, M.S. Scropolioside-D2 and harpagoside-B: two new iridoid glycosides from Scrophularia deserti and their antidiabetic and antiinflammatory activity. Biol. Pharm. Bull., 2003, 26(4), 462-467.
[http://dx.doi.org/10.1248/bpb.26.462] [PMID: 12673026]
[155]
Garg, H.S.; Bhandari, S.P.S.; Tripathi, S.C.; Patnaik, G.K.; Puri, A.; Saxena, R.; Saxena, R.P. Antihepatotoxic and immunostimulant properties of iridoid glycosides of Scrophularia koelzii. Phytother. Res., 1994, 8(4), 224-228.
[http://dx.doi.org/10.1002/ptr.2650080407]
[156]
Pachaly, P.; Barion, J.; Sin, K.S. Isolation and analysis of new iridoids from roots of Scrophularia korainensis. Pharmazie, 1994, 49(2-3), 150-155.
[157]
Swiatek, L.; Lehmann, D.; Sticher, O. Iridoid glycosides of Scrophularia lateriflora Trautv. (Scrophulariaceae). Pharm. Acta Helv., 1981, 56(2), 37-44.
[158]
Tasdemir, D.; Güner, N.D.; Perozzo, R.; Brun, R.; Dönmez, A.A.; Calis, I.; Rüedi, P. Anti-protozoal and plasmodial FabI enzyme inhibiting metabolites of Scrophularia lepidota roots. Phytochemistry, 2005, 66(3), 355-362.
[http://dx.doi.org/10.1016/j.phytochem.2004.11.013] [PMID: 15680992]
[159]
Qian, J.F.; Hunkler, D.; Rimpler, H. Iridoid-related aglycone and its glycosides from Scrophularia ningpoensis. Phytochemistry, 1992, 31(3), 905-911.
[http://dx.doi.org/10.1016/0031-9422(92)80037-F]
[160]
Nguyen, A.T.; Fontaine, J.; Malonne, H.; Claeys, M.; Luhmer, M.; Duez, P. A sugar ester and an iridoid glycoside from Scrophularia ningpoensis. Phytochemistry, 2005, 66(10), 1186-1191.
[http://dx.doi.org/10.1016/j.phytochem.2005.03.023] [PMID: 15924924]
[161]
Li, Y.; Song, B.A.; Yang, S.; Hu, D.Y.; Jin, L.H. Chemical constituents of Scrophularia ningpoensis Hemsl. Tianran Chanwu Yanjiu Yu Kaifa, 2012, 24(1), 47-51.
[162]
Miyase, T.; Mimatsu, A. Acylated iridoid and phenylethanoid glycosides from the aerial parts of Scrophularia nodosa. J. Nat. Prod., 1999, 62(8), 1079-1084.
[http://dx.doi.org/10.1021/np9805746] [PMID: 10479307]
[163]
Chebaki, R.; Haba, H.; Long, C.; Marcourt, L.; Benkhaled, M. Acylated iridoid glycosides from Scrophularia saharae Batt. &. Trab. Biochem. Syst. Ecolo., 2011, 39(4-6), 902-905.
[http://dx.doi.org/10.1016/j.bse.2011.07.017]
[164]
Calis, I.; Gross, G.A.; Winkler, T.; Sticher, O. Isolation and structure elucidation of two highly acylated iridoid diglycosides from Scrophularia scopolii. Planta Med., 1988, 54(2), 168-170.
[http://dx.doi.org/10.1055/s-2006-962382] [PMID: 17265233]
[165]
De Sandos, J.; Fernandez, L.; Diaz Lanza, A.M.; Rubio, B.; Oliver, E.; Faure, R.; Balansard, G. Catalpol glycosides from Scrophularia scorodonia. Pharmazie, 1998, 53(6), 427-428.
[166]
Bermejo, P.; Abad, M.J.; Díaz, A.M.; Fernández, L.; De Santos, J.; Sanchez, S.; Villaescusa, L.; Carrasco, L.; Irurzun, A. Antiviral activity of seven iridoids, three saikosaponins and one phenylpropanoid glycoside extracted from Bupleurum rigidum and Scrophularia scorodonia. Planta Med., 2002, 68(2), 106-110.
[http://dx.doi.org/10.1055/s-2002-20238] [PMID: 11859457]
[167]
Abbas, F.A.A. Phenylpropanoid and phenylethanoid glycosides from Scrophularia xanthoglossa and their antioxidative and antiinflammatory activities. Biosci. Biotechnol. Res. Asia, 2010, 7(1), 57-64.
[168]
Arrif, S.; Benkhaled, M.; Long, C.; Lavaud, C.; David, B. Glycosylated iridoids and a triterpene saponin from Verbascum ballii (Batt.). M. Qaiser. Biochem. Syst. Ecolo., 2006, 34(3), 259-262.
[http://dx.doi.org/10.1016/j.bse.2005.10.004]
[169]
Tatli, I.I.; Akdemir, Z.S.; Bedir, E.; Khan, I.A. 6-O-α-L-rhamnopyranosylcatalpol derivative iridoids from Verbascum cilicicum. Turk. J. Chem., 2003, 27(6), 765-772.
[170]
Arrif, S.; Lavaud, C.; Benkhaled, M. Iridoids from Verbascum dentifolium. Biochem. Syst. Ecol., 2008, 36(8), 669-673.
[http://dx.doi.org/10.1016/j.bse.2008.05.004]
[171]
Tatli, I.I.; Schuhly, W.; Kunert, O.; Bedir, E.; Akdemir, Z.S. Secondary metabolites from the aerial parts of Verbascum dudleyanum and their biological activities. Chem. Nat. Compd., 2008, 44(3), 292-295.
[http://dx.doi.org/10.1007/s10600-008-9045-8]
[172]
Agababyan, Y.E.; Arutyunyan, L.S.; Mnatsakanyan, V.A.; Gacs-Baitz, E.; Radics, L. Verbascum georgicum iridoids. Him. Prir. Soedin., 1982, 4, 446-451.
[173]
Akdemir, Z.S.; Tatli, I.I.; Bedir, E.; Khan, I.A. Acylated iridoid glycosides from Verbascum lasianthum. Turk. J. Chem., 2004, 28(1), 101-109.
[174]
Emam, S.S. Glycosides of Verbascum letourneuxii, Asch. and its antioxidant activity. Aust. J. Basic Appl. Sci., 2010, 4(10), 5038-5050.
[175]
Serdyuk, L.I.; Dzhumyrko, S.F.; Kompantsev, V.A. Iridoids and flavonoids of Verbascum lychnitis. Him. Prir. Soedin., 1976, 4, 545-546.
[176]
Klimek, B. 6-O-p-Coumaroylcatalpol from Verbascum lychnitis. Planta Med., 1991, 57(3), 298.
[http://dx.doi.org/10.1055/s-2006-960101] [PMID: 17226169]
[177]
Klimek, B. Hydroxycinnamoyl ester glycosides and saponins from flowers of Verbascum phlomoides. Phytochemistry, 1996, 43(6), 1281-1284.
[http://dx.doi.org/10.1016/S0031-9422(96)00446-3] [PMID: 8987909]
[178]
Akkol, E.K.; Tatli, I.I.; Akdemir, Z.S. Antinociceptive and anti-inflammatory effects of saponin and iridoid glycosides from Verbascum pterocalycinum var. mutense Hub.-Mor. Z. Natforsch. C J. Biosci., 2007, 62(11-12), 813-820.
[http://dx.doi.org/10.1515/znc-2007-11-1207] [PMID: 18274283]
[179]
Seifert, K.; Lien, N.T.; Schmidt, J.; Johne, S.; Popov, S.S.; Porzel, A. Iridoids from Verbascum pulverulentum. Planta Med., 1989, 55(5), 470-473.
[http://dx.doi.org/10.1055/s-2006-962067] [PMID: 17262461]
[180]
Mnatsakanyan, V.A.; Arutyunyan, L.S.; Eribekyan, M.I. Iridoid glycosides of Verbascum saccatum. Him. Prir. Soedin., 1983, 1, 38-41.
[181]
Akdemir, Z.S.; Tatli, I.I.; Bedir, E.; Khan, I.A. Two new iridoid glucosides from Verbascum salviifolium Boiss. Z. Naturforsch. B: Chem. Sci., 2005, 60(1), 113-117.
[http://dx.doi.org/10.1515/znb-2005-0117]
[182]
Eribekyan, M.I.; Arutyunyan, L.S.; Mnatsakanyan, V.A. Iridoid glycosides of Verbascum sinuatum. Him. Prir. Soedin., 1987, 1, 146-147.
[183]
Kalpoutzakis, E.; Aligiannis, N.; Mitakou, S.; Skaltsounis, A.L. Verbaspinoside, a new iridoid glycoside from Verbascum spinosum. J. Nat. Prod., 1999, 62(2), 342-344.
[http://dx.doi.org/10.1021/np980351f] [PMID: 10075782]
[184]
Warashina, T.; Miyase, T.; Ueno, A. Iridoid glycosides from Verbascum thapsus L. Chem. Pharm. Bull. (Tokyo), 1991, 39(12), 3261-3264.
[http://dx.doi.org/10.1248/cpb.39.3261]
[185]
Pardo, F.; Perich, F.; Torres, R.; Delle Monache, F. Plant iridoid glycosides and phytogrowth-inhibitory activity of Verbascum virgatum. Biochem. Syst. Ecol., 2004, 32(3), 367-370.
[http://dx.doi.org/10.1016/j.bse.2003.09.001]
[186]
Kosuge, K.; Mitsunaga, K.; Koike, K.; Ohmoto, T. Studies on the constituents of Ailanthus integrifolia. Chem. Pharm. Bull. (Tokyo), 1994, 42(8), 1669-1671.
[http://dx.doi.org/10.1248/cpb.42.1669] [PMID: 7954920]
[187]
Singh, G.; Rawat, P.; Maurya, R. Constituents of Cissus quadrangularis. Nat. Prod. Res., 2007, 21(6), 522-528.
[http://dx.doi.org/10.1080/14786410601130471] [PMID: 17497424]
[188]
Radu, B.M.; Epureanu, F.B.; Radu, M.; Fabene, P.F.; Bertini, G. Nonsteroidal anti-inflammatory drugs in clinical and experimental epilepsy. Epilepsy Res., 2017, 131, 15-27.
[http://dx.doi.org/10.1016/j.eplepsyres.2017.02.003] [PMID: 28212985]
[189]
Scotti, L.; Ishiki, H.M.; Ribeiro, F.F.; Santos, R.; de Oliveira, R.B.; Oliveira, T.B.; Alves, M.F.; Barbosa, F.; Jose, M.; Scotti, M.T. Computational studies applied to anti-inflammatory drug discovery: A review. Curr. Org. Chem., 2018, 22(17), 1673-1689.
[http://dx.doi.org/10.2174/1385272822666180906122934]
[190]
Liu, L.Z.; Huq, S.; Xu, W.M. Targeting cyclooxygenase and nitric oxide pathway cross-talk: a new signal transduction pathway for developing more effective anti-inflammatory drugs. Curr. Signal Transduct. Ther., 2009, 4(1), 66-75.
[http://dx.doi.org/10.2174/157436209787048702]
[191]
Osawa, R.; Williams, K.L.; Singh, N. The inflammasome regulatory pathway and infections: role in pathophysiology and clinical implications. J. Infect., 2011, 62(2), 119-129.
[http://dx.doi.org/10.1016/j.jinf.2010.10.002] [PMID: 20950647]
[192]
Scherle, P.A.; Trzaskos, J.M. Kinase targets in inflammation. Expert Opin. Ther. Targets, 1999, 3(1), 1-25.
[193]
Oh, H.; Pae, H.O.; Oh, G.S.; Lee, S.Y.; Chai, K.Y.; Song, C.E.; Kwon, T.O.; Chung, H.T.; Lee, H.S. Inhibition of inducible nitric oxide synthesis by catalposide from Catalpa ovata. Planta Med., 2002, 68(8), 685-689.
[http://dx.doi.org/10.1055/s-2002-33810] [PMID: 12221588]
[194]
An, S.J.; Pae, H.O.; Oh, G.S.; Choi, B.M.; Jeong, S.; Jang, S.I.; Oh, H.; Kwon, T.O.; Song, C.E.; Chung, H.T. Inhibition of TNF-α, IL-1β, and IL-6 productions and NF-κ B activation in lipopolysaccharide-activated RAW 264.7 macrophages by catalposide, an iridoid glycoside isolated from Catalpa ovata G. Don (Bignoniaceae). Int. Immunopharmacol., 2002, 2(8), 1173-1181.
[http://dx.doi.org/10.1016/S1567-5769(02)00085-1] [PMID: 12349954]
[195]
Kim, S.W.; Choi, S.C.; Choi, E.Y.; Kim, K.S.; Oh, J.M.; Lee, H.J.; Oh, H.M.; Kim, S.; Oh, B.S.; Kimm, K.C.; Lee, M.H.; Seo, G.S.; Kim, T.H.; Oh, H.C.; Woo, W.H.; Kim, Y.S.; Pae, H.O.; Park, D.S.; Chung, H.T.; Jun, C.D. Catalposide, a compound isolated from catalpa ovata, attenuates induction of intestinal epithelial proinflammatory gene expression and reduces the severity of trinitrobenzene sulfonic Acid-induced colitis in mice. Inflamm. Bowel Dis., 2004, 10(5), 564-572.
[http://dx.doi.org/10.1097/00054725-200409000-00010] [PMID: 15472516]
[196]
Le, M.Q.; Kim, M.S.; Song, Y.S.; Ryu, H.W.; Oh, S.R.; Yoon, D.Y. 6-O-Veratroyl catalpol suppresses pro-inflammatory cytokines via regulation of extracellular signal-regulated kinase and nuclear factor-κB in human monocytic cells. Biochimie, 2015, 119, 52-59.
[http://dx.doi.org/10.1016/j.biochi.2015.10.006] [PMID: 26455269]
[197]
Boniface, P.K.; Verma, S.; Shukla, A.; Khan, F.; Srivastava, S.K.; Pal, A. Membrane stabilisation: a possible anti-inflammatory mechanism for the extracts and compounds from Spathodea campanulata. Nat. Prod. Res., 2014, 28(23), 2203-2207.
[http://dx.doi.org/10.1080/14786419.2014.930858] [PMID: 25145995]
[198]
Lee, S.U.; Sung, M.H.; Ryu, H.W.; Lee, J.; Kim, H.S. In, H.J.; Ahn, K.S.; Lee, H.J.; Lee, H.K.; Shin, D.H.; Lee, Y.; Hong, S.T.; Oh, S.R. Verproside inhibits TNF-α-induced MUC5AC expression through suppression of the TNF-α/NF-κB pathway in human airway epithelial cells. Cytokine, 2016, 77(77), 168-175.
[http://dx.doi.org/10.1016/j.cyto.2015.08.262] [PMID: 26318254]
[199]
Bas, E.; Recio, M.C.; Abdallah, M.; Máñez, S.; Giner, R.M.; Cerdá-Nicolás, M.; Ríos, J.L. Inhibition of the pro-inflammatory mediators’ production and anti-inflammatory effect of the iridoid scrovalentinoside. J. Ethnopharmacol., 2007, 110(3), 419-427.
[http://dx.doi.org/10.1016/j.jep.2006.09.038] [PMID: 17112695]
[200]
Stevenson, P.C.; Simmonds, M.S.J.; Sampson, J.; Houghton, P.J.; Grice, P. Wound healing activity of acylated iridoid glycosides from Scrophularia nodosa. Phytother. Res., 2002, 16(1), 33-35.
[http://dx.doi.org/10.1002/ptr.798] [PMID: 11807962]
[201]
Bas, E.; Recio, M.C.; Máñez, S.; Giner, R.M.; Escandell, J.M.; López-Ginés, C.; Ríos, J.L. New insight into the inhibition of the inflammatory response to experimental delayed-type hypersensitivity reactions in mice by scropolioside A. Eur. J. Pharmacol., 2007, 555(2-3), 199-210.
[http://dx.doi.org/10.1016/j.ejphar.2006.10.012] [PMID: 17113578]
[202]
Webb, D.R. Animal models of human disease: inflammation. Biochem. Pharmacol., 2014, 87(1), 121-130.
[http://dx.doi.org/10.1016/j.bcp.2013.06.014] [PMID: 23811309]
[203]
Jia, Q.; Hong, M.F.; Minter, D. Pikuroside: a novel iridoid from Picrorhiza kurroa. J. Nat. Prod., 1999, 62(6), 901-903.
[http://dx.doi.org/10.1021/np980493+] [PMID: 10395515]
[204]
Guo, Y.; Xu, X.; Li, Q.; Li, Z.; Du, F. Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats. Behav. Brain Funct., 2010, 6, 43.
[http://dx.doi.org/10.1186/1744-9081-6-43] [PMID: 20618938]
[205]
Zhao, L.; Li, X.D.; Wang, T.T.; Guo, Y.L.; Pang, F.F.; Chang, C.C. The anti-inflammatory effect of picroside II and the optimizing of therapeutic dose and time window in cerebral ischemic injury in rats. Mod. Res. Inflamm., 2013, 2(3), 46-53.
[http://dx.doi.org/10.4236/mri.2013.23006]
[206]
Wang, L.; Liu, X.H.; Chen, H.; Chen, Z.Y.; Weng, X.D.; Qiu, T.; Liu, L. Picroside II decreases the development of fibrosis induced by ischemia/reperfusion injury in rats. Ren. Fail., 2014, 36(9), 1443-1448.
[http://dx.doi.org/10.3109/0886022X.2014.949766] [PMID: 25246345]
[207]
Wang, L.; Liu, X.H.; Chen, H.; Chen, Z.Y.; Weng, X.D.; Qiu, T.; Liu, L. Picroside II protects rat kidney against ischemia/reperfusion-induced oxidative stress and inflammation by the TLR4/NF-κB pathway. Exp. Ther. Med., 2015, 9(4), 1253-1258.
[http://dx.doi.org/10.3892/etm.2015.2225] [PMID: 25780418]
[208]
Kuepeli, E.; Harput, U.S.; Varel, M.; Yesilada, E.; Saracoglu, I. Bioassay-guided isolation of iridoid glucosides with antinociceptive and anti-inflammatory activities from Veronica anagallis-aquatica L. J. Ethnopharm., 2005, 102(2), 170-176.
[http://dx.doi.org/10.1016/j.jep.2005.05.042]
[209]
Recio, M.C.; Giner, R.M.; Máñez, S.; Ríos, J.L. Structural considerations on the iridoids as anti-inflammatory agents. Planta Med., 1994, 60(3), 232-234.
[http://dx.doi.org/10.1055/s-2006-959465] [PMID: 8073089]
[210]
Giner, R.M.; Villalba, M.L.; Recio, M.C.; Máñez, S.; Cerdá-Nicolás, M.; Ríos, J. Anti-inflammatory glycoterpenoids from Scrophularia auriculata. Eur. J. Pharmacol., 2000, 389(2-3), 243-252.
[http://dx.doi.org/10.1016/S0014-2999(99)00846-8] [PMID: 10688990]
[211]
Moon, M.K.; Choi, B.M.; Oh, G.S.; Pae, H.O.; Kim, J.D.; Oh, H.; Oh, C.S.; Kim, D.H.; Rho, Y.D.; Shin, M.K.; Lee, H.S.; Chung, H.T. Catalposide protects Neuro 2A cells from hydrogen peroxide-induced cytotoxicity via the expression of heme oxygenase-1. Toxicol. Lett., 2003, 145(1), 46-54.
[http://dx.doi.org/10.1016/S0378-4274(03)00268-6] [PMID: 12962973]
[212]
Bhandari, P.; Kumar, N.; Singh, B.; Ahuja, P.S. Online HPLC-DPPH method for antioxidant activity of Picrorhiza kurroa Royle ex Benth. and characterization of kutkoside by ultra-performance LC-electrospray ionization quadrupole time-of-flight mass spectrometry. Indian J. Exp. Biol., 2010, 48(3), 323-328.
[PMID: 21046989]
[213]
Asthana, J.; Yadav, A.K.; Pant, A.; Pandey, S.; Gupta, M.M.; Pandey, R. Specioside ameliorates oxidative stress and promotes longevity in Caenorhabditis elegans. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2015, 169, 25-34.
[http://dx.doi.org/10.1016/j.cbpc.2015.01.002] [PMID: 25619942]
[214]
Wang, Q.Z.; Guan, F.Q.; Sun, H.; Chen, Y.; Zhao, Y.Y.; Feng, X.; Wang, M. Anti-tumor activity of catalposide. Zhongchengyao, 2012, 34(12), 2381-2384.
[215]
Rathee, D.; Thanki, M.; Bhuva, S.; Anandjiwala, S.; Agrawal, R. Iridoid glycosides-Kutkin, Picroside I, and Kutkoside from Picrorrhiza kurroa Benth inhibits the invasion and migration of MCF-7 breast cancer cells through the down regulation of matrix metalloproteinases. Arab. J. Chem., 2013, 6, 49-58.
[http://dx.doi.org/10.1016/j.arabjc.2011.01.011]
[216]
Kim, H.J.; Fei, X.; Cho, S.C.; Choi, B.Y.; Ahn, H.C.; Lee, K.; Seo, S.Y.; Keum, Y.S. Discovery of α-mangostin as a novel competitive inhibitor against mutant isocitrate dehydrogenase-1. Bioorg. Med. Chem. Lett., 2015, 25(23), 5625-5631.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.034] [PMID: 26508549]
[217]
Tatli, I.I.; Akdemir, Z.S. Antimicrobial and antimalarial activities of secondary metabolites from some turkish Verbascum species. FABAD J. Pharm. Sci., 2005, 30(2), 84-92.
[218]
Zhang, H.; Rothwangl, K.; Mesecar, A.D.; Sabahi, A.; Rong, L.; Fong, H.H.S. Lamiridosins, hepatitis C virus entry inhibitors from Lamium album. J. Nat. Prod., 2009, 72(12), 2158-2162.
[http://dx.doi.org/10.1021/np900549e] [PMID: 19904996]
[219]
Syrov, V.N.; Nabiev, A.N.; Khushbaktova, Z.A.; Zakhidov, U.V.; Maksudov, M.S.; Saatov, Z. Hepatoprotector activity of iridoid glycosides with respect to heliotrine-induced acute toxic liver damage in mice. Pharm. Chem. J., 1999, 33(8), 410-412.
[http://dx.doi.org/10.1007/BF02510088]
[220]
Rastogi, R.; Saksena, S.; Garg, N.K.; Kapoor, N.K.; Agarwal, D.P.; Dhawan, B.N. Picroliv protects against alcohol-induced chronic hepatotoxicity in rats. Planta Med., 1996, 62(3), 283-285.
[http://dx.doi.org/10.1055/s-2006-957882] [PMID: 8693047]
[221]
Li, P.; Matsunaga, K.; Ohizumi, Y. Nerve growth factor-potentiating compounds from Picrorhizae Rhizoma. Biol. Pharm. Bull., 2000, 23(7), 890-892.
[http://dx.doi.org/10.1248/bpb.23.890] [PMID: 10919373]
[222]
Li, P.; Matsunaga, K.; Yamakuni, T.; Ohizumi, Y. Potentiation of nerve growth factor-action by picrosides I and II, natural iridoids, in PC12D cells. Eur. J. Pharmacol., 2000, 406(2), 203-208.
[http://dx.doi.org/10.1016/S0014-2999(00)00662-2] [PMID: 11020482]
[223]
Li, X.; Xu, X.Y.; Li, Z.; Guo, Y.L.; Li, Q.; Li, X.D.; Zhou, Z. Picroside II down-regulates matrix metalloproteinase-9 expression following cerebral ischemia/reperfusion injury in rats. Neural Regen. Res., 2010, 5(18), 1403-1407.
[224]
Zhao, L.; Guo, Y.; Ji, X.; Zhang, M. The neuroprotective effect of picroside II via regulating the expression of myelin basic protein after cerebral ischemia injury in rats. BMC Neurosci., 2014, 15(1), 25.
[http://dx.doi.org/10.1186/1471-2202-15-25] [PMID: 24524292]
[225]
Li, Z.; Xu, X.Y.; Li, Q.; Zhang, M.Z.; Shen, W. Protective mechanisms of picroside II on aquaporin-4 expression in a rat model of cerebral ischemia/reperfusion injury. Neural Regen. Res., 2010, 5(6), 411-417.
[226]
Meng, F.J.; Jiao, S.M.; Yu, B. Picroside II protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis by activating the PI3K/Akt and CREB pathways. Int. J. Mol. Med., 2012, 30(2), 263-270.
[http://dx.doi.org/10.3892/ijmm.2012.987] [PMID: 22581361]
[227]
Lee, J.H.; Jun, H.J.; Hoang, M.H.; Jia, Y.; Han, X.H.; Lee, D.H.; Lee, H.J.; Hwang, B.Y.; Lee, S.J. Catalposide is a natural agonistic ligand of peroxisome proliferator-activated receptor-α. Biochem. Biophys. Res. Commun., 2012, 422(4), 568-572.
[http://dx.doi.org/10.1016/j.bbrc.2012.05.025] [PMID: 22583896]
[228]
Khan, M.F.; Dixit, P.; Jaiswal, N.; Tamrakar, A.K.; Srivastava, A.K.; Maurya, R. Chemical constituents of Kigelia pinnata twigs and their GLUT4 translocation modulatory effect in skeletal muscle cells. Fitoterapia, 2012, 83(1), 125-129.
[http://dx.doi.org/10.1016/j.fitote.2011.10.002] [PMID: 22037422]
[229]
Kimura, K.; Okuda, T.; Takano, T. Studies on the constituents of Catalpa ovata G. Don. I. Active principles of fruit. Yakugaku Zasshi, 1963, 83, 635-638.
[http://dx.doi.org/10.1248/yakushi1947.83.6_635] [PMID: 14032759]
[230]
Suzuki, Y. Diuretic action of the fruit of Catalpa ovata. Nippon Yakurigaku Zasshi, 1964, 60(6), 544-549.
[http://dx.doi.org/10.1254/fpj.60.544] [PMID: 14280378]
[231]
Suzuki, Y. Diuretic action of the fruit of Catalpa ovata G. DON Nippon Yakurigaku Zasshi, 1968, 64(2), 93-107.
[http://dx.doi.org/ 10.1254/fpj.64.93] [PMID: 5749299]
[232]
Choi, H.J.; Jang, H.J.; Chung, T.W.; Jeong, S.I.; Cha, J.; Choi, J.Y.; Han, C.W.; Jang, Y.S.; Joo, M.; Jeong, H.S.; Ha, K.T. Catalpol suppresses advanced glycation end-products-induced inflammatory responses through inhibition of reactive oxygen species in human monocytic THP-1 cells. Fitoterapia, 2013, 86, 19-28.
[http://dx.doi.org/10.1016/j.fitote.2013.01.014] [PMID: 23376161]
[233]
Bi, J.; Jiang, B.; Zorn, A.; Zhao, R.G.; Liu, P.; An, L.J. Catalpol inhibits LPS plus IFN-γ-induced inflammatory response in astrocytes primary cultures. Toxicol. In Vitro, 2013, 27(2), 543-550.
[http://dx.doi.org/10.1016/j.tiv.2012.09.023] [PMID: 23164921]
[234]
Chinese Pharmacopoeia Commission. In: The People’s Republic of China Pharmacopoeia, 2015 ed.; China Medical Science Press: Beijing, 2015.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy