Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Antimicrobial Agents and Urinary Tract Infections

Author(s): Lernik Issakhanian and Payam Behzadi*

Volume 25, Issue 12, 2019

Page: [1409 - 1423] Pages: 15

DOI: 10.2174/1381612825999190619130216

Price: $65

Abstract

Urinary Tract Infections (UTIs); second-ranking infectious diseases are regarded as a significant global health care problem. The UTIs annually cost tens of millions of dollars for governments worldwide. The main reason behind these costs is incorrect or indefinite treatment. There are a wide range of gram-negative and grampositive bacteria which may cause UTIs in males and females, children and adults. Among gram-negative bacteria, some members of Enterobacteriaceae such as Escherichia coli (E.coli) strains have significant contribution in UTIs. Uropathogenic E.coli (UPEC) strains are recognized as typical bacterial agents for UTIs. Thus, sharp and accurate diagnostic tools are needed for detection and identification of the microbial causative agents of UTIs. In parallel with the utilization of suitable diagnostic methods-to reduce the number of UTIs, effective and definite treatment procedures are needed. Therefore, the prescription of accurate, specific and effective antibiotics and drugs may lead to a definite treatment. However, there are many cases related to UTIs which can be relapsed. Due to a diversity of opportunistic and pathogenic causative microbial agents of UTIs, the treatment procedures should be achieved by the related antimicrobial agents. In this review, common and effective antimicrobial agents which are often prescribed for UTIs caused by UPEC will be discussed. Moreover, we will have a sharp look at their (antimicrobials) molecular treatment mechanisms.

Keywords: Urinary tract infections, uropathogenic escherichia coli, antibiotics, microbial antibiotic resistance, microbial drug resistance, molecular biology, molecular medicine, therapeutics.

[1]
Behzadi P, Behzadi E. The microbial agents of urinary tract infections at central laboratory of Dr. Shariati Hospital In: Turk Klin Tip Bilim . (4)445. 2008; 28: p.
[2]
Behzadi P, Behzadi E, Yazdanbod H, Aghapour R, Akbari Cheshmeh M, Salehian Omran D. A survey on urinary tract infections associated with the three most common uropathogenic bacteria. Maedica (Buchar) 2010; 5(2): 111-5. [PMID: 21977133].
[3]
Behzadi P, Behzadi E, Yazdanbod H, Aghapour R, Akbari Cheshmeh M, Salehian Omran D. Urinary tract infections associated with Candida albicans. Maedica (Buchar) 2010; 5(4): 277-9. [PMID: 21977170].
[4]
Jahandeh N, Ranjbar R, Behzadi P, Behzadi E. Uropathogenic Escherichia coli virulence genes: invaluable approaches for designing DNA microarray probes. Cent European J Urol 2015; 68(4): 452-8. [PMID: 26855801].
[5]
Behzadi P, Behzadi E, Ranjbar R. Urinary tract infections and Candida albicans. Cent European J Urol 2015; 68(1): 96-101. [PMID: 25914847].
[6]
Behzadi P, Najafi A, Behzadi E, Ranjbar R. Microarray long oligo probe designing for Escherichia coli: an in-silico DNA marker extraction. Cent European J Urol 2016; 69(1): 105-11. [PMID: 27123336].
[7]
Behzadi E, Behzadi P. The role of toll-like receptors (TLRs) in urinary tract infections (UTIs). Cent European J Urol 2016; 69(4): 404-10. [PMID: 28127459].
[8]
Ranjbar R, Tabatabaee A, Behzadi P, Kheiri R. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) genotyping of Escherichia coli strains isolated from different animal stool specimens. Iran J Pathol 2017; 12(1): 25-34. [PMID: 29760750].
[9]
Behzadi P, Behzadi E, Eds. Uropathogenic Escherichia coli: An ideal resource for DNA microarray probe designing. International Conference on Bioinformatics and Biomedical Engineering.
[http://dx.doi.org/10.1007/978-3-319-56154-7_2]
[10]
Behzadi P. Uropathogenic Escherichia coli and Fimbrial Adhesins Virulome. In: Urinary Tract Infection–The Result of the Strength of the Pathogen, or the Weakness of the Host InTech. 2018.
[http://dx.doi.org/10.5772/intechopen.71374]
[11]
Behzadi P. DNA microarrays and multidrug resistant bacteria. Eur Pharm Rev 2018; 1(23): 30-2.
[12]
Behzadi P, Behzadi E, Ranjbar R. IL-12 family cytokines: General characteristics, pathogenic microorganisms, receptors, and signalling pathways. Acta Microbiol Immunol Hung 2016; 63(1): 1-25. [http://dx.doi.org/10.1556/030.63.2016.1.1]. [PMID: 27020866].
[13]
Behzadi P, Behzadi E, Ranjbar R. The application of microarray in Medicine. ORL 2014; 24(3): 24-6.
[14]
Behzadi P, Najafi A, Behzadi E, Ranjbar R. Detection and identification of clinical pathogenic fungi by DNA microarray. Infectioro 2013; 35(3): 6-10.
[15]
Behzadi P, Behzadi E, Ranjbar R. Microarray probe set: Biology, bioinformatics and biophysics. Alban Med J 2015; 2: 78-83.
[16]
Behzadi P, Behzadi E, Ranjbar R. Multidrug-resistant bacteria/ bacterii rezistente la mai multe antibiotice si chimioterapice. Infectio ro 2014; 39(3): 29-31.
[17]
Ranjbar R, Behzadi P, Mammina C. Respiratory tularemia: Francisella tularensis and microarray probe designing. Open Microbiol J 2016; 10: 176-82. [http://dx.doi.org/10.2174/1874285801610010176]. [PMID: 28077973].
[18]
Ranjbar R, Behzadi P, Farshad S. Advances in diagnosis and treatment of Helicobacter pylori infection. Acta Microbiol Immunol Hung 2017; 64(3): 273-92. [http://dx.doi.org/10.1556/030.64.2017.008]. [PMID: 28263101].
[19]
Behzadi P, Ranjbar R. Microarray long oligo probe designing for Bacteria: An in silico pan-genomic research. Infectioro 6(8): 9. 2016
[20]
Ranjbar R, Behzadi P, Najafi A, Roudi R. DNA microarray for rapid detection and identification of food and water borne bacteria: from dry to wet lab. Open Microbiol J 2017; 11: 330-8. [http://dx.doi.org/10.2174/1874285801711010330]. [PMID: 29290845].
[21]
Behzadi P, Ranjbar R. DNA microarray technology and bioinformatic web services. Acta Microbiol Immunol Hung 2019; 66(1): 30. [PMID: 30010394].
[22]
Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015; 13(5): 269-84. [http://dx.doi.org/10.1038/nrmicro3432]. [PMID: 25853778].
[23]
Behzadi P, Behzadi E, Pawlak-Adamska EA. Urinary tract infections (UTIs) or genital tract infections (GTIs)? It’s the diagnostics that count. GMS Hyg Infect Control 2019; 14: Doc14. [PMID: 30993060].
[24]
Behzadi P. Classical chaperone-usher (CU) adhesive fimbriome: uropathogenic Escherichia coli (UPEC) and urinary tract infections (UTIs). Folia Microbiol (Praha) 2019. [http://dx.doi.org/10.1007/s12223-019-00719-x] [PMID: 31165977]
[25]
Behzadi P. Introductory Chapter: An Overview on Urinary Tract Infections, Pathogens, and Risk Factors. Microbiology of Urinary Tract Infections: Microbial Agents and Predisposing Factors: IntechOpen 2018.
[26]
Kang C-I, Kim J, Park DW, et al. Clinical practice guidelines for the antibiotic treatment of community-acquired urinary tract infections. Infect Chemother 2018; 50(1): 67-100. [http://dx.doi.org/10.3947/ic.2018.50.1.67]. [PMID: 29637759].
[27]
Dason S, Dason JT, Kapoor A. Guidelines for the diagnosis and management of recurrent urinary tract infection in women. Can Urol Assoc J 2011; 5(5): 316-22. [http://dx.doi.org/10.5489/cuaj.687]. [PMID: 22031610].
[28]
Gajdács M. Intravenous or oral antibiotic therapy: Sophie’s choice? GIMCI 2019; 4: 1-2.
[29]
Walsh C, Wencewicz T. Antibiotics: challenges, mechanisms, opportunities: American Society for Microbiology(ASM). In: ASM 2016.
[30]
Behzadi P, Behzadi E. Word Mapping in Biology, Medicine & Microbiology. In:Persian Science & Research Publisher 1st ed Tehran, Iran. 2012.
[31]
Jazayeri Moghadas A, Irajian G. Asymptomatic urinary tract infection in pregnant women. Iran J Pathol 2009; 4(3): 105-8.
[32]
AVCI D. Cetinkaya A An overview of the treatment of bacterial infections of urinary tract. In:Urinary Tract Infections & . Treatment 2018.
[33]
Ailes EC, Summers AD, Tran EL, et al. Antibiotics dispensed to privately insured pregnant women with urinary tract infections - United States, 2014. MMWR Morb Mortal Wkly Rep 2018; 67(1): 18-22. [http://dx.doi.org/10.15585/mmwr.mm6701a4]. [PMID: 29324733].
[34]
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82. [http://dx.doi.org/10.1093/nar/gkx1037]. [PMID: 29126136].
[35]
Jia B, Raphenya AR, Alcock B, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017; 45(D1): D566-73. [http://dx.doi.org/10.1093/nar/gkw1004]. [PMID: 27789705].
[36]
Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 2014; 42(Database issue): D1091-7. [http://dx.doi.org/10.1093/nar/gkt1068]. [PMID: 24203711].
[37]
Knox C, Law V, Jewison T, et al. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 2011; 39(Database issue): D1035-41. [http://dx.doi.org/10.1093/nar/gkq1126]. [PMID: 21059682].
[38]
Wishart DS, Knox C, Guo AC, et al. DrugBank: A knowledge base for drugs, drug actions and drug targets. Nucleic Acids Res 2008; 36(Database issue): D901-6. [PMID: 18048412].
[39]
Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006; 34(Database issue): D668-72. [PMID: 16381955].
[40]
Liu B, Pop M. ARDB-antibiotic resistance genes database. Nucleic Acids Res 2009; 37(Database issue): D443-7. [http://dx.doi.org/10.1093/nar/gkn656]. [PMID: 18832362].
[41]
Mathieu M, Debousker G, Vincent S, Viviani F, Bamas-Jacques N, Mikol V. Escherichia coli FolC structure reveals an unexpected dihydrofolate binding site providing an attractive target for anti-microbial therapy. J Biol Chem 2005; 280(19): 18916-22. [http://dx.doi.org/10.1074/jbc.M413799200]. [PMID: 15705579].
[42]
Achari A, Somers DO, Champness JN, Bryant PK, Rosemond J, Stammers DK. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat Struct Biol 1997; 4(6): 490-7. [http://dx.doi.org/10.1038/nsb0697-490]. [PMID: 9187658].
[43]
National Center for Biotechnology Information. PubChem Database. Sulfamethoxazole, CID=5329, https://pubchem.ncbi. nlm.nih. gov/compound/Sulfamethoxazole (accessed on July 5, 2019). .
[44]
Rose AS, Bradley AE, Valasatava Y, Duarte JM, Prlić A, Rose P. Web-based molecular graphics for large complexes. ACM Proceedings of the 21st International Conference on Web3D Technology (Web3D '16) .
[http://dx.doi.org/10.1145/2945292.2945324]
[45]
Rose AS, Hildebrand PW. NGL Viewer: a web application for molecular visualization. Nucleic Acids Res 2015; 43(W1): W576-9. [http://dx.doi.org/10.1093/nar/gkv402]. [PMID: 25925569].
[46]
[47]
Sawaya MR, Kraut J. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 1997; 36(3): 586-603. [http://dx.doi.org/10.1021/bi962337c]. [PMID: 9012674].
[48]
National Center for Biotechnology Information. PubChem Database Trimethoprim, CID=5578 https://pubchem.ncbi.nlm. nih.gov/compound/Trimethoprim (accessed on July 5, 2019) .
[49]
Marín M, Gudiol F. Beta-Lactam antibiotics. Enferm Infecc Microbiol Clin 2003; 21(1): 42-55. [PMID: 12550043].
[50]
Page MG. Beta-lactam antibiotics Antibiotic discovery and development In: . Springer 2012; pp. 79-117. [http://dx.doi.org/10.1007/978-1-4614-1400-1_3]
[51]
Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 2014; 159(6): 1300-11. [http://dx.doi.org/10.1016/j.cell.2014.11.017]. [PMID: 25480295].
[52]
Gualerzi CO, Brandi L, Fabbretti A, Pon CL. Antibiotics: Targets, mechanisms and resistance. In: ohn Wiley & Sons. 2013.
[http://dx.doi.org/10.1002/9783527659685]
[53]
National Center for Biotechnology Information PubChem Database 6-Aminopenicillanic acid, Source=Alfa Chemistry, SID=347757542, https://pubchem.ncbi.nlm.nih.gov/substance/347757542 (accessed on July 5, 2019) .
[54]
Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev 2006; 30(5): 673-91. [http://dx.doi.org/10.1111/j.1574-6976.2006.00024.x]. [PMID: 16911039].
[55]
Sung M-T, Lai Y-T, Huang C-Y, et al. Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc Natl Acad Sci USA 2009; 106(22): 8824-9. [http://dx.doi.org/10.1073/pnas.0904030106]. [PMID: 19458048].
[56]
King DT, Wasney GA, Nosella M, Fong A, Strynadka NC. Structural insights into inhibition of Escherichia coli penicillin-binding protein 1B. J Biol Chem 2017; 292(3): 979-93. [http://dx.doi.org/10.1074/jbc.M116.718403]. [PMID: 27899450].
[57]
Sauvage E, Derouaux A, Fraipont C, et al. Crystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli. PLoS One 2014; 9(5): e98042. [http://dx.doi.org/10.1371/journal.pone.0098042]. [PMID: 24875494].
[58]
Fernandes R, Amador P, Prudêncio C. β-Lactams: chemical structure, mode of action and mechanisms of resistance. Rev Med Microbiol 2013; 24(1): 7-17. [http://dx.doi.org/10.1097/MRM.0b013e3283587727].
[59]
Dougherty TJ, Pucci MJ. Antibiotic discovery and development In: . Springer Science & Business Media 2011.
[60]
Harrison CJ, Bratcher D. Cephalosporins: a review. Pediatr Rev 2008; 29(8): 264-7. [http://dx.doi.org/10.1542/pir.29-8-264]. [PMID: 18676578].
[61]
Yamada M, Watanabe T, Baba N, Takeuchi Y, Ohsawa F, Gomi S. Crystal structures of biapenem and tebipenem complexed with penicillin-binding proteins 2X and 1A from Streptococcus pneumoniae. Antimicrob Agents Chemother 2008; 52(6): 2053-60. [http://dx.doi.org/10.1128/AAC.01456-07]. [PMID: 18391040].
[62]
Ozcengiz G, Demain AL. Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 2013; 31(2): 287-311. [http://dx.doi.org/10.1016/j.biotechadv.2012.12.001]. [PMID: 23228980].
[63]
National Center for Biotechnology Information. PubChem Database 957-68-6, Source=Ambinter, SID=366592384 https:// pubchem.ncbi.nlm.nih.gov/substance/366592384(accessed on July 5, 2019).
[64]
Zhanel GG, Chung P, Adam H, et al. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 2014; 74(1): 31-51. [http://dx.doi.org/10.1007/s40265-013-0168-2]. [PMID: 24352909].
[65]
Sorbera M, Chung E, Ho CW, Marzella N. Ceftolozane/Tazobactam: a new option in the treatment of complicated gram-negative infections. P&T 2014; 39(12): 825-32. [PMID: 25516692].
[66]
Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother 2011; 55(11): 4943-60. [http://dx.doi.org/10.1128/AAC.00296-11].
[67]
Zhanel GG, Wiebe R, Dilay L, et al. Comparative review of the carbapenems. Drugs 2007; 67(7): 1027-52. [http://dx.doi.org/10.2165/00003495-200767070-00006]. [PMID: 17488146].
[68]
National Center for Biotechnology Information. PubChem Database carbapenem, Source=Springer Nature, SID=341139708, https://pubchem.ncbi.nlm.nih.gov/substance/341139708 (accessed on July 5, 2019).
[69]
Schneider KD, Karpen ME, Bonomo RA, Leonard DA, Powers RA. The 1.4 A crystal structure of the class D β-lactamase OXA-1 complexed with doripenem. Biochemistry 2009; 48(50): 11840-7. [http://dx.doi.org/10.1021/bi901690r]. [PMID: 19919101].
[70]
King D, Strynadka N. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci 2011; 20(9): 1484-91. [http://dx.doi.org/10.1002/pro.697]. [PMID: 21774017].
[71]
Goa KL, Noble S. Panipenem/betamipron. Drugs 2003; 63(9): 913-25. [http://dx.doi.org/10.2165/00003495-200363090-00005]. [PMID: 12678575].
[72]
Muratani T, Doi K, Kobayashi T, Nakamura T, Matsumoto T. Antimicrobial activity of tebipenem against various clinical isolates from various specimen, mainly urinary tract. Jpn J Antibiot 2009; 62(2): 116-26. [PMID: 19673353].
[74]
Brewer NS, Hellinger WC, Eds. editors The monobactams Mayo Clinic Proceedings; 1991. Elsevier 1991.
[75]
Singh GS. β-lactams in the new millennium. Part-I: monobactams and carbapenems. Mini Rev Med Chem 2004; 4(1): 69-92. [http://dx.doi.org/10.2174/1389557043487501]. [PMID: 14754445].
[76]
Chen CC, Herzberg O. Inhibition of β-lactamase by clavulanate. Trapped intermediates in cryocrystallographic studies. J Mol Biol 1992; 224(4): 1103-13. [http://dx.doi.org/10.1016/0022-2836(92)90472-V]. [PMID: 1569569].
[77]
National Center for Biotechnology Information. PubChem Database Clavamox, CID=23665637, https://pubchem.ncbi.nlm. nih.gov/compound/Clavamox accessed on July 5, 2019).
[78]
Hermann T. Aminoglycoside antibiotics: old drugs and new therapeutic approaches. Cell Mol Life Sci 2007; 64(14): 1841-52. [http://dx.doi.org/10.1007/s00018-007-7034-x]. [PMID: 17447006].
[80]
Borovinskaya MA, Pai RD, Zhang W, et al. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol 2007; 14(8): 727-32. [http://dx.doi.org/10.1038/nsmb1271]. [PMID: 17660832].
[81]
Schofield C. Antibiotics: Current innovations and future trends. In: Sergio Sánchez, Arnold L. Demain, Eds. ChemMedChem (5)925.
[82]
Ezelarab HAA, Abbas SH, Hassan HA, Abuo-Rahma GEA. Recent updates of fluoroquinolones as antibacterial agents. Arch Pharm (Weinheim) 2018; 351(9): e1800141. [http://dx.doi.org/10.1002/ardp.201800141]. [PMID: 30048015].
[83]
Blondeau JM. Fluoroquinolones: mechanism of action, classification, and development of resistance. Surv Ophthalmol 2004; 49(2)(Suppl. 2): S73-8. [http://dx.doi.org/10.1016/j.survophthal.2004.01.005]. [PMID: 15028482].
[84]
Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry 2014; 53(10): 1565-74. [http://dx.doi.org/10.1021/bi5000564]. [PMID: 24576155].
[85]
Behzadi P, Behzadi E, Ranjbar R. Basic Modern Molecular Biology. n: Persian Science & Research Publisher. 1st ed. Tehran 2014.
[86]
Blower TR, Williamson BH, Kerns RJ, Berger JM. Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2016; 113(7): 1706-13. [http://dx.doi.org/10.1073/pnas.1525047113]. [PMID: 26792525].
[87]
Bax BD, Chan PF, Eggleston DS, et al. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 2010; 466(7309): 935-40. [http://dx.doi.org/10.1038/nature09197]. [PMID: 20686482].
[88]
Guay DR. An update on the role of nitrofurans in the management of urinary tract infections. Drugs 2001; 61(3): 353-64. [http://dx.doi.org/10.2165/00003495-200161030-00004]. [PMID: 11293646].
[89]
Munoz-Davila MJ. Role of old antibiotics in the era of antibiotic resistance. Highlighted nitrofurantoin for the treatment of lower urinary tract infections. Antibiotics (Basel) 2014; 3(1): 39-48. [http://dx.doi.org/10.3390/antibiotics3010039]. [PMID: 27025732].
[90]
Grayson ML, Whitby M. Nitrofurans: Nitrofurazone, Furazolidone and Nitrofurantoin.The Use of Antibiotics 1 6th ed. 2010; pp. 1195-204.
[91]
Shlaes DM. Antibiotics: the perfect storm In:. Springer Science & Business Media 2010. [http://dx.doi.org/10.1007/978-90-481-9057-7]
[92]
National Center for Biotechnology Information PubChem Database nitrofuran, Source=Springer Nature, SID=341139926 https://pubchem.ncbi.nlm.nih.gov/substance/341139926 (accessed on July 5, 2019).
[93]
Falagas ME, Vouloumanou EK, Samonis G, Vardakas KZ. Fosfomycin. Clin Microbiol Rev 2016; 29(2): 321-47. [http://dx.doi.org/10.1128/CMR.00068-15]. [PMID: 26960938].
[94]
Frimodt-Møller N. Fosfomycin.The Use of antibiotics 1. 6th ed. 2010; pp. 935-44.
[95]
Han H, Yang Y, Olesen SH, Becker A, Betzi S, Schönbrunn E. The fungal product terreic acid is a covalent inhibitor of the bacterial cell wall biosynthetic enzyme UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). Biochemistry 2010; 49(19): 4276-82. [http://dx.doi.org/10.1021/bi100365b]. [PMID: 20392080].
[96]
National Center for Biotechnology Information PubChem Database Fosfomycin, CID=446987, https://pubchem.ncbi.nlm.nih.gov/ compound/Fosfomycin (accessed on July 5, 2019).
[97]
National Center for Biotechnology Information PubChem Database Pivmecillinam, CID=115163, https://pubchem.ncbi.nlm.nih. gov/compound/Pivmecillinam (accessed on July 5, 2019) .
[98]
Dewar S, Reed LC, Koerner RJ. Emerging clinical role of pivmecillinam in the treatment of urinary tract infection in the context of multidrug-resistant bacteria. J Antimicrob Chemother 2014; 69(2): 303-8. [http://dx.doi.org/10.1093/jac/dkt368]. [PMID: 24068280].
[99]
Norrby SR. Mecillinam (amdinocillin) and pivmecillinam. Kucer’s The use of antibiotics 152-9 2010.
[100]
National Center for Biotechnology Information PubChem Database Mecillinam, CID=36273 https://pubchem.ncbi.nlm.nih.gov/ compound/Mecillinam (accessed on July 5, 2019).
[101]
Nicolle LE. Asymptomatic bacteriuria. Curr Opin Infect Dis 2014; 27(1): 90-6. [http://dx.doi.org/10.1097/QCO.0000000000000019]. [PMID: 24275697].
[102]
Nicolle LE. Uncomplicated urinary tract infection in adults including uncomplicated pyelonephritis. Urol Clin North Am 2008; 35(1): 1-12. v. [http://dx.doi.org/10.1016/j.ucl.2007.09.004] [PMID: 18061019]
[103]
Kim WB, Cho KH, Lee SW, et al. Recent antimicrobial susceptibilities for uropathogenic Escherichia coli in patients with community acquired urinary tract infections: a multicenter study. Urogenit Tract Infect 2017; 12(1): 28-34. [http://dx.doi.org/10.14777/uti.2017.12.1.28].
[104]
Kim HY, Lee S-J, Lee DS, Yoo JM, Choe H-S. Microbiological characteristics of unresolved acute uncomplicated cystitis. Microb Drug Resist 2016; 22(5): 387-91. [http://dx.doi.org/10.1089/mdr.2015.0241]. [PMID: 26780182].
[105]
Trestioreanu AZ, Green H, Paul M, Yaphe J, Leibovici L. Antimicrobial agents for treating uncomplicated urinary tract infection in women. Cochrane Database Syst Rev 2010; (10): CD007182. [http://dx.doi.org/10.1002/14651858.CD007182.pub2]. [PMID: 20927755].
[106]
Rafalsky VV, Andreeva IV, Rjabkova EL. Quinolones for uncomplicated acute cystitis in women. Cochrane Database of Syst Rev 2006; (3): CD003957. [http://dx.doi.org/10.1002/14651858.CD003597.pub2].
[107]
Czaja CA, Hooton TM. Update on acute uncomplicated urinary tract infection in women. Postgrad Med 2006; 119(1): 39-45. [http://dx.doi.org/10.3810/pgm.2006.06.1639]. [PMID: 16913646].
[108]
Ramakrishnan K, Scheid DC. Diagnosis and management of acute pyelonephritis in adults. Am Fam Physician 2005; 71(5): 933-42. [PMID: 15768623].
[109]
Wie SH, Ki M, Kim J, et al. Clinical characteristics predicting early clinical failure after 72 h of antibiotic treatment in women with community-onset acute pyelonephritis: a prospective multicentre study. Clin Microbiol Infect 2014; 20(10): O721-9. [http://dx.doi.org/10.1111/1469-0691.12500]. [PMID: 24330047].
[110]
Wong D, van Duin D. Novel beta-lactamase inhibitors: unlocking their potential in therapy. Drugs 2017; 77(6): 615-28. [http://dx.doi.org/10.1007/s40265-017-0725-1]. [PMID: 28303449].
[111]
Öztürk H, Ozkirimli E, Özgür A. Classification of Beta-lactamases and penicillin binding proteins using ligand-centric network models. PLoS One 2015; 10(2): e0117874. [http://dx.doi.org/10.1371/journal.pone.0117874]. [PMID: 25689853].
[112]
Naber KG, Wagenlehner FM. Novel Antibiotics in the Treatment of Urinary Tract Infections. Eur Urol Focus 2019; 5(1): 10-2. [PMID: 30555037].
[113]
Bischoff S, Walter T, Gerigk M, Ebert M, Vogelmann R. Empiric antibiotic therapy in urinary tract infection in patients with risk factors for antibiotic resistance in a German emergency department. BMC Infect Dis 2018; 18(1): 56. [http://dx.doi.org/10.1186/s12879-018-2960-9]. [PMID: 29373965].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy