Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Synthesis of Carbon Quantum Dots with Special Reference to Biomass as a Source - A Review

Author(s): Baskar Thangaraj*, Pravin R. Solomon and Srinivasan Ranganathan

Volume 25, Issue 13, 2019

Page: [1455 - 1476] Pages: 22

DOI: 10.2174/1381612825666190618154518

Price: $65

Abstract

Quantum dots (QDs) have received much attention due to their extraordinary optical application in medical diagnostics, optoelectronics and in energy storage devices. The most conventional QDs are based on semiconductors that comprise heavy metals whose applications are limited due to toxicity and potential environmental hazard. Of late, researchers are focusing on carbon-based quantum dots, which have recently emerged as a new family of zero-dimensional nanostructured materials. They are spherical in shape with a size below 10 nm and exhibit excitation-wavelength-dependent photoluminescence (PL). Carbon quantum dots (CQDs) have unique optical, photoluminescence and electrochemical properties. They are environment-friendly with low toxicity as compared to toxic heavy metal quantum dots. Generally, CQDs are derived from chemical precursor materials, but recently researchers have focused their attention on the production of CQDs from waste biomass materials due to the economic and environmental exigency. In this review, recent advances in the synthesis of CQDs from waste biomass materials, functionalization and modulation of CQDs and their potential application of biosensing are focused. This review also brings out some challenges and future perspectives for developing smart biosensing gadgets based on CQDs.

Keywords: Biomass, Carbon quantum dots (CQDs), Hydrothermal carbonization, Modulation of CQDs, Biosensing, photoluminescence.

[1]
Hardman R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ Health Perspect 2006; 114(2): 165-72.
[http://dx.doi.org/10.1289/ehp.8284] [PMID: 16451849]
[2]
Liang Z, Kang M, Payne GF, Wang X, Sun R. Probing energy and electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots. ACS Appl Mater Interfaces 2016; 8(27): 17478-88.
[http://dx.doi.org/10.1021/acsami.6b04826] [PMID: 27314592]
[3]
Dong Y, Shao J, Chen C, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 2012; 50(12): 4738-43.
[http://dx.doi.org/10.1016/j.carbon.2012.06.002]
[4]
Zhang J, Yu S-H. Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater Today 2016; 19(7): 382-93.
[http://dx.doi.org/10.1016/j.mattod.2015.11.008]
[5]
Baker SN, Baker GA. Luminescent carbon nanodots: Emergent nanolights. Angew Chem Int Ed Engl 2010; 49(38): 6726-44.
[http://dx.doi.org/10.1002/anie.200906623] [PMID: 20687055]
[6]
Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 2010; 22(7): 813-28.
[http://dx.doi.org/10.1002/adma.200902812] [PMID: 20217791]
[7]
Wang T, Zhai Y, Zhu Y, Li C, Zeng G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev 2018; 90: 223-47.
[http://dx.doi.org/10.1016/j.rser.2018.03.071]
[8]
Xu Q, Wei J, Wang J, et al. Facile synthesis of copper doped carbon dots and their application as a “turn-off” fluorescent probe in the detection of Fe3+ ions. RSC Advances 2016; 6(34): 28745-50.
[http://dx.doi.org/10.1039/C5RA27658F]
[9]
Xu Q, Kuang T, Liu Y, et al. Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B Mater Biol Med 2016; 4(45): 7204-19.
[http://dx.doi.org/10.1039/C6TB02131J]
[10]
Lin L, Luo Y, Tsai P, Wang J, Chen X. Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications. TrAC Trends Analyt Chem 2018; 103: 87-101.
[http://dx.doi.org/10.1016/j.trac.2018.03.015]
[11]
Wang R, Lu K-Q, Tang Z-R, Xu Y-J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J Mater Chem A Mater Energy Sustain 2017; 5(8): 3717-34.
[http://dx.doi.org/10.1039/C6TA08660H]
[12]
Kim M, Osone S, Kim T, Higashi H, Seto T. Synthesis of nanoparticles by laser ablation: A review. Kona Powder Particle J 2017; 34(0): 80-90.
[http://dx.doi.org/10.14356/kona.2017009]
[13]
Thongpool V, Asanithi P, Limsuwan P. Synthesis of carbon particles using laser ablation in ethanol. Procedia Eng 2012; 32: 1054-60.
[http://dx.doi.org/10.1016/j.proeng.2012.02.054]
[14]
Reyes D, Camacho M, Camacho M, et al. Laser ablated carbon nanodots for light emission. Nanoscale Res Lett 2016; 11(1): 424.
[http://dx.doi.org/10.1186/s11671-016-1638-8] [PMID: 27659953]
[15]
Anto Y, Zhao X. Synthesis of carbon nanotubes by arc-discharge method. New Diamond Front Carbon Technol 2006; 16(3): 123-37.
[16]
Ashkarran AA, Iraji Zad A, Ahadian MM, Mahdavi Ardakani SA. Synthesis and photocatalytic activity of WO(3) nanoparticles prepared by the arc discharge method in deionized water. Nanotechnology 2008; 19(19)195709
[http://dx.doi.org/10.1088/0957-4484/19/19/195709] [PMID: 21825727]
[17]
Anto Y, Iijima S. Preparation of carbon nanotubes by arc-discharge evaporation. Jpn J Appl Phys 1993; 32(1A/B)L107-09
[http://dx.doi.org/10.1143/JJAP.32.L107]]
[18]
Bard AJ, Itaya K, Malpas RE, Teherani T. Electrochemical and photoelectrochemical studies of excess electrons in liquid ammonia. J Phys Chem 1980; 84(10): 1262-6.
[http://dx.doi.org/10.1021/j100447a040]
[19]
Allioux F-M, Holland BJ, Kong L, Dumée LF. Electro-catalytic biodiesel production from canola oil in methanolic and ethanolic solutions with low-cost stainless steel and hybrid ion-exchange resin grafted electrodes. Front Mater 2017; 4: 1-10.
[http://dx.doi.org/10.3389/fmats.2017.00022]
[20]
Zhou J, Booker C, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 2007; 129(4): 744-5.
[http://dx.doi.org/10.1021/ja0669070] [PMID: 17243794]
[21]
Ahirwar S, Mallick S, Bahadur D. Electrochemical method to prepare graphene quantum dots and graphene oxide quantum dots. ACS Omega 2017; 2(11): 8343-53.
[http://dx.doi.org/10.1021/acsomega.7b01539]
[22]
Zhou D, Anoshkina EV, Chow L, Chai G. Synthesis of carbon nanotubes by electrochemical deposition at room temperature. Carbon 2006; 44(5): 1013-6.
[http://dx.doi.org/10.1016/j.carbon.2005.11.006]
[23]
Shinde DB, Pillai VK. Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chemistry 2012; 18(39): 12522-8.
[http://dx.doi.org/10.1002/chem.201201043] [PMID: 22893544]
[24]
Kaboorani A, Riedl B, Blanchet P. Ultrasonication Technique: A method for dispersing nanoclay in wood adhesives. J Nanomater 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/341897]
[25]
Koshio A, Yudasaka M, Zhang M, Iijima S. A simple way to chemically react single-wall carbon nanotubes with organic materials using ultrasonication. Nano Lett 2001; 1(7): 361-3.
[http://dx.doi.org/10.1021/nl0155431]
[26]
Ma Z, Ming H, Huang H, Liu Y, Kang Z. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J Chem 2012; 36(4): 861.
[http://dx.doi.org/10.1039/c2nj20942j]
[27]
Zhu S, Zhang J, Qiao C, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun (Camb) 2011; 47(24): 6858-60.
[http://dx.doi.org/10.1039/c1cc11122a] [PMID: 21584323]
[28]
Neas ED, Collins MJ. Introduction to microwave sample preparation. Washington, D.C.: American Chemical Society 1988.
[29]
Varma RS. Solvent-free organic syntheses. Green Chem 1999; 1(1): 43-55.
[http://dx.doi.org/10.1039/a808223e]
[30]
Shah JJ, Mohanraj K. Comparison of conventional and microwave-assisted synthesis of benzotriazole derivatives. Indian J Pharm Sci 2014; 76(1): 46-53.
[PMID: 24799738]
[31]
Chae A, Choi Y, Jo S. Microwave-assisted synthesis of fluorescent carbon quantum dots from an A2/B3 monomer set. RSC Advances 2017; 7(21): 12663-9.
[32]
Zhao Y, Zuo S, Miao M. The effect of oxygen on the microwave-assisted synthesis of carbon quantum dots from polyethylene glycol. RSC Advances 2017; 7(27): 16637-43.
[http://dx.doi.org/10.1039/C7RA01804E]
[33]
Choi Y, Thongsai N, Chae A, et al. Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. J Ind Eng Chem 2017; 47: 329-35.
[http://dx.doi.org/10.1016/j.jiec.2016.12.002]
[34]
Chen J, Zhao JX. Upconversion nanomaterials: Synthesis, mechanism, and applications in sensing. Sensors (Basel) 2012; 12(3): 2414-35.
[http://dx.doi.org/10.3390/s120302414] [PMID: 22736958]
[35]
Chen S, Ahmadiantehrani M, Publicover NG, Hunter KW Jr, Zhu X. Thermal decomposition based synthesis of ag-in-s/zns quantum dots and their chlorotoxin-modified micelles for brain tumor cell targeting. RSC Advances 2015; 74(5): 60612-20.
[http://dx.doi.org/10.1039/C5RA11250H] [PMID: 26236473]
[36]
Bourlinos AB, Stassinopoulos DA, Zboril R, Georgakilas V, Giannelis EP. Photoluminescent carbogenic dots. Chem Mater 2008; 20(14): 4539-41.
[http://dx.doi.org/10.1021/cm800506r]
[37]
Kino T, Kuzuya T, Itoh K, Sumiyama K, Wakamatsu T, Ichidate M. Synthesis of chalcopyrite nanoparticles via thermal decomposition of metal-thiolate. Mater Trans JIM 2008; 49(3): 435-8.
[http://dx.doi.org/10.2320/matertrans.MBW200724]
[38]
Horikoshi S, Serpone N. In-liquid plasma: A novel tool in the fabrication of nanomaterials and in the treatment of wastewaters. RSC Advances 2017; 7(75): 47196-218.
[http://dx.doi.org/10.1039/C7RA09600C]
[39]
Tyczkowski J. Cold plasma produced catalytic materials. In: Mieno ed., Plasma Science and Technology: Progress in Physical States and Chemical Reaction 2016.pp. 25-65.
[http://dx.doi.org/10.5772/61832]]
[40]
Liu CJ, Zou J, Yu K, et al. Plasma application for more environmentally friendly catalyst preparation. Pure Appl Chem 2006; 78(6): 1227-38.
[http://dx.doi.org/10.1351/pac200678061227]
[41]
Huang X, Li Y, Zhong X, Rider AE, Ostrikov KK. Fast microplasma synthesis of blue luminescent carbon quantum dots at ambient conditions. Plasma Process Polym 2015; 12(1): 59-65.
[http://dx.doi.org/10.1002/ppap.201400133]
[42]
Carolan D, Rocks C, Padmanaban DB, Maguire P, Svrcek V, Mariotti D. Environmentally friendly nitrogen-doped carbon quantum dots for next generation solar cells. Sustainable Energy Fuels 2017; 1(7): 1611-9.
[http://dx.doi.org/10.1039/C7SE00158D]
[43]
Tung DH, Thuong TT, Cong ND, et al. Facile synthesis of carbon quantum dots by plasma-liquid interaction method. Commun Phys 2018; 27(4): 311.
[http://dx.doi.org/10.15625/0868-3166/27/4/10867]
[44]
Titirici MM, White RJ, Brun N, et al. Sustainable carbon materials. Chem Soc Rev 2015; 44(1): 250-90.
[http://dx.doi.org/10.1039/C4CS00232F] [PMID: 25301517]
[45]
Bergius F, Specht H. Die Anwendung hoher Drucke bei chemischen Vorga¨ngen und eine Nachbildung des Entstehungs prozesses der Steinkohle Halle and der Saale. Germany: Verlag Wilhelm Knapp 1913; p. 58.
[46]
Baccile N, Laurent G, Babonneau F, Fayon F, Titirici MM, Antonietti M. Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13 C NMR Investigations. J Phys Chem C 2009; 113(22): 9644-54.
[http://dx.doi.org/10.1021/jp901582x]
[47]
Falco C, Perez Caballero F, Babonneau F, et al. Hydrothermal carbon from biomass: Structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR. Langmuir 2011; 27(23): 14460-71.
[http://dx.doi.org/10.1021/la202361p] [PMID: 22050004]
[48]
Wu Q, Li W, Wu P, et al. Effect of reaction temperature on properties of carbon nanodots and their visible-light photocatalytic degradation of tetracycline. RSC Advances 2015; 5(92): 75711-21.
[http://dx.doi.org/10.1039/C5RA16080D]
[49]
Prasannan A, Imae T. One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels. Ind Eng Chem Res 2013; 52(44): 15673-8.
[http://dx.doi.org/10.1021/ie402421s]
[50]
Kozák O, Datta KKR, Greplová M, Ranc V, Kašlík J, Zbořil R. Surfactant-derived amphiphilic carbon dots with tunable photoluminescence. J Phys Chem C 2013; 117(47): 24991-6.
[http://dx.doi.org/10.1021/jp4040166]
[51]
Reza MT, Andert J, Wirth B, et al. Hydrothermal carbonization of biomass for energy and crop production. ApplBioenergy 2014; 1: 11-29.
[http://dx.doi.org/10.2478/apbi-2014-0001]
[52]
Shen J, Shang S, Chen X, Wang D, Cai Y. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater Sci Eng C 2017; 76: 856-64.
[http://dx.doi.org/10.1016/j.msec.2017.03.178] [PMID: 28482600]
[53]
Tyagi A, Tripathi KM, Singh N, Choudhary S, Gupta RK. Green synthesis of carbon quantum dots from lemon peel waste: Applications in sensing and photocatalysis. RSC Advances 2016; 6(76): 72423-32.
[http://dx.doi.org/10.1039/C6RA10488F]
[54]
Ding H, Ji Y, Wei J-S, Gao Q-Y, Zhou Z-Y, Xiong H-M. Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. Mater Sci Eng C B 2017; 5(26): 5272-7.
[http://dx.doi.org/10.1039/C7TB01130J]
[55]
Zhou J, Sheng Z, Han H, Zou M, Li C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett 2012; 66(1): 222-4.
[http://dx.doi.org/10.1016/j.matlet.2011.08.081]
[56]
Essner JB, Laber CH, Ravula S, Polo-Parada L, Baker GA. Pee-dots: Biocompatible fluorescent carbon dots derived from the upcycling of urine. Green Chem 2016; 18(1): 243-50.
[http://dx.doi.org/10.1039/C5GC02032H]
[57]
Hu Y, Yang J, Tian J, Jia L, Yu J-S. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon 2014; 77: 775-82.
[http://dx.doi.org/10.1016/j.carbon.2014.05.081]
[58]
Sun D, Ban R, Zhang P-H, Wu G-H, Zhang J-R, Zhu J-J. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 2013; 64: 424-34.
[http://dx.doi.org/10.1016/j.carbon.2013.07.095]
[59]
Wei J, Zhang X, Sheng Y, et al. Simple one-step synthesis of water-soluble fluorescent carbon dots from waste paper. New J Chem 2014; 38(3): 906.
[http://dx.doi.org/10.1039/c3nj01325a]
[60]
Sahasrabudhe A, Kapri S, Bhattacharyya S. Graphitic porous carbon derived from human hair as ‘green’ counter electrode in quantum dot sensitized solar cells. Carbon 2016; 107: 395-404.
[http://dx.doi.org/10.1016/j.carbon.2016.06.015]
[61]
Anwarali Khan FAB, Awang Husaini AS. Enhancing α-amylase and cellulase in vivo enzyme expressions on sago pith residue using Bacilllus amyloliquefaciens UMAS 1002. Biotechnology (Faisalabad) 2006; 5(3): 391-03.
[http://dx.doi.org/10.3923/biotech.2006.391.403]
[62]
Tan XW, Romainor ANB, Chin SF, Ng SM. Carbon dots production via pyrolysis of sago waste as potential probe for metal ions sensing. J Anal Appl Pyrolysis 2014; 105: 157-65.
[http://dx.doi.org/10.1016/j.jaap.2013.11.001]
[63]
Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed Engl 2007; 46(34): 6473-5.
[http://dx.doi.org/10.1002/anie.200701271] [PMID: 17645271]
[64]
Du F, Zhang M, Li X, et al. Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications. Nanotechnology 2014; 25(31)315702
[http://dx.doi.org/10.1088/0957-4484/25/31/315702] [PMID: 25036467]
[65]
Krysmann MJ, Kelarakis A, Giannelis EP. Photoluminescent carbogenic nanoparticles directly derived from crude biomass. Green Chem 2012; 14(11): 3141.
[http://dx.doi.org/10.1039/c2gc35907c]
[66]
Sun C, Zhang Y, Wang P, et al. Synthesis of nitrogen and sulfur co-doped carbon dots from garlic for selective detection of Fe(3.). Nanoscale Res Lett 2016; 11(1): 110.
[http://dx.doi.org/10.1186/s11671-016-1326-8] [PMID: 26924814]
[67]
Selvamani V, Ravikumar R, Suryanarayanan V, Velayutham D, Gopukumar S. Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. Electrochim Acta 2016; 190: 337-45.
[http://dx.doi.org/10.1016/j.electacta.2016.01.006]
[68]
Mehta VN, Jha S, Basu H, Singhal RK, Kailasa SK. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens Actuators B Chem 2015; 213: 434-43.
[http://dx.doi.org/10.1016/j.snb.2015.02.104]
[69]
Wei J, Shen J, Zhang X, et al. Simple one-step synthesis of water-soluble fluorescent carbon dots derived from paper ash. RSC Advances 2013; 3(32): 13119.
[http://dx.doi.org/10.1039/c3ra41751d]
[70]
Wei J, Zhang X, Sheng Y, et al. Simple one-step synthesis of water-soluble fluorescent carbon dots from waste paper. New J Chem 2014; 38(3): 906.
[http://dx.doi.org/10.1039/c3nj01325a]
[71]
Zhu L, Yin Y, Wang C-F, Chen S. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. J Mater Chem C Mater Opt Electron Devices 2013; 1(32): 4925.
[http://dx.doi.org/10.1039/c3tc30701h]
[72]
Liu R, Gao M, Zhang J, et al. An ionic liquid promoted microwave-hydrothermal route towards highly photoluminescent carbon dots for sensitive and selective detection of iron(iii). RSC Advances 2015; 5(31): 24205-9.
[http://dx.doi.org/10.1039/C5RA00089K]
[73]
Zhang J, Yuan Y, Liang G, Yu SH. Scale-up synthesis of fragrant nitrogen-doped carbon dots from bee pollens for bioimaging and catalysis. Adv Sci (Weinh) 2015; 2(4)1500002
[http://dx.doi.org/10.1002/advs.201500002] [PMID: 27980929]
[74]
Wang Z, Yu J, Zhang X, et al. Large-scale and controllable synthesis of graphene quantum dots from rice husk biomass: A comprehensive utilization strategy. ACS Appl Mater Interfaces 2016; 8(2): 1434-9.
[http://dx.doi.org/10.1021/acsami.5b10660] [PMID: 26710249]
[75]
Zhang Z, Sun W, Wu P. Highly photoluminescent carbon dots derived from egg white: Facile and green synthesis, photoluminescence properties, and multiple applications. ACS Sustain Chem& Eng 2015; 3(7): 1412-8.
[http://dx.doi.org/10.1021/acssuschemeng.5b00156]
[76]
Edison TN, Atchudan R, Shim JJ, Kalimuthu S, Ahn BC, Lee YR. Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging. J Photochem Photobiol B 2016; 158: 235-42.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.010] [PMID: 26994332]
[77]
De B, Karak N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances 2013; 3(22): 8286.
[http://dx.doi.org/10.1039/c3ra00088e]
[78]
Wang N, Wang Y, Guo T, Yang T, Chen M, Wang J. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens Bioelectron 2016; 85: 68-75.
[http://dx.doi.org/10.1016/j.bios.2016.04.089] [PMID: 27155118]
[79]
Liao J, Cheng Z, Zhou L. Nitrogen-doping enhanced fluorescent carbon dots: Green synthesis and their applications for bioimaging and label-free detection of Au3+ ions. ACS Sustain Chem& Eng 2016; 4(6): 3053-61.
[http://dx.doi.org/10.1021/acssuschemeng.6b00018]
[80]
Yang R, Guo X, Jia L, Zhang Y, Zhao Z, Lonshakov F. Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging. Appl Surf Sci 2017; 423: 426-32.
[http://dx.doi.org/10.1016/j.apsusc.2017.05.252]
[81]
Ding H, Ji Y, Wei J-S, Gao Q-Y, Zhou Z-Y, Xiong H-M. Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. J Mater Chem B Mater Biol Med 2017; 5(26): 5272-7.
[http://dx.doi.org/10.1039/C7TB01130J]
[82]
Niu X, Liu G, Li L, Fu Z, Xu H, Cui F. Green and economical synthesis of nitrogen-doped carbon dots from vegetables for sensing and imaging applications. RSC Advances 2015; 5(115): 95223-9.
[http://dx.doi.org/10.1039/C5RA17439B]
[83]
Yao YY, Gedda G, Girma WM, Yen CL, Ling YC, Chang JY. Magneto fluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS Appl Mater Interfaces 2017; 9(16): 13887-99.
[http://dx.doi.org/10.1021/acsami.7b01599] [PMID: 28388048]
[84]
Liu R, Zhang H, Liu S, et al. Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. Phys Chem Chem Phys 2016; 18(5): 4095-101.
[http://dx.doi.org/10.1039/C5CP06970J] [PMID: 26778836]
[85]
Liu R, Zhang J, Gao M, et al. A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers. RSC Advances 2015; 5(6): 4428-33.
[http://dx.doi.org/10.1039/C4RA12077A]
[86]
Sun D, Ban R, Zhang P-H, Wu G-H, Zhang J-R, Zhu J-J. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 2013; 64: 424-34.
[http://dx.doi.org/10.1016/j.carbon.2013.07.095]
[87]
Liu SS, Wang CF, Li CX, Wang J, Mao LH, Chen S. Hair-derived carbon dots toward versatile multidimensional fluorescent materials. J Mater Chem C Mater Opt Electron Devices 2014; 2(32): 6477-83.
[http://dx.doi.org/10.1039/C4TC00636D]
[88]
Ding Z, Li F, Wen J, Wang X, Sun R. Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass. Green Chem 2018; 20(6): 1383-90.
[http://dx.doi.org/10.1039/C7GC03218H]
[89]
Wang S, Niu H, He S, Cai Y. One-step fabrication of high quantum yield sulfur- and nitrogen-doped carbon dots for sensitive and selective detection of Cr(vi). RSC Advances 2016; 6(109): 107717-22.
[http://dx.doi.org/10.1039/C6RA21059G]
[90]
Wu G, Feng M, Zhan H. Generation of nitrogen-doped photoluminescent carbonaceous nanodots via the hydrothermal treatment of fish scales for the detection of hypochlorite. RSC Advances 2015; 5(55): 44636-41.
[http://dx.doi.org/10.1039/C5RA04989J]
[91]
Liu Y, Zhao Y, Zhang Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Sens Actuators B Chem 2014; 196: 647-52.
[http://dx.doi.org/10.1016/j.snb.2014.02.053]
[92]
Suryawanshi A, Biswal M, Mhamane D, et al. Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on-off-on probe for Ag(+) ions. Nanoscale 2014; 6(20): 11664-70.
[http://dx.doi.org/10.1039/C4NR02494J] [PMID: 25162814]
[93]
Amjadi M, Hallaj T, Mayan MA. Green synthesis of nitrogen-doped carbon dots from lentil and its application for colorimetric determination of thioridazine hydrochloride. RSC Advances 2016; 6(106): 104467-73.
[http://dx.doi.org/10.1039/C6RA22899B]
[94]
Huang G, Chen X, Wang C, et al. Photoluminescent carbon dots derived from sugarcane molasses: Synthesis, properties, and applications. RSC Advances 2017; 7(75): 47840-7.
[http://dx.doi.org/10.1039/C7RA09002A]
[95]
Nunes M, Rocha IM, Fernandes DM, et al. Sucrose-derived activated carbons: Electron transfer properties and application as oxygen reduction electrocatalysts. RSC Advances 2015; 5(124): 102919-31.
[http://dx.doi.org/10.1039/C5RA20874B]
[96]
Xue M, Zhan Z, Zou M, Zhang L, Zhao S. Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging. New J Chem 2016; 40(2): 1698-703.
[http://dx.doi.org/10.1039/C5NJ02181B]
[97]
Wu Y, Chen Y, Wang H, et al. Efficient ORR electrocatalytic activity of peanut shell-based graphitic carbon microstructures. J Mater Chem A Mater Energy Sustain 2018; 6(25): 12018-28.
[http://dx.doi.org/10.1039/C8TA02839G]
[98]
Feng J, Wang W-J, Hai X, Yu Y-L, Wang J-H. Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. J Mater Chem B Mater Biol Med 2016; 4(3): 387-93.
[http://dx.doi.org/10.1039/C5TB01999K]
[99]
Chen Z, Zhao Z, Wang Z, et al. Foxtail millet-derived highly fluorescent multi-heteroatom doped carbon quantum dots towards fluorescent inks and smart nanosensors for selective ion detection. New J Chem 2018; 42(9): 7326-31.
[http://dx.doi.org/10.1039/C8NJ01072B]
[100]
Shen J, Shang S, Chen X, Wang D, Cai Y. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging. Mater Sci Eng C 2017; 76: 856-64.
[http://dx.doi.org/10.1016/j.msec.2017.03.178] [PMID: 28482600]
[101]
Wang L, Li W, Wu B, et al. Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chem Eng J 2016; 300: 75-82.
[http://dx.doi.org/10.1016/j.cej.2016.04.123]
[102]
Gu J, Zhang X, Pang A, Yang J. Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots. Nanotechnology 2016; 27(16)165704
[http://dx.doi.org/10.1088/0957-4484/27/16/165704] [PMID: 26964866]
[103]
Liang Z, Zeng L, Cao X, Wang Q, Wang X, Sun R. Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH4OH passivation. J Mater Chem C Mater Opt Electron Devices 2014; 2(45): 9760-6.
[http://dx.doi.org/10.1039/C4TC01714E]
[104]
Gao S, Wei X, Fan H, Li L, Geng K, Wang J. Nitrogen-doped carbon shell structure derived from natural leaves as a potential catalyst for oxygen reduction reaction. Nano Energy 2015; 13: 518-26.
[http://dx.doi.org/10.1016/j.nanoen.2015.02.031]
[105]
Li W, Zhang Z, Kong B, et al. Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew Chem Int Ed Engl 2013; 52(31): 8151-5.
[http://dx.doi.org/10.1002/anie.201303927] [PMID: 23788215]
[106]
Wang C, Sun D, Zhuo K, Zhang H, Wang J. Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application. RSC Advances 2014; 4(96): 54060-5.
[http://dx.doi.org/10.1039/C4RA10885J]
[107]
Zhou J, Shan X, Ma J, et al. Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Advances 2014; 4(11): 5465.
[http://dx.doi.org/10.1039/c3ra45294h]
[108]
Xu Q, Liu Y, Su R, et al. Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: An integrative experimental-theoretical consideration. Nanoscale 2016; 8(41): 17919-27.
[http://dx.doi.org/10.1039/C6NR05434J] [PMID: 27725980]
[109]
Yu SH, Cui XJ, Li LL, et al. From starch to metal/carbon hybrid nanostructures: Hydrothermal metal-catalyzed carbonization. Adv Mater 2004; 16(18): 1636-40.
[http://dx.doi.org/10.1002/adma.200400522]
[110]
Shan X, Chai L, Ma J, Qian Z, Chen J, Feng H. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst (Lond) 2014; 139(10): 2322-5.
[http://dx.doi.org/10.1039/C3AN02222F] [PMID: 24695439]
[111]
Qian Z, Shan X, Chai L, Ma J, Chen J, Feng H. Si-doped carbon quantum dots: A facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl Mater Interfaces 2014; 6(9): 6797-805.
[http://dx.doi.org/10.1021/am500403n] [PMID: 24707855]
[112]
Li Liu M, Chen BB, Yang T, Wang J, Dong Liu X, Zhi Huang C. One-pot carbonization synthesis of europium-doped carbon quantum dots for highly selective detection of tetracycline. Methods Appl Fluoresc 2017; 5(1)015003
[http://dx.doi.org/10.1088/2050-6120/aa5e2b] [PMID: 28248640]
[113]
Bourlinos AB, Bakandritsos A, Kouloumpis A, et al. Gd(iii)-doped carbon dots as a dual fluorescent-MRI probe. J Mater Chem 2012; 22(44): 23327.
[http://dx.doi.org/10.1039/c2jm35592b]
[114]
Li H, Zhang Y, Wang L, Tian J, Sun X. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem Commun (Camb) 2011; 47(3): 961-3.
[http://dx.doi.org/10.1039/C0CC04326E] [PMID: 21079843]
[115]
Mao Y, Bao Y, Han D, Li F, Niu L. Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosens Bioelectron 2012; 38(1): 55-60.
[http://dx.doi.org/10.1016/j.bios.2012.04.043] [PMID: 22672763]
[116]
Wang F, Xie Z, Zhang H, Liu C-Y, Zhang Y-G. Highly Luminescent Organosilane-Functionalized Carbon Dots. Adv Funct Mater 2011; 21(6): 1027-31.
[http://dx.doi.org/10.1002/adfm.201002279]
[117]
Zhao HX, Liu LQ, Liu ZD, Wang Y, Zhao XJ, Huang CZ. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chem Commun (Camb) 2011; 47(9): 2604-6.
[http://dx.doi.org/10.1039/c0cc04399k] [PMID: 21234476]
[118]
Dong Y, Shao J, Chen C, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 2012; 50(12): 4738-43.
[http://dx.doi.org/10.1016/j.carbon.2012.06.002]
[119]
Yin J-Y, Liu H-J, Jiang S, Chen Y, Yao Y. Hyperbranched polymer functionalized carbon dots with multistimuli-responsive property. ACS Macro Lett 2013; 2(11): 1033-7.
[http://dx.doi.org/10.1021/mz400474v]
[120]
Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP. Photoluminescent carbogenic dots. Chem Mater 2008; 20(14): 4539-41.
[http://dx.doi.org/10.1021/cm800506r]
[121]
Bourlinos AB, Zbořil R, Petr J, Bakandritsos A, Krysmann M, Giannelis EP. Luminescent surface quaternized carbon dots. Chem Mater 2011; 24(1): 6-8.
[http://dx.doi.org/10.1021/cm2026637]
[122]
Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 2009; 21(23): 5563-5.
[http://dx.doi.org/10.1021/cm901593y]
[123]
Cao L, Yang ST, Wang X, et al. Competitive performance of carbon “quantum” dots in optical bioimaging. Theranostics 2012; 2(3): 295-301.
[http://dx.doi.org/10.7150/thno.3912] [PMID: 22448196]
[124]
Wang Y, Anilkumar P, Cao L, et al. Carbon dots of different composition and surface functionalization: Cytotoxicity issues relevant to fluorescence cell imaging. Exp Biol Med (Maywood) 2011; 236(11): 1231-8.
[http://dx.doi.org/10.1258/ebm.2011.011132] [PMID: 22036734]
[125]
Behnam B, Shier WT, Nia AH, Abnous K, Ramezani M. Non-covalent functionalization of single-walled carbon nanotubes with modified polyethyleneimines for efficient gene delivery. Int J Pharm 2013; 454(1): 204-15.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.057] [PMID: 23856161]
[126]
Liu S, Zhao N, Cheng Z, Liu H. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale 2015; 7(15): 6836-42.
[http://dx.doi.org/10.1039/C5NR00070J] [PMID: 25807038]
[127]
Wu C, Chiu DT. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew Chem Int Ed Engl 2013; 52(11): 3086-109.
[http://dx.doi.org/10.1002/anie.201205133] [PMID: 23307291]
[128]
Sonthanasamy RSA, Fazry S, Yamin BM, Lazim AM. Surface functionalization of highly luminescent carbon nanodots from Dioscorea hispida with polyethylene glycol and branched polyethyleneimine and their in vitro study. J King Saud Univ Sci 2018.
[http://dx.doi.org/10.1016/j.jksus.2018.05.004]
[129]
Wang WJ, Hai X, Mao QX, Chen ML, Wang JH. Polyhedral oligomeric silsesquioxane functionalized carbon dots for cell imaging. ACS Appl Mater Interfaces 2015; 7(30): 16609-16.
[http://dx.doi.org/10.1021/acsami.5b04172] [PMID: 26171887]
[130]
Kwon W, Do S, Kim JH, Seok Jeong M, Rhee SW. Control of photoluminescence of carbon nanodots via surface functionalization using para-substituted anilines. Sci Rep 2015; 5: 12604.
[http://dx.doi.org/10.1038/srep12604] [PMID: 26218869]
[131]
Hola K, Bourlinos AB, Kozak O, et al. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO- induced red-shift emission. Carbon 2014; 70: 279-86.
[http://dx.doi.org/10.1016/j.carbon.2014.01.008]
[132]
Liu C, Zhang P, Zhai X, et al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012; 33(13): 3604-13.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.052] [PMID: 22341214]
[133]
Sun YP, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 2006; 128(24): 7756-7.
[http://dx.doi.org/10.1021/ja062677d] [PMID: 16771487]
[134]
Thangaraj B, Muniyandi B, Ranganathan S, Xin H. Functionalized magnetic nanoparticles for catalytic application-a review. Rev Adv Sci Eng 2015; 4(2): 106-19.
[http://dx.doi.org/10.1166/rase.2015.1092]
[135]
Sharma V, Tiwari P, Mobin SM. Sustainable carbon-dots: Recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B Mater Biol Med 2017; 5(45): 8904-24.
[http://dx.doi.org/10.1039/C7TB02484C]
[136]
Atabaev TS. Doped carbon dots for sensing and bioimaging applications: A mini review. Nanomaterials (Basel) 2018; 8(5)E342
[http://dx.doi.org/10.3390/nano8050342] [PMID: 29783639]
[137]
Zhou J, Shan X, Ma J, et al. Facile synthesis of P-doped carbon quantum dots with highly efficient photoluminescence. RSC Advances 2014; 4(11): 5465.
[http://dx.doi.org/10.1039/c3ra45294h]
[138]
Zhou J, Sheng Z, Han H, Zou M, Li C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett 2012; 66(1): 222-4.
[http://dx.doi.org/10.1016/j.matlet.2011.08.081]
[139]
Xu Q, Wei J, Wang J, et al. Facile synthesis of copper doped carbon dots and their application as a “turn-off” fluorescent probe in the detection of Fe3+ ions. RSC Advances 2016; 6(34): 28745-50.
[http://dx.doi.org/10.1039/C5RA27658F]
[140]
Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun (Camb) 2008; (41): 5116-8.
[http://dx.doi.org/10.1039/b812420e] [PMID: 18956040]
[141]
Zuo J, Jiang T, Zhao X, Xiong X, Xiao S, Zhu Z. Preparation and application of fluorescent carbon dots. J Nanomater 2015; 2015: 1-13.
[http://dx.doi.org/10.1155/2015/787862]
[142]
Li X, Rui M, Song J, Shen Z, Zeng H. Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv Funct Mater 2015; 25(31): 4929-47.
[http://dx.doi.org/10.1002/adfm.201501250]
[143]
Peng J, Gao W, Gupta BK, et al. Graphene quantum dots derived from carbon fibers. Nano Lett 2012; 12(2): 844-9.
[http://dx.doi.org/10.1021/nl2038979] [PMID: 22216895]
[144]
Sevilla M, Fuertes AB. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009; 47(9): 2281-9.
[http://dx.doi.org/10.1016/j.carbon.2009.04.026]
[145]
Mäkelä M, Benavente V, Fullana A. Hydrothermal carbonization of industrial mixed sludge from a pulp and paper mill. Bioresour Technol 2016; 200: 444-50.
[http://dx.doi.org/10.1016/j.biortech.2015.10.062] [PMID: 26519695]
[146]
Wei J, Zhang X, Sheng Y, et al. Simple one-step synthesis of water-soluble fluorescent carbon dots from waste paper. New J Chem 2014; 38(3): 906.
[http://dx.doi.org/10.1039/c3nj01325a]
[147]
Wei J, Shen J, Zhang X, et al. Simple one-step synthesis of water-soluble fluorescent carbon dots derived from paper ash. RSC Advances 2013; 3(32): 13119.
[http://dx.doi.org/10.1039/c3ra41751d]
[148]
Zhang JH, Niu A, Li J, Fu JW, Xu Q, Pei DS. In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish. Sci Rep 2016; 6: 37860.
[http://dx.doi.org/10.1038/srep37860] [PMID: 27886267]
[149]
Zheng L, Chi Y, Dong Y, Lin J, Wang B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 2009; 131(13): 4564-5.
[http://dx.doi.org/10.1021/ja809073f] [PMID: 19296587]
[150]
Pang P, Yan F, Li H, et al. Graphene quantum dots and Nafion composite as an ultrasensitive electrochemical sensor for the detection of dopamine. Anal Methods 2016; 8(24): 4912-8.
[http://dx.doi.org/10.1039/C6AY01254J]
[151]
Qu D, Zheng M, Du P, et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 2013; 5(24): 12272-7.
[http://dx.doi.org/10.1039/c3nr04402e] [PMID: 24150696]
[152]
Biswas P, Karn AK, Balasubramanian P, Kale PG. Biosensor for detection of dissolved chromium in potable water: A review. Biosens Bioelectron 2017; 94: 589-604.
[http://dx.doi.org/10.1016/j.bios.2017.03.043] [PMID: 28364706]
[153]
Yurish SY, Gomes MTSR. Smart Sensors and MEMS. NATO Science series. Series II: Mathematics. Physics and Chemistry 2003; 181: 1-489.
[154]
Perumal V, Hashim U. Advances in biosensors: Principle, architecture and applications. J Appl Biomed 2014; 12(1): 1-15.
[http://dx.doi.org/10.1016/j.jab.2013.02.001]
[155]
Thévenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: Recommended definitions and classification. Biosens Bioelectron 2001; 16(1-2): 121-31.
[PMID: 11261847]
[156]
Wang Y, Xu H, Zhang J, Li G. Electrochemical sensors for clinic analysis. Sensors (Basel) 2008; 8(4): 2043-81.
[http://dx.doi.org/10.3390/s8042043] [PMID: 27879810]
[157]
Akyilmaz E, Kozgus O, Türkmen H, Cetinkaya B. A mediated polyphenol oxidase biosensor immobilized by electropolymerization of 1,2-diamino benzene. Bioelectrochemistry 2010; 78(2): 135-40.
[http://dx.doi.org/10.1016/j.bioelechem.2009.09.003] [PMID: 19783226]
[158]
Venugopal V. Biosensors in fish production and quality control. Biosens Bioelectron 2002; 17(3): 147-57.
[http://dx.doi.org/10.1016/S0956-5663(01)00180-4] [PMID: 11839468]
[159]
Luong JH, Male KB, Glennon JD. Biosensor technology: Technology push versus market pull. Biotechnol Adv 2008; 26(5): 492-500.
[http://dx.doi.org/10.1016/j.biotechadv.2008.05.007] [PMID: 18577442]
[160]
Scognamiglio V, Pezzotti G, Pezzotti I, et al. Biosensors for effective environmental and agrifood protection and commercialization: From research to market. Mikrochim Acta 2010; 170(3-4): 215-25.
[http://dx.doi.org/10.1007/s00604-010-0313-5]
[161]
Feng H, Qian Z. Functional carbon quantum dots: A versatile platform for chemosensing and biosensing. Chem Rec 2018; 18(5): 491-505.
[http://dx.doi.org/10.1002/tcr.201700055] [PMID: 29171708]
[162]
Liu Q, Xu S, Niu C, et al. Distinguish cancer cells based on targeting turn-on fluorescence imaging by folate functionalized green emitting carbon dots. Biosens Bioelectron 2015; 64: 119-25.
[http://dx.doi.org/10.1016/j.bios.2014.08.052] [PMID: 25203943]
[163]
Gao N, Yang W, Nie H, et al. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens Bioelectron 2017; 96: 300-7.
[http://dx.doi.org/10.1016/j.bios.2017.05.019] [PMID: 28511113]
[164]
Yang K, Liu M, Wang Y, et al. Carbon dots derived from fungus for sensing hyaluronic acid and hyaluronidase. Sens Actuators B Chem 2017; 251: 503-8.
[http://dx.doi.org/10.1016/j.snb.2017.05.086]
[165]
Barua S, Gogoi S, Khan R. Fluorescence biosensor based on gold-carbon dot probe for efficient detection of cholesterol. Synth Met 2018; 244: 92-8.
[http://dx.doi.org/10.1016/j.synthmet.2018.07.010]
[166]
Ali J, Najeeb J, Asim Ali M, Farhan Aslam M, Raza A. Biosensors: Their Fundamentals, Designs, Types and Most Recent Impactful Applications: A Review. J Biosens Bioelectron 2017; 08(01)
[http://dx.doi.org/10.4172/2155-6210.1000235]
[167]
Shi H, Wei J, Qiang L, Chen X, Meng X. Fluorescent carbon dots for biolmaging and biosensing applications. J Biomed Nanotechnol 2014; 10(10): 2677-99.
[http://dx.doi.org/10.1166/jbn.2014.1881] [PMID: 25992414]
[168]
Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res 2015; 8(2): 355-81.
[http://dx.doi.org/10.1007/s12274-014-0644-3]
[169]
Li Y, Zhong Y, Zhang Y, Weng W, Li S. Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sens Actuators B Chem 2015; 206: 735-43.
[http://dx.doi.org/10.1016/j.snb.2014.09.016]
[170]
Yuan B, Xu C, Liu L, et al. Cu2O/NiOx/graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor. Electrochim Acta 2013; 104: 78-83.
[http://dx.doi.org/10.1016/j.electacta.2013.04.073]
[171]
Niu W-J, Li Y, Zhu R-H, Shan D, Fan Y-R, Zhang X-J. Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging. Sens Actuators B Chem 2015; 218: 229-36.
[http://dx.doi.org/10.1016/j.snb.2015.05.006]
[172]
Zhu X, Zhao T, Nie Z, Miao Z, Liu Y, Yao S. Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells. Nanoscale 2016; 8(4): 2205-11.
[http://dx.doi.org/10.1039/C5NR07826A] [PMID: 26730681]
[173]
Liu R, Li H, Kong W, et al. Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots. Mater Res Bull 2013; 48(7): 2529-34.
[http://dx.doi.org/10.1016/j.materresbull.2013.03.015]
[174]
Zhang R, Chen W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens Bioelectron 2014; 55: 83-90.
[http://dx.doi.org/10.1016/j.bios.2013.11.074] [PMID: 24365697]
[175]
Ngu PZZ, Chia SPP, Fong JFY, Ng SM. Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions. N Carbon Mater 2016; 31(2): 135-43.
[http://dx.doi.org/10.1016/S1872-5805(16)60008-2]
[176]
Gedda G, Lee C-Y, Lin Y-C, Wu H-f. Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sens Actuators B Chem 2016; 224: 396-403.
[http://dx.doi.org/10.1016/j.snb.2015.09.065]
[177]
Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem 2012; 84(14): 6220-4.
[http://dx.doi.org/10.1021/ac3012126] [PMID: 22686413]
[178]
Xu B, Zhao C, Wei W, et al. Aptamer carbon nanodot sandwich used for fluorescent detection of protein. Analyst (Lond) 2012; 137(23): 5483-6.
[http://dx.doi.org/10.1039/c2an36174d] [PMID: 23050264]
[179]
Liu J, Chen Y, Wang W, et al. “Switch-on” fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots-mno2 probe. J Agric Food Chem 2016; 64(1): 371-80.
[http://dx.doi.org/10.1021/acs.jafc.5b05726] [PMID: 26652202]
[180]
Hou J, Li H, Wang L, et al. Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta 2016; 146: 34-40.
[http://dx.doi.org/10.1016/j.talanta.2015.08.024] [PMID: 26695231]
[181]
Xu H, Yang X, Li G, Zhao C, Liao X. Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem 2015; 63(30): 6707-14.
[http://dx.doi.org/10.1021/acs.jafc.5b02319] [PMID: 26154603]
[182]
Pires NR, Santos CMW, Sousa RR. Paula RCMd, Cunha PLR, Feitosa JPA. Novel and fast microwave-assisted synthesis of carbon quantum dots from raw cashew gum. J Braz Chem Soc 2015; 26(6): 1274-82.
[183]
Lin L, Song X, Chen Y, et al. Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal Chim Acta 2015; 869: 89-95.
[http://dx.doi.org/10.1016/j.aca.2015.02.024] [PMID: 25818144]
[184]
Shen P, Xia Y. Synthesis-modification integration: One-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal Chem 2014; 86(11): 5323-9.
[http://dx.doi.org/10.1021/ac5001338] [PMID: 24694081]
[185]
Shi W, Wang Q, Long Y, et al. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun (Camb) 2011; 47(23): 6695-7.
[http://dx.doi.org/10.1039/c1cc11943e] [PMID: 21562663]
[186]
Lai IPJ, Harroun SG, Chen SY, Unnikrishnan B, Li YJ, Huang CC. Solid-state synthesis of self-functional carbon quantum dots for detection of bacteria and tumor cells. Sens Actuators B Chem 2016; 228: 465-70.
[http://dx.doi.org/10.1016/j.snb.2016.01.062]
[187]
Dang DK, Sundaram C, Ngo YLT, Chung JS, Kim EJ, Hu SH. One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag+ detection in aqueous solution. Sens Actuators B Chem 2018; 255: 3284-91.
[http://dx.doi.org/10.1016/j.snb.2017.09.155]
[188]
Zeng H, Li L, Ding Y, Zhuang Q. Simple and selective determination of 6-thioguanine by using polyethylenimine (PEI) functionalized carbon dots. Talanta 2018; 178: 879-85.
[http://dx.doi.org/10.1016/j.talanta.2017.09.087] [PMID: 29136909]
[189]
Zhang Y, Gao Z, Zhang W, Wang W, Chang J, Kai J. Fluorescent carbon dots as nanoprobe for determination of lidocaine hydrochloride. Sens Actuators B Chem 2018; 262: 928-37.
[http://dx.doi.org/10.1016/j.snb.2018.02.079]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy