Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Bioactive Algal-Derived Polysaccharides: Multi-Functionalization, Therapeutic Potential and Biomedical Applications

Author(s): Ida Idayu Muhamad*, Nabilah Zulkifli, Suguna a/p Selvakumaran and Nurul Asmak Md Lazim

Volume 25, Issue 11, 2019

Page: [1147 - 1162] Pages: 16

DOI: 10.2174/1381612825666190618152133

Price: $65

Abstract

Background: In recent decades, there has been an increased interest in the utilization of polysaccharides showing biological activity for various novel applications owing to their biocompatibility, biodegradability, non-toxicity, and some specific therapeutic activities. Increasing studies have started in the past few years to develop algal polysaccharides-based biomaterials for various applications.

Methods: Saccharide mapping or enzymatic profiling plays a role in quality control of polysaccharides. Whereby, in vitro and in vivo tests as well as toxicity level discriminating polysaccharides biological activities. Extraction and purification methods are performed in obtaining algal derived polysaccharides followed by chromatographic profiles of their active compounds, structural features, physicochemical properties, and reported biological activities.

Results: Marine algae are capable of synthesizing Glycosaminoglycans (GAGs) and non-GAGs or GAG mimetics such as sulfated glycans. The cell walls of algae are rich in sulfated polysaccharides, including alginate, carrageenan, ulvan and fucoidan. These biopolymers are widely used algal-derived polysaccharides for biological and biomedical applications due to their biocompatibility and availability. They constitute biochemical compounds that have multi-functionalization, therapeutic potential and immunomodulatory abilities, making them promising bioactive products and biomaterials with a wide range of biomedical applications.

Conclusion: Algal-derived polysaccharides with clearly elucidated compositions/structures, identified cellular activities, as well as desirable physical properties have shown the potential that may create new opportunities. They could be maximally exploited to serve as therapeutic tools such as immunoregulatory agents or drug delivery vehicles. Hence, novel strategies could be applied to tailor multi-functionalization of the polysaccharides from algal species with vast biomedical application potentials.

Keywords: Algal polysaccharides, bioactive, therapeutics, drug delivery, biomedical applications, Glycosaminoglycans.

[1]
Senni K, Pereira J, Gueniche F, et al. Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 2011; 9(9): 1664-81.
[http://dx.doi.org/10.3390/md9091664] [PMID: 22131964]
[2]
Laurienzo P. Marine polysaccharides in pharmaceutical applications: An overview. Mar Drugs 2010; 8(9): 2435-65.
[http://dx.doi.org/10.3390/md8092435] [PMID: 20948899]
[3]
Shriver Z, Raguram S, Sasisekharan R. Glycomics: A pathway to a class of new and improved therapeutics. Nat Rev Drug Discov 2004; 3(10): 863-73.
[http://dx.doi.org/10.1038/nrd1521] [PMID: 15459677]
[4]
Keeling PJ, Campo JD. Marine protists are not just big bacteria. Curr Biol 2017; 27(11): R541-9.
[http://dx.doi.org/10.1016/j.cub.2017.03.075] [PMID: 28586691]
[5]
Chiellini F, Morelli A. Ulvan: A versatile platform of biomaterials from renewable resources. Biomaterials 2017; 75-100.
[6]
Bleakley S, Hayes M. Algal Proteins: Extraction, application, and challenges concerning production. Foods 2017; 6(5): 1-3.
[http://dx.doi.org/10.3390/foods6050033] [PMID: 28445408]
[7]
Lim SJ, Aida WMW, Maskat MT, Mamot S, Ropien J, Mohd DM. Isolation and antioxidant capacity of fucoidan from selected Malaysian seaweeds. Food Hydrocoll 2014; 42: 280-8.
[http://dx.doi.org/10.1016/j.foodhyd.2014.03.007]
[8]
Holdt SL, Kraan S. Bioactive compounds in seaweed: Functional food applications and legislation. J Appl Phycol 2011; 23(3): 543-97.
[http://dx.doi.org/10.1007/s10811-010-9632-5]
[9]
Misurcova L, Jana OJ, Ambrožová JV. Algal Polysaccharides and HealthPolysaccharides: bioactivity and biotechnology. Switzerland: Springer Internat. Publ. 2015; pp. 109-44.
[http://dx.doi.org/10.1007/978-3-319-16298-0_24]
[10]
Xu S-Y, Huang X, Cheong K-L. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities. Mar Drugs 2017; 15(12): 388-404.
[http://dx.doi.org/10.3390/md15120388] [PMID: 29236064]
[11]
Cheong K-L, Wu D-T, Deng Y, et al. Qualitation and quantification of specific polysaccharides from Panax species using GC-MS, saccharide mapping and HPSEC-RID-MALLS. Carbohydr Polym 2016; 153: 47-54.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.077] [PMID: 27561470]
[12]
Seedevi PS, Sudharsan S, Vasanth KA, Srinivasan SV, Shanmugam A. Isolation and characterization of sulphated polysaccharides from Codium. Adv Appl Sci Res 2013; 4(5): 72-8.
[13]
Monsur HA, Jaswir I, Simsek S, Amid A, Alam Z. Chemical structure of sulfated polysaccharides from brown seaweed (Turbinaria turbinata). Int J Food Prop 2017; 20(7): 1457-69.
[http://dx.doi.org/10.1080/10942912.2016.1211144]
[14]
Lindahl U. Heparan sulfate-a polyanion with multiple messages. Pure Appl Chem 1997; 69: 1897-5.
[http://dx.doi.org/10.1351/pac199769091897]
[15]
Mulloy B, Linhardt RJ. Order out of complexity--protein structures that interact with heparin. Curr Opin Struct Biol 2001; 11(5): 623-8.
[http://dx.doi.org/10.1016/S0959-440X(00)00257-8] [PMID: 11785765]
[16]
Stringer SE. The role of heparan sulphate proteoglycans in angiogenesis. Biochem Soc Trans 2006; 34(Pt 3): 451-3.
[http://dx.doi.org/10.1042/BST0340451] [PMID: 16709184]
[17]
Gogly B, Dridi M, Hornebeck W, Bonnefoix M, Godeau G, Pellat B. Effect of heparin on the production of matrix metalloproteinases and tissue inhibitors of metalloproteinases by human dermal fibroblasts. Cell Biol Int 1999; 23(3): 203-9.
[http://dx.doi.org/10.1006/cbir.1998.0334] [PMID: 10562441]
[18]
Taylor KR, Gallo RL. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J 2006; 20(1): 9-22.
[http://dx.doi.org/10.1096/fj.05-4682rev] [PMID: 16394262]
[19]
Penc SF, Pomahac B, Winkler T, et al. Dermatan sulfate released after injury is a potent promoter of fibroblast growth factor-2 function. J Biol Chem 1998; 273(43): 28116-21.
[http://dx.doi.org/10.1074/jbc.273.43.28116] [PMID: 9774430]
[20]
Buczek-Thomas JA, Chu CL, Rich CB, Stone PJ, Foster JA, Nugent MA. Heparan sulfate depletion within pulmonary fibroblasts: implications for elastogenesis and repair. J Cell Physiol 2002; 192(3): 294-303.
[http://dx.doi.org/10.1002/jcp.10135] [PMID: 12124775]
[21]
Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998; 67: 609-52.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.609] [PMID: 9759499]
[22]
Ensminger ME, Ensminger AH. CarrageenanFoods Nutrition Encyclopedia. Washington: Two Volume Set CRC Press 1994; p. 349.
[23]
Mead J. 2013. (12 December, 2013). Paris Gourmet. Retrieved from Kappa Carrageenan: Seaweed Goes Haute Cuisine: https://www.parisgourmet.com/blog/kappa-carageenan-seaweed-goes-haute-cuisine
[24]
Patel A. 2014. (16 November, 2014). Altrafine Gums. Retrieved from The Five Different Forms of Carrageenan and its Significance in Industrial Applications: https://www.altrafine.com/blog/the-five-different-forms-of-carrageenan-and-its-significance-in-industrial-applications/
[25]
Necas J, Bartosikova L. Carrageenan: a review. Vet Med 2013; 58(4): 187-205.
[http://dx.doi.org/10.17221/6758-VETMED]
[26]
Se-Kwon K, Yong-Xin L. Medicinal Benefits of Sulfated Polysaccharides from Sea Vegetables. In Toldra' F, Ed. Advances in Food and Nutrition Research. Academic Press. 2011. 64: pp. 391-402.
[27]
Knutsen SH, Myslabodski DE, Larsen B, Usov AI. A modified system of nomenclature for red algal galactans. Bot Mar 1994; 37(2): 163-9.
[http://dx.doi.org/10.1515/botm.1994.37.2.163]
[28]
Kadam SU, Álvarez C, Tiwari BK, O’Donnell CP. Extraction of biomolecules from seaweedsSeaweed Sustainability. Dublin: Academic Press 2015; pp. 243-69.
[http://dx.doi.org/10.1016/B978-0-12-418697-2.00009-X]
[29]
Thanh-Sang V, Se-Kwon K. Chapter One - Marine-Derived Polysaccharides for Regulation of Allergic Response. In F. Toldra'. Ed, Advance in Food Nutrition and Research. Academic Publisher. 2014; 73: pp. 1-13.
[30]
Senni K, Gueniche F, Foucault-Bertaud A, et al. Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis. Arch Biochem Biophys 2006; 445(1): 56-64.
[http://dx.doi.org/10.1016/j.abb.2005.11.001] [PMID: 16364234]
[31]
Kim S-K, Chojnacka K. Marine Algae Extracts: Processes, Products, and Applications. Busan: John Wiley Sons 2015.
[http://dx.doi.org/10.1002/9783527679577]
[32]
Chevolot L, Mulloy B, Ratiskol J, Foucault A, Colliec-Jouault S. A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydr Res 2001; 330(4): 529-35.
[http://dx.doi.org/10.1016/S0008-6215(00)00314-1] [PMID: 11269406]
[33]
Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci 2012; 37(1): 106-26.
[34]
Ulaganathan T, Boniecki MT, Foran E, et al. New Ulvan-Degrading Polysaccharide Lyase Family: Structure and Catalytic Mechanism Suggests Convergent Evolution of Active Site Architecture. ACS Chem Biol 2017; 12(5): 1269-80.
[http://dx.doi.org/10.1021/acschembio.7b00126] [PMID: 28290654]
[35]
Paradossi G, Cavalieri F, Chiessi E. A conformational study on the algal polysaccharide ulvan. Macromolecules 2002; 35(16): 6404-11.
[http://dx.doi.org/10.1021/ma020134s]
[36]
Thanh TTT, Quach TMT, Nguyen TN, Vu Luong D, Bui ML, Tran TTV. Structure and cytotoxic activity of ulvan extracted from green seaweed Ulva lactuca. Int J Biol Macromol 2016; 93(Pt A): 695- 702. [http://dx.doi.org/10.1016/j.ijbiomac.2016.09.040] [PMID: 27637450]
[37]
Xu S-Y, Huang X, Cheong KL. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities. Mar Drugs 2017; 15(12): 388-404.
[http://dx.doi.org/10.3390/md15120388] [PMID: 29236064]
[38]
Jiménez-Escrig A, Sánchez-Muniz FJ. Chemical structure, physicochemical properties and effects on cholesterol metabolism Dietary fibre from edible seaweeds 2000. 585-98.
[39]
Béress A, Wassermann O, Tahhan S, et al. A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J Nat Prod 1993; 56(4): 478-88.
[http://dx.doi.org/10.1021/np50094a005] [PMID: 7684438]
[40]
Chen D, Wu XZ, Wen ZY. Sulfated polysaccharides and immune response: promoter or inhibitor? Panminerva Med 2008; 50(2): 177-83.
[PMID: 18607341]
[41]
Strong CH. Process or extracting carrageenan from seaweed United States Patent 3907770, 1975.
[42]
Luo M, Shao B, Nie W, et al. Antitumor and Adjuvant Activity of λ-carrageenan by Stimulating Immune Response in Cancer Immunotherapy. Sci Rep 2015; 5: 11062.
[http://dx.doi.org/10.1038/srep11062] [PMID: 26098663]
[43]
Semenov AV, Mazurov AV, Preobrazhenskaia ME, et al. [Sulfated polysaccharides as inhibitors of receptor activity of P-selectin and P-selectin-dependent inflammation]. Vopr Med Khim 1998; 44(2): 135-44.
[PMID: 9634715]
[44]
Manuhara GJ, Praseptiangga D, Riyanto RA. Originated from Karimun Jawa Islands. Aqua Proc 1996; 2016: 106-11.
[45]
Croce MA, Dyne K, Boraldi F, et al. Hyaluronan affects protein and collagen synthesis by in vitro human skin fibroblasts. Tissue Cell 2001; 33(4): 326-31.
[http://dx.doi.org/10.1054/tice.2001.0180] [PMID: 11521947]
[46]
Hu DJ, Cheong KL, Zhao J, Li SP. Chromatography in characterization of polysaccharides from medicinal plants and fungi. J Sep Sci 2013; 36(1): 1-19.
[http://dx.doi.org/10.1002/jssc.201200874] [PMID: 23225747]
[47]
Król Z, Malik M, Marycz K, Jarmoluk A. Physicochemical Properties of Biopolymer Hydrogels. Polym 2016; pp. 1-17.
[48]
Tan NAH, Muhamad II. Optimisation of Omega 3 Rich Oil extraction from elateriospermum tapos seed by microwave assisted aqueous enzymatic extraction. Chem Eng Trans 2017; 56: 1783-8.
[49]
Yuan Y, Macquarrie D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr Polym 2015; 129: 101-7.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.057] [PMID: 26050894]
[50]
Pomin VH, Mourão PA. Structure, biology, evolution, and medical importance of sulfated fucans and galactans. Glycobiology 2008; 18(12): 1016-27.
[http://dx.doi.org/10.1093/glycob/cwn085] [PMID: 18796647]
[51]
Paradossi G, Cavalieri F, Pizzoferrato L, Liquori AM. A physico-chemical study on the polysaccharide ulvan from hot water extraction of the macroalga Ulva. Int J Biol Macromol 1999; 25(4): 309-15.
[http://dx.doi.org/10.1016/S0141-8130(99)00049-5] [PMID: 10456771]
[52]
Lahaya M, Robic A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromol 2007; 8(6): 1765-74.
[53]
Robic AC, Rondeau-Mouro J-FS, Lahaye YLM. Structure and interactions of ulvan in the cell wall of the marine green algae Ulva rotundata (Ulvales, Chlorophyceae). Carbohydr Polym 2009; 77(2): 206-16.
[http://dx.doi.org/10.1016/j.carbpol.2008.12.023]
[54]
Robic A, Sassi J, Dion P, Lerat Y, Lahaye M. Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolym 2009; 91(8): 652-64.
[55]
Trivedi N, Baghel RS, Bothwell J, Gupta V, Reddy CRK, Lali AM, et al. 2016. (29 July, 2016). An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Retrieved from Scientific Reports: https://www.nature.com/articles/srep30728#ref32
[http://dx.doi.org/10.1038/srep30728]
[56]
Alves A, Caridade SG, Mano JF, Sousa RA, Reis RL. Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohydr Res 2010; 345(15): 2194-200.
[57]
Asian Scientist Newsroom. (26 May, 2014). 3D printed seaweed for medical implants. Retrieved from Asian Scientist: https://www.asianscientist.com/2014/05/in-the-lab/3d-printed-seaweed-medical-implants-2014/
[58]
Pezoa-Conte R, Leyton A, Baccini A, et al. Aqueous Extraction of the Sulfated Polysaccharide Ulvan from the Green Alga Ulva rigida-Kinetics and Modeling. BioEnergy Res 2017; 10: 915-28.
[http://dx.doi.org/10.1007/s12155-017-9853-4]
[59]
Radhouani H, Gonçalves C, Bacelar AH, Gertrudes A, Correia C, Oliveira JM, et al. Ulvan, a marine-inspired biomaterial with superior therapeutic properties?. TermStem 2014; pp. 1-2.
[60]
Costa C, Alves A, Pinto PR, et al. Characterization of ulvan extracts to assess the effect of different steps in the extraction procedure. Carbohydr Polym 2012; 88(2): 537-46.
[61]
Striegel A, Yau WW, Kirkland JJ, Bly DD. Modern Size-Exclusion Liquid Chromatography: Practice of Gel Permeation and Gel Filtration Chromatography. Hoboken, NJ, USA: John Wiley Sons, Inc. 2009; pp. 1-12.
[http://dx.doi.org/10.1002/9780470442876]
[62]
Hay ID, Rehman ZU, Moradali MF, Wang Y, Rehm BHA. Microbial alginate production, modification andits applications. Microbial Technology Palmerstan North: John Wiley Sons Ltd and Society for Applied Microbiology 2013; 2013: 637-47.
[63]
Qi J, Kim SM. Characterization and immunomodulatory activities of polysaccharides extracted from green alga Chlorella ellipsoidea. Int J Biol Macromol 2017; 95: 106-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.039] [PMID: 27856321]
[64]
Martino AD. (10 March, 2015) Retrieved from Polysaccharides based nanoparticles for drug delivery application https://www.slideshare.net/antoniodimartino/ppt-presentation-45652221
[65]
Barahona T, Encinas MV, Imarai M, et al. Bioactive polysaccharides from marine algae. Bioactive Carbohyd Diet Fibre 2014; 4(2): 125-38.
[http://dx.doi.org/10.1016/j.bcdf.2014.09.002]
[66]
Ale MT, Mikkelsen JD, Meyer AS. Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar Drugs 2011; 9(10): 2106-30.
[http://dx.doi.org/10.3390/md9102106] [PMID: 22073012]
[67]
Andersen T, Auk-Emblem P, Dornish M. 3D Cell Culture in Alginate Hydrogels. Microarrays (Basel) 2015; 4(2): 133-61.
[http://dx.doi.org/10.3390/microarrays4020133] [PMID: 27600217]
[68]
Pereira L, Gheda SF, Ribeiro-Claro PJA. Analysis by vibrational spectroscopy of seaweed polysachharides with potential use in food, pharmaceutical, and cosmetic industries. Int J Carbohydr Chem 2013; 2013537202
[69]
Campelo CS, Lima LD, Rebêlo LM, Mantovani D, Beppu MM, Vieira RS. In vitro evaluation of anti-calcification and anti-coagulation on sulfonated chitosan and carrageenan surfaces. Mater Sci Eng C 2016; 59: 241-8.
[http://dx.doi.org/10.1016/j.msec.2015.10.020] [PMID: 26652370]
[70]
Król Ż, Marycz K, Kulig D, Marędziak M, Jarmoluk A. Cytotoxicity, Bactericidal, and Antioxidant Activity of Sodium Alginate Hydrosols Treated with Direct Electric Current. Int J Mol Sci 2017; 18(3): 678-19.
[http://dx.doi.org/10.3390/ijms18030678] [PMID: 28327520]
[71]
Hsu CS, Block LH. Anionic gels as vehicles for electrically-modulated drug delivery.I. Solvent and drug transport phenomena. Pharm Res 1996; 13(12): 1865-70.
[72]
Mushollaeni W. The physicochemical characteristics of sodium alginate. Afr J Food Sci 2011; 5: 349-52.
[73]
FCC. 1993. Food Chemical Codex. National Academy Press, 434.
[74]
Robic A, Sassi JF, Dion P, Lerat Y, Lahaye M. Seasonal Variability of Physicochemical and Rheological Properties of Ulvan in Two Ulva Species (Chlorophyta) from the Brittany Coast(1). J Phycol 2009; 45(4): 962-73.
[http://dx.doi.org/10.1111/j.1529-8817.2009.00699.x] [PMID: 27034227]
[75]
Tabarsa M, You S, Dabaghian EH, Surayot U. Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities. Yao Wu Shi Pin Fen Xi 2018; 26(2): 599-608.
[http://dx.doi.org/10.1016/j.jfda.2017.07.016] [PMID: 29567229]
[76]
Selvakumaran S, Muhamad II. Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: Effect of cross linker. Int J Pharm 2015; 496(2): 323-31.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.005] [PMID: 26453788]
[77]
Selvakumaran S, Muhamad II, Abd Razak SI. Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: Effect of pore forming agents. Carbohydr Polym 2016; 135(2): 207-14.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.051] [PMID: 26453870]
[78]
Alekseyenko TV, Zhanayeva SY, Venediktova AA, et al. Antitumor and antimetastatic activity of fucoidan, a sulfated polysaccharide isolated from the Okhotsk Sea Fucus evanescens brown alga. Bull Exp Biol Med 2007; 143(6): 730-2.
[http://dx.doi.org/10.1007/s10517-007-0226-4] [PMID: 18239813]
[79]
Wang FF, Yao Z, Hai GW, Sheng XZ, Nan NZ, Gai X. Antibacterial Activities of Kappa-Carrageenan Oligosaccharides. Appl Mech Mater 2012; 108: 194-9.
[80]
Rioux L-E, Sylvie LT. Seaweed carbohydratesSeaweed Sustainability. Academic Press 2015; pp. 141-92.
[http://dx.doi.org/10.1016/B978-0-12-418697-2.00007-6]
[81]
Ahmed ABA. Mohaddeseh Adel, Pegah Karimi, Mahvash Peidayesh Chapter Ten - Pharmaceutical, Cosmeceutical, and Traditional Applications of Marine CarbohydratesAdvances in Food and Nutrition Research. Academic Press 2014; Vol. 73: pp. 197-220.
[82]
Ruocco N, Costantini S, Guariniello S, Costantini M. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential. Molecules 2016; 21(5): 1-16.
[http://dx.doi.org/10.3390/molecules21050551] [PMID: 27128892]
[83]
Pai-An H, Xiao-Zhen L, Ko-Liang K, Fu-Yin H. Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells. Materials (Basel) 2017; 10(3): 291.
[84]
Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm 2002; 28(6): 621-30.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[85]
Morelli A, Puppi D, Chiellini F. Perspectives on Biomedical Applications of UlvanSeaweed Polysaccharides. Elsevier 2017; pp. 305-30.
[http://dx.doi.org/10.1016/B978-0-12-809816-5.00016-5]
[86]
Makarenkova ID, Deriabin PG, L’vov DK, Zviagintseva TN, Besednova NN. [Antiviral activity of sulfated polysaccharide from the brown algae Laminaria japonica against avian influenza A (H5N1) virus infection in the cultured cells]. Vopr Virusol 2010; 55(1): 41-5.
[PMID: 20364671]
[87]
Dockal M, Till S, Zhang Z, Knappe S, Reutterer S, Quinn C. Structure-activity relationship of the pro- and anticoagulant effects of Fucus vesiculosus fucoidan. Thromb Haemost 2014; 111(3): 429-37.
[88]
Sung-Mi C, Eun-Jin J, Jeong-Dan C. Synergistic Effect between Fucoidan and Antibiotics against Clinic Methicillin-Resistant Staphylococcus aureus. Adv Biosci Biotechnol 2015; 6: 275-85.
[http://dx.doi.org/10.4236/abb.2015.64027]
[89]
Pomin VH. Fucanomics and galactanomics: marine distribution, medicinal impact, conceptions, and challenges. Mar Drugs 2012; 10(4): 793-811.
[http://dx.doi.org/10.3390/md10040793] [PMID: 22690144]
[90]
Pomin VH. Fucanomics and galactanomics: current status in drug discovery, mechanisms of action and role of the well-defined structures. Biochim Biophys Acta 2012; 1820(12): 1971-9.
[http://dx.doi.org/10.1016/j.bbagen.2012.08.022] [PMID: 22964140]
[91]
Pomin VH. Marine Non-Glycosaminoglycan Sulfated Glycans as Potential Pharmaceuticals. Pharmaceuticals (Basel) 2015; 8(4): 848-64.
[http://dx.doi.org/10.3390/ph8040848] [PMID: 26690451]
[92]
Meyer LJM, Russell SB, Russell JD, et al. Reduced hyaluronan in keloid tissue and cultured keloid fibroblasts. J Invest Dermatol 2000; 114(5): 953-9.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00950.x] [PMID: 10771477]
[93]
Berri M, Olivier M, Holbert S, et al. Ulvan from Ulva armoricana (Chlorophyta) activates the PI3K/Akt signalling pathway via TLR4 to induce intestinal cytokine production. Algal Res 2017; 28: 39-47.
[http://dx.doi.org/10.1016/j.algal.2017.10.008]
[94]
Hwang P-A, Chien S-Y, Chan Y-L, et al. Inhibition of Lipopolysaccharide (LPS)-induced inflammatory responses by Sargassum hemiphyllum sulfated polysaccharide extract in RAW 264.7 macrophage cells. J Agric Food Chem 2011; 59(5): 2062-8.
[http://dx.doi.org/10.1021/jf1043647] [PMID: 21322561]
[95]
Vo TS, Ngo D, Kim SK. Potential targets for anti-inflammatory and anti-allergic activities of marine algae: an overview. Inflamm Allergy Drug Targets 2012; 11(2): 90-101.
[96]
Hwang P-A, Hung YL, Tsai Y-K, Chien S-Y, Kong Z-L. The brown seaweed Sargassum hemiphyllum exhibits α-amylase and α-glucosidase inhibitory activity and enhances insulin release in vitro. Cytotechnology 2015; 67(4): 653-60.
[http://dx.doi.org/10.1007/s10616-014-9745-9] [PMID: 25344877]
[97]
Karaki N, Sebaaly C, Chahine N, et al. The antioxidant and anticoagulant activities of polysaccharides isolated from the brown algae Dictyopteris polypodioides growing on the Lebanese coast. J Appl Pharm Sci 2013; 3: 43-51.
[98]
Helliwell KE, Lawrence AD, Holzer A, et al. Cyanobacteria and eukaryotic algae use different chemical variants of vitamin B12. Curr Biol 2016; 26(8): 999-1008.
[http://dx.doi.org/10.1016/j.cub.2016.02.041] [PMID: 27040778]
[99]
Kouakou K, Schepetkin IA, Jun S, et al. Immunomodulatory activity of polysaccharides isolated from Clerodendrum splendens: beneficial effects in experimental autoimmune encephalomyelitis. BMC Complement Altern Med 2013; 13: 149.
[http://dx.doi.org/10.1186/1472-6882-13-149] [PMID: 23806004]
[100]
Górska S, Hermanova P, Ciekot J, et al. Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic Lactobacillus casei LOCK 0919. Glycobiology 2016; 26(9): 1014-24.
[http://dx.doi.org/10.1093/glycob/cww047] [PMID: 27102285]
[101]
Jiao G, Yu G, Zhang J, Stephen Ewart H. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 2011; 9(2): 196-223.
[102]
Tsuji RF, Hoshino K, Noro Y, et al. Suppression of allergic reaction by lambda-carrageenan: Toll-like receptor 4/MyD88-dependent and -independent modulation of immunity. Clin Exp Allergy 2003; 33(2): 249-58.
[http://dx.doi.org/10.1046/j.1365-2222.2003.01575.x] [PMID: 12580919]
[103]
Tabarsa M, Park GM, Shin IS, Lee E, Kim JK, You S. Structure-activity relationships of sulfated glycoproteins from Codium fragile on nitric oxide releasing capacity from RAW264.7 Cells. Mar Biotechnol (NY) 2015; 17(3): 266-76.
[http://dx.doi.org/10.1007/s10126-015-9615-2] [PMID: 25627693]
[104]
Pereira MS, Mulloy B, Mourão PA. Structure and anticoagulant activity of sulfated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J Biol Chem 1999; 274(12): 7656-67.
[http://dx.doi.org/10.1074/jbc.274.12.7656] [PMID: 10075653]
[105]
Shanmugam M, Ramavat BK, Mody KH, Oza RM, Tewari A. Distribution of heparinoid-active sulphated polysaccharides in some Indian marine green algae. Indian J Geo-Mar Sci 2001; 30: 222-7.
[106]
Matsubara K, Matsuura Y, Bacic A, Liao M, Hori K, Miyazawa K. Anticoagulant properties of a sulfated galactan preparation from a marine green alga, Codium cylindricum. Int J Biol Macromol 2001; 28(5): 395-9.
[http://dx.doi.org/10.1016/S0141-8130(01)00137-4] [PMID: 11325427]
[107]
Shanmugam M, Mody KH, Siddhanta AK. Blood anticoagulant sulphated polysaccharides of the marine green algae Codium dwarkense (Boergs.) and C. tomentosum (Huds.) Stackh. Indian J Exp Biol 2001; 39(4): 365-70.
[PMID: 11491583]
[108]
Ayah A, Iwona C, Grzegorz PB, Rashed F, Mette HT. Methods for upstream extraction and chemical characterization of secondary metabolites from algae biomass. Adv Tech Biol Med 2016; 4(1): 163.
[109]
Vasconcelos AA, Pomin VH. Marine carbohydrate-based compounds with medicinal properties. Mar Drugs 2018; 16(7): 233-61.
[http://dx.doi.org/10.3390/md16070233] [PMID: 29987239]
[110]
Zorofchian Moghadamtousi S, Karimian H, Khanabdali R, et al. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. ScientifiWorldJournal 2014; 2014768323
[http://dx.doi.org/10.1155/2014/768323] [PMID: 24526922]
[111]
Usoltseva Menshova RV, Anastyuk SD, Shevchenko NM, Zvyagintseva TN, Ermakova SP. The comparison of structure and anticancer activity in vitro of polysaccharides from brown algae Alaria marginata and A. angusta. Carbohydr Polym 2016; 153: 258-65.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.103] [PMID: 27561495]
[112]
Zhou G, Sheng W, Yao W, Wang C. Effect of low molecular lambda-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacol Res 2006; 53(2): 129-34.
[http://dx.doi.org/10.1016/j.phrs.2005.09.009] [PMID: 16310373]
[113]
Kang Y, Wang Z-J, Xie D, et al. Characterization and Potential Antitumor Activity of Polysaccharide from Gracilariopsis lemaneiformis. Mar Drugs 2017; 15(4): 100.
[http://dx.doi.org/10.3390/md15040100] [PMID: 28353631]
[114]
Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD, Meyer AS. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J Biol Macromol 2011; 49(3): 331-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.05.009] [PMID: 21624396]
[115]
Synytsya A, Woo-Jung K, Sung-Min K, et al. Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydr Polym 2010; 81(1): 41-8.
[116]
Hatrika A, Emir B. Trabectedin (ET-743) from Marine Tunicate for Cancer Treatment.Handbook of Anticancer Drugs from Marine Origin Manisa: Springer International Publishing Switzerland. 2014; pp. 397-8.
[117]
Kramer W. Antilipidemic Drug Therapy Today and in the FutureMetabolic Control Handbook of Experimental PharmacologyCham. Springer 2015; p. 233.
[http://dx.doi.org/10.1007/164_2015_15]
[118]
Khalid MZ, Mohammad Z, Muhammad A. Antiglycaemic and Antipilidaemic Effects.Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Composites Netherlands: Matthew Deans. 2017; p. 242.
[119]
Byeong-Dae C, Yeung JC. Chapter 2 - Nutraceutical Functionalities of Polysaccharides from Marine Invertebrates. In Kim S.-K. ed., Advances in Food and Nutrition Research: Marine Medicinal Food Pukyong: Academic Press 2012; 65:, pp. 11-30.
[120]
Pengzhan Y, Ning L, Xiguang L, Gefei Z, Quanbin Z, Pengcheng L. Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacol Res 2003; 48(6): 543-9.
[http://dx.doi.org/10.1016/S1043-6618(03)00215-9] [PMID: 14527817]
[121]
Tzianabos AO. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev 2000; 13(4): 523-33.
[http://dx.doi.org/10.1128/CMR.13.4.523] [PMID: 11023954]
[122]
Jayachandran VSA-K. Preparations and Applications of Alginate Nanoparticle.Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications Amsterdam: Mathhew Deans. 2017; pp. 251-61.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy