[1]
Dillon SC, Zhang X, Trievel RC, Cheng X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 2005; 6(8): 227.
[2]
Barkway J. Regeneration through reading. Public Library J 2007; 22: 13.
[3]
Fritz HW. Revolution and Regeneration. Libr J 1983; 108: 1480.
[4]
Sánchez Alvarado A. Planarian regeneration: its end is its beginning. Cell 2006; 124(2): 241-5.
[5]
Sánchez Alvarado A. Stem cells and the Planarian Schmidtea mediterranea. C R Biol 2007; 330(6-7): 498-503.
[6]
Reddien PW, Sánchez Alvarado A. Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol 2004; 20: 725-57.
[7]
Owlarn S, Klenner F, Schmidt D, et al. Generic wound signals initiate regeneration in missing-tissue contexts. Nat Commun 2017; 8(1): 2282.
[8]
Eisenhoffer GT, Kang H, Sánchez Alvarado A. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 2008; 3(3): 327-39.
[9]
Tanaka EM, Reddien PW. The cellular basis for animal regeneration. Dev Cell 2011; 21(1): 172-85.
[10]
Knapp D, Tanaka EM. Regeneration and reprogramming. Curr Opin Genet Dev 2012; 22(5): 485-93.
[11]
Eguizabal C, Montserrat N, Veiga A, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine. Semin Reprod Med 2013; 31(1): 82-94.
[12]
Kaul H, Ventikos Y. On the genealogy of tissue engineering and regenerative medicine. Tissue Eng Part B Rev 2015; 21(2): 203-17.
[13]
Ingber DE, Levin M. What lies at the interface of regenerative medicine and developmental biology? Development 2007; 134(14): 2541-7.
[14]
Sylvester KG, Longaker MT. Stem cells: review and update. Arch Surg 2004; 139(1): 93-9.
[15]
Weissman IL. Stem cells--scientific, medical, and political issues. N Engl J Med 2002; 346(20): 1576-9.
[16]
Poss KD. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 2010; 11(10): 710-22.
[17]
Saló E. The power of regeneration and the stem-cell kingdom: freshwater planarians (Platyhelminthes). BioEssays 2006; 28(5): 546-59.
[18]
Falanga V. Stem cells in tissue repair and regeneration. J Invest Dermatol 2012; 132(6): 1538-41.
[19]
Chagastelles PC, Nardi NB. Biology of stem cells: an overview. Kidney Int Supp (2011) 2011; 1(3): 63-7.
[20]
Loh YH, Agarwal S, Park IH, et al. Generation of induced pluripotent stem cells from human blood. Blood 2009; 113(22): 5476-9.
[21]
Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 2011; 476(7361): 409-13.
[22]
Cai S, Fu X, Sheng Z. Dedifferentiation: A new approach in stem cell research. Bioscience 2007; 57: 655-62.
[23]
Jopling C, Boue S, Izpisua Belmonte JC. Dedifferentiation, transdifferentiation and reprogramming: Three routes to regeneration. Nat Rev Mol Cell Biol 2011; 12(2): 79-89.
[24]
Soufi A, Dalton S. Cycling through developmental decisions: how cell cycle dynamics control pluripotency, differentiation and reprogramming. Development 2016; 143(23): 4301-11.
[25]
Oliveri RS. Epigenetic dedifferentiation of somatic cells into pluripotency: cellular alchemy in the age of regenerative medicine? Regen Med 2007; 2(5): 795-816.
[26]
Xu J, Du Y, Deng H. Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 2015; 16(2): 119-34.
[27]
Shen C-N, Horb ME, Slack JM, Tosh D. Transdifferentiation of pancreas to liver. Mech Dev 2003; 120(1): 107-16.
[28]
Ma X, Kong L, Zhu S. Reprogramming cell fates by small molecules. Protein Cell 2017; 8(5): 328-48.
[29]
Sancho-Martinez I, Ocampo A, Izpisua Belmonte JC. Reprogramming by lineage specifiers: blurring the lines between pluripotency and differentiation. Curr Opin Genet Dev 2014; 28: 57-63.
[30]
Garza-Garcia AA, Driscoll PC, Brockes JP. Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders. Integr Comp Biol 2010; 50(4): 528-35.
[31]
Sánchez Alvarado A, Tsonis PA. Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet 2006; 7(11): 873-84.
[32]
Holstein TW, Hobmayer E, Technau U. Cnidarians: an evolutionarily conserved model system for regeneration? Dev Dyn 2003; 226(2): 257-67.
[33]
Poss KD. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 2010; 11(10): 710-22.
[34]
Birnbaum KD, Sánchez Alvarado A. Slicing across kingdoms: Regeneration in plants and animals. Cell 2008; 132(4): 697-710.
[35]
Ishida T, Nakajima T, Kudo A, Kawakami A. Phosphorylation of Junb family proteins by the Jun N-terminal kinase supports tissue regeneration in zebrafish. Dev Biol 2010; 340(2): 468-79.
[36]
Mescher AL, Neff AW. Regenerative capacity and the developing immune system. Adv Biochem Eng Biotechnol 2005; 93: 39-66.
[37]
Aurora AB, Olson EN. Immune modulation of stem cells and regeneration. Cell Stem Cell 2014; 15(1): 14-25.
[38]
Pechersky AV, Pechersky VI, Aseev MV, Droblenkov AV, Semiglazov VF. Immune system and regeneration. J Stem Cells 2016; 11(2): 69-87.
[39]
Rouhana L, Tasaki J. Epigenetics and shared Molecular Processes in the regeneration of complex structures. Stem Cells Int 2016.20166947395
[40]
Bornelöv S, Reynolds N, Xenophontos M, et al. The nucleosome remodeling and deacetylation complex modulates chromatin structure at sites of active transcription to fine-tune gene expression. Mol Cell 2018; 71(1): 56-72.e4.
[41]
Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 2010; 330(6004): 612-6.
[42]
Woodcock CL, Dimitrov S. Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 2001; 11(2): 130-5.
[43]
Grigoryev SA. Chromatin higher-order holding: a perspective with linker DNA angles. Biophys J 2018; 114(10): 2290-7.
[44]
Garcia-Saez I, Menoni H, Boopathi R, et al. Structure of an H1-bound 6-nucleosome array reveals an untwisted two-start chromatin fiber conformation. Mol Cell 2018; 72(5): 902-915.e7.
[45]
Eissenberg JC, Shilatifard A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol 2010; 339(2): 240-9.
[46]
Groth A, Rocha W, Verreault A, Almouzni G. Chromatin challenges during DNA replication and repair. Cell 2007; 128(4): 721-33.
[47]
McGhee JD, Felsenfeld G. Nucleosome structure. Annu Rev Biochem 1980; 49: 1115-56.
[48]
Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature 2003; 423(6936): 145-50.
[49]
Schneider R, Bannister AJ, Kouzarides T. Unsafe SETs: histone lysine methyltransferases and cancer. Trends Biochem Sci 2002; 27(8): 396-402.
[50]
Pullirsch D, Härtel R, Kishimoto H, Leeb M, Steiner G, Wutz A. The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development 2010; 137(6): 935-43.
[51]
Cutter AR, Hayes JJ. A brief review of nucleosome structure. FEBS Lett 2015; 589(20 Pt A): 2914-22.
[52]
Qureshi IA, Mehler MF. Emerging role of epigenetics in stroke: part 1: DNA methylation and chromatin modifications. Arch Neurol 2010; 67(11): 1316-22.
[53]
Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D. FACT facilitates transcription-dependent nucleosome alteration. Science 2003; 301(5636): 1090-3.
[54]
Finch JT, Lutter LC, Rhodes D, et al. Structure of nucleosome core particles of chromatin. Nature 1977; 269(5623): 29-36.
[55]
Santos-Rosa H, Caldas C. Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 2005; 41(16): 2381-402.
[56]
Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. Nature 2002; 419(6905): 407-11.
[57]
Ng HH, Robert F, Young RA, Struhl K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 2003; 11(3): 709-19.
[58]
Grewal SIS, Rice JC. Regulation of heterochromatin by histone methylation and small RNAs. Curr Opin Cell Biol 2004; 16(3): 230-8.
[59]
Cheung P, Lau P. Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol 2005; 19(3): 563-73.
[60]
Santos J, Pereira CF, Di-Gregorio A, et al. Differences in the epigenetic and reprogramming properties of pluripotent and extra-embryonic stem cells implicate chromatin remodelling as an important early event in the developing mouse embryo. Epigenetics Chromatin 2010; 3: 1.
[61]
Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell 2007; 128(4): 635-8.
[62]
Lehner B. Genotype to phenotype: lessons from model organisms for human genetics. Nat Rev Genet 2013; 14(3): 168-78.
[63]
Biémont C. From genotype to phenotype. What do epigenetics and epigenomics tell us? Heredity 2010; 105(1): 1-3.
[64]
Costa FF. Non-coding RNAs, epigenetics and complexity. Gene 2008; 410(1): 9-17.
[65]
Vincent A, Van Seuningen I. Epigenetics, stem cells and epithelial cell fate. Differentiation 2009; 78(2-3): 99-107.
[66]
Spivakov M, Fisher AG. Epigenetic signatures of stem-cell identity. Nat Rev Genet 2007; 8(4): 263-71.
[67]
Jones PA. DNA methylation and cancer. Oncogene 2002; 21(35): 5358-60.
[68]
Lachner M, Jenuwein T. The many faces of histone lysine methylation. Curr Opin Cell Biol 2002; 14(3): 286-98.
[69]
Völkel P, Angrand PO. The control of histone lysine methylation in epigenetic regulation. Biochimie 2007; 89(1): 1-20.
[70]
Sang Y, Wu MF, Wagner D. The stem cell--chromatin connection. Semin Cell Dev Biol 2009; 20(9): 1143-8.
[71]
Bannister AJ, Kouzarides T. Reversing histone methylation. Nature 2005; 436(7054): 1103-6.
[72]
Jenuwein T, Allis CD. Translating the Histone Code Science 2001; 293(5532): 1074-80.
[73]
Sims RJ III, Nishioka K, Reinberg D. Histone lysine methylation: a signature for chromatin function. Trends Genet 2003; 19(11): 629-39.
[74]
Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta 2014; 1839(12): 1362-72.
[75]
Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 2005; 6(11): 838-49.
[76]
Guo L, Yu Y, Law JA, Zhang X. SET DOMAIN GROUP2 is the major histone H3 lysine [corrected] 4 trimethyltransferase in Arabidopsis. Proc Natl Acad Sci USA 2010; 107(43): 18557-62.
[77]
Dorigo B, Schalch T, Bystricky K, Richmond TJ. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 2003; 327(1): 85-96.
[78]
Iwasaki W, Miya Y, Horikoshi N, et al. Contribution of histone N-terminal tails to the structure and stability of nucleosomes. FEBS Open Bio 2013; 3: 363-9.
[79]
Berr A, McCallum EJ, Ménard R, et al. Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. Plant Cell 2010; 22(10): 3232-48.
[80]
Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol 2003; 15(2): 172-83.
[81]
Trojer P, Reinberg D. Histone lysine demethylases and their impact on epigenetics. Cell 2006; 125(2): 213-7.
[82]
Terranova R, Pujol N, Fasano L, Djabali M. Characterisation of set-1, a conserved PR/SET domain gene in Caenorhabditis elegans. Gene 2002; 292(1-2): 33-41.
[83]
Miller T, Krogan NJ, Dover J, et al. COMPASS: A complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA 2001; 98(23): 12902-7.
[84]
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26: 2119-37.
[85]
Hubert A, Henderson JM, Ross KG, Cowles MW, Torres J, Zayas RM. Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases. Epigenetics 2013; 8(1): 79-91.
[86]
Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2011; 2(6): 607-17.
[87]
Robertson KD. DNA methylation and chromatin - unraveling the tangled web. Oncogene 2002; 21(35): 5361-79.
[88]
Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 1993; 3(2): 226-31.
[89]
Górnikiewicz B, Ronowicz A, Podolak J, Madanecki P, Stanisławska-Sachadyn A, Sachadyn P. Epigenetic basis of regeneration: analysis of genomic DNA methylation profiles in the MRL/MpJ mouse. DNA Res 2013; 20(6): 605-21.
[90]
Zhu X, Xiao C, Xiong JW. Epigenetic regulation of organ regeneration in Zebrafish. J Cardiovasc Dev Dis 2018; 5(4): 57.
[91]
Aluru N, Karchner SI, Krick KS, Zhu W, Liu J. Role of DNA
methylation in altered gene expression patterns in adult zebrafish
(Danio rerio) exposed to 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB
126). Environl Epigenet 2018. 4: dvy005.
[92]
Javaid N, Choi S. Acetylation- and methylation-related epigenetic proteins in the context of their targets. Genes 2017; 8(8): 196.
[93]
Robb SMC, Sánchez Alvarado A. Histone modifications and regeneration in the planarian Schmidtea mediterranea. Curr Top Dev Biol 2014; 108: 71-93.
[94]
Wan J, Goldman D. Retina regeneration in zebrafish. Curr Opin Genet Dev 2016; 40: 41-7.
[95]
Mitra S, Sharma P, Kaur S, et al. Histone Deacetylase-mediated
Müller glia reprogramming through Her4.1-Lin28a axis is essential
for retina regeneration in zebrafish. iScience 2018; 7: 68-84.
[96]
He Y, Tang D, Li W, Chai R, Li H. Histone deacetylase 1 is required for the development of the zebrafish inner ear. Sci Rep 2016; 6: 16535.
[97]
Palmisano I, Di Giovanni S. Advances and limitations of current epigenetic studies onvestigating mammalian axonal regeneration. Neurotherapeutics 2018; 15(3): 529-40.
[98]
Wang GL, Salisbury E, Shi X, Timchenko L, Medrano EE, Timchenko NA. HDAC1 promotes liver proliferation in young mice via interactions with C/EBPbeta. J Biol Chem 2008; 283(38): 26179-87.