Review Article

抗布氏锥虫药物发现中的类黄酮衍生的特权支架

卷 20, 期 12, 2019

页: [1295 - 1314] 页: 20

弟呕挨: 10.2174/1389450120666190618114857

价格: $65

摘要

背景:人类非洲锥虫病(HAT),也称为昏睡病,是世界卫生组织列出的20种被忽视的热带病之一,如果不及时治疗会导致死亡。这种疾病是由冈比亚布氏锥虫(格鲁吉斯是一种慢性形式的非洲西部和中部)以及布鲁氏罗氏体(T. brucei rhodesiense)引起的,该种是非洲东部和南部的一种急性形式。许多报道都强调了黄酮类化合物对T. brucei的有效性。目的:本综述总结了目前使用黄酮类化合物作为潜在治疗HAT的先导化合物的观点和观点。 方法:通过参考教科书和科学数据库(SciFinder,PubMed,Science Direct,Wiley,ACS,SciELO,Google Scholar,Springer等)从开始到2月,对天然存在的和合成的抗T布鲁氏菌黄酮类进行了文献检索。 2019。 结果:据报道,从植物和物种的不同部分分离的黄酮类化合物对T.brucei表现出中到高的体外抗锥体体活性。此外,合成黄酮类化合物显示出抗T.布鲁西活动。生物活性类黄酮与布氏锥虫蛋白靶标的分子相互作用显示出有希望的结果。 结论:根据体外抗T brucei研究,有证据表明黄酮类化合物可能是潜在治疗HAT的先导化合物。然而,需要毒理学研究以及体外活性类黄酮的作用机制来支持它们作为治疗HAT的潜在线索的用途。

关键词: 人类非洲锥虫病,黄酮类化合物,分子靶点,药物发现,被忽视的热带病,锥虫(Trypanosoma brucei gambiense)。

« Previous
图形摘要

[1]
Franco JR, Simarro PP, Diarra A, Jannin JG. Epidemiology of human African trypanosomiasis. Clin Epidemiol 2014; 6: 257-75.
[PMID: 25125985]
[2]
Büscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. Lancet 2017; 390(10110): 2397-409.
[http://dx.doi.org/10.1016/S0140-6736(17)31510-6] [PMID: 28673422]
[3]
World Health Organization (WHO). 2018.Trypanosomiasis, human African (sleeping sickness) Fact Sheets. https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) 2018 Accessed on 6th February 2019
[4]
Priotto G, Kasparian S, Ngouama D, et al. Nifurtimox-eflornithine combination therapy for second-stage Trypanosoma brucei gambiense sleeping sickness: a randomized clinical trial in Congo. Clin Infect Dis 2007; 45(11): 1435-42.
[http://dx.doi.org/10.1086/522982] [PMID: 17990225]
[5]
Ogbole OO, Segun PA, Fasinu PS. Antimicrobial and antiprotozoal activities of twenty-four Nigerian medicinal plant extracts. S Afr J Bot 2018; 117: 240-6.
[http://dx.doi.org/10.1016/j.sajb.2018.05.028]
[6]
Mehani M, Segni L, Terzi V, et al. Antifungal activity of Artemisia herba-alba on various fusarium. Phytotherapie 2016; 1-4.
[http://dx.doi.org/10.1007/s10298-016-1071-2]
[7]
Costa RS, Lins MO, Hyaric ML, Barros TF, Velozo ES. In vitro antibacterial effects of Zanthoxylum tingoassuiba root bark extracts and two of its alkaloids against multi-resistant Staphylococcus aureus. Rev Bras Farmacogn 2017; 27(2): 195-8.
[http://dx.doi.org/10.1016/j.bjp.2016.11.001]
[8]
Nagula RL, Wairkar S. Recent advances in topical delivery of flavonoids: A review. J Control Release 2019; 296: 190-201.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.029] [PMID: 30682442]
[9]
Yang B, Liu H, Yang J, Gupta VK, Jiang Y. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends Food Sci Technol 2018; 79: 116-24.
[http://dx.doi.org/10.1016/j.tifs.2018.07.006]
[10]
Putteeraj M, Lim WL, Teoh SL, Yahaya MF. Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Curr Drug Targets 2018; 19(14): 1710-20.
[http://dx.doi.org/10.2174/1389450119666180326125252] [PMID: 29577854]
[11]
Nour AM, Khalid SA, Kaiser M, Brun R, Abdalla WE, Schmidt TJ. The antiprotozoal activity of methylated flavonoids from Ageratum conyzoides L. J Ethnopharmacol 2010; 129(1): 127-30.
[http://dx.doi.org/10.1016/j.jep.2010.02.015] [PMID: 20219663]
[12]
Ramírez I, Carabot A, Meléndez P, et al. Cissampeloflavone, a chalcone-flavone dimer from Cissampelos pareira. Phytochemistry 2003; 64(2): 645-7.
[http://dx.doi.org/10.1016/S0031-9422(03)00241-3] [PMID: 12943789]
[13]
Salem MM, Werbovetz KA. Isoflavonoids and other compounds from Psorothamnus arborescens with antiprotozoal activities. J Nat Prod 2006; 69(1): 43-9.
[http://dx.doi.org/10.1021/np0502600] [PMID: 16441066]
[14]
Tasdemir D, Kaiser M, Brun R, et al. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother 2005; 49(1): 1-20.
[PMID: 16569852]
[15]
Borsari C, Luciani R, Pozzi C, et al. Profiling of flavonol derivatives for the development of antitrypanosomatidic drugs. J Med Chem 2016; 59(16): 7598-616.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00698] [PMID: 27411733]
[16]
Leggat PA. Essentials of Tropical Infectious Diseases1st Ed. Richard L. Guerrant, David H. Walker, Peter F. Weller (Eds.);. Churchill Livingstone, Philadelphia, PA, 2001, xxiv+664 pages, with illus, hardcover ISBN 0-443-07909-9 (US$ 14500) Travel Med Infect Dis. 2003; 1: pp. (2)137-8.
[http://dx.doi.org/10.1016/S1477-8939(03)00021-8]
[17]
Kreier J. Parasitic Protozoa 1977; 1: 205-8.
[18]
Greenwood BM, Whittle HC. The pathogenesis of sleeping sickness. Trans R Soc Trop Med Hyg 1980; 74(6): 716-25.
[http://dx.doi.org/10.1016/0035-9203(80)90184-4] [PMID: 7010694]
[19]
Schmidt H. The pathogenesis of trypanosomiasis of the CNS. Studies on parasitological and neurohistological findings in trypanosoma rhodesiense infected vervet monkeys. Virchows Arch A Pathol Anat Histopathol 1983; 399(3): 333-43.
[http://dx.doi.org/10.1007/BF00612951] [PMID: 6407189]
[20]
Mulenga C, Mhlanga JD, Kristensson K, Robertson B. Trypanosoma brucei brucei crosses the blood-brain barrier while tight junction proteins are preserved in a rat chronic disease model. Neuropathol Appl Neurobiol 2001; 27(1): 77-85.
[http://dx.doi.org/10.1046/j.0305-1846.2001.00306.x] [PMID: 11299005]
[21]
Deborggraeve S, Claes F, Laurent T, et al. Molecular dipstick test for diagnosis of sleeping sickness. J Clin Microbiol 2006; 44(8): 2884-9.
[http://dx.doi.org/10.1128/JCM.02594-05] [PMID: 16891507]
[22]
Njiru ZK, Mikosza AS, Matovu E, et al. African trypanosomiasis: sensitive and rapid detection of the sub-genus Trypanozoon by loop-mediated isothermal amplification (LAMP) of parasite DNA. Int J Parasitol 2008; 38(5): 589-99.
[http://dx.doi.org/10.1016/j.ijpara.2007.09.006] [PMID: 17991469]
[23]
Thompson JW, Mitchell M, Rees RB, Shereni W, Schoenfeld AH, Wilson A. Studies on the efficacy of deltamethrin applied to cattle for the control of tsetse flies (Glossina spp.) in southern Africa. Trop Anim Health Prod 1991; 23(4): 221-6.
[http://dx.doi.org/10.1007/BF02357104] [PMID: 1796525]
[24]
Torr SJ, Maudlin I, Vale GA. Less is more: restricted application of insecticide to cattle to improve the cost and efficacy of tsetse control. Med Vet Entomol 2007; 21(1): 53-64.
[http://dx.doi.org/10.1111/j.1365-2915.2006.00657.x] [PMID: 17373947]
[25]
Picozzi K, Fèvre EM, Odiit M, et al. Sleeping sickness in Uganda: a thin line between two fatal diseases. BMJ 2005; 331(7527): 1238-41.
[http://dx.doi.org/10.1136/bmj.331.7527.1238] [PMID: 16308383]
[26]
Kaiser M, Bray MA, Cal M, Bourdin Trunz B, Torreele E, Brun R. Antitrypanosomal activity of fexinidazole, a new oral nitroimidazole drug candidate for treatment of sleeping sickness. Antimicrob Agents Chemother 2011; 55(12): 5602-8.
[http://dx.doi.org/10.1128/AAC.00246-11] [PMID: 21911566]
[27]
Rodgers J, Jones A, Gibaud S, et al. Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis. PLoS Negl Trop Dis 2011; 5(9)e1308
[http://dx.doi.org/10.1371/journal.pntd.0001308] [PMID: 21909447]
[28]
Krishna S, Stich A. African trypanosomiasis.In Hunter’s Tropical Medicine and Emerging Infectious Disease. (9th edn). 2013; pp. 718-24.
[http://dx.doi.org/10.1016/B978-1-4160-4390-4.00097-7]
[29]
Balasegaram M, Harris S, Checchi F, Ghorashian S, Hamel C, Karunakara U. Melarsoprol versus eflornithine for treating late-stage Gambian trypanosomiasis in the Republic of the Congo. Bull World Health Organ 2006; 84(10): 783-91.
[http://dx.doi.org/10.2471/BLT.06.031955] [PMID: 17128358]
[30]
Yun O, Priotto G, Tong J, Flevaud L, Chappuis F. NECT is next: implementing the new drug combination therapy for Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis 2010; 4(5)e720
[http://dx.doi.org/10.1371/journal.pntd.0000720] [PMID: 20520803]
[31]
Ngantchou I, Nyasse B, Denier C, Blonski C, Hannaert V, Schneider B. Antitrypanosomal alkaloids from Polyalthia suaveolens (Annonaceae): their effects on three selected glycolytic enzymes of Trypanosoma brucei. Bioorg Med Chem Lett 2010; 20(12): 3495-8.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.145] [PMID: 20529682]
[32]
Wube AA, Bucar F, Gibbons S, Asres K, Rattray L, Croft SL. In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region. Phytother Res 2010; 24: 1468-72.
[http://dx.doi.org/10.1002/ptr.3126] [PMID: 20878696]
[33]
Dike VT, Vihiior B, Bosha JA, et al. Compounds from African medicinal plants with activities against selected parasitic diseases: schistosomiasis, trypanosomiasis and leishmaniasis. Phytochem Anal 2016; 27: 217-21.
[http://dx.doi.org/10.1002/pca.2619] [PMID: 27313159]
[34]
Nwodo N, Okoye F, Lai D, et al. Evaluation of the in vitro trypanocidal activity of methylated flavonoid constituents of Vitex simplicifolia leaves. BMC Complement Altern Med 2015; 15: 82.
[http://dx.doi.org/10.1186/s12906-015-0562-2] [PMID: 25886869]
[35]
Herrera-Rueda MA, Navarrete-Vázquez G, Aguirre-Crespo F, et al. Review of theoretical models to study natural products with antiprotozoal activity. Curr Drug Targets 2017; 18(5): 605-16.
[http://dx.doi.org/10.2174/1389450117666161222161335] [PMID: 28017125]
[36]
Jalili-Baleh L, Babaei E, Abdpour S, et al. A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer’s disease. Eur J Med Chem 2018; 152: 570-89.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.004] [PMID: 29763806]
[37]
Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomed Pharmacother 2019; 111: 947-57.
[http://dx.doi.org/10.1016/j.biopha.2018.12.127] [PMID: 30841474]
[38]
Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem 2018; 153: 105-15.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.001] [PMID: 28923363]
[39]
Peter CHH, Ilja CWA. Flavonols, flavones and flavanols-nature, occurrence and dietary burden. J Sci Food Agric 2000; 80: 1081-93.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1081:AID-JSFA566>3.0.CO;2-G]
[40]
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5(e47)e47
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[41]
Al-Dosary DI, Alhomida AS, Ola MS. Protective effects of dietary flavonoids in diabetic induced retinal neurodegeneration. Curr Drug Targets 2017; 18(13): 1468-76.
[http://dx.doi.org/10.2174/1389450117666161003121304] [PMID: 27697035]
[42]
Syarifah-Noratiqah SB, Naina-Mohamed I, Zulfarina MS, Qodriyah HMS. Natural polyphenols in the treatment of Alzheimer’s disease. Curr Drug Targets 2018; 19(8): 927-37.
[http://dx.doi.org/10.2174/1389450118666170328122527] [PMID: 28356027]
[43]
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[44]
Aherne SA, O’Brien NM. Dietary flavonols: chemistry, food content, and metabolism. Nutrition 2002; 18(1): 75-81.
[http://dx.doi.org/10.1016/S0899-9007(01)00695-5] [PMID: 11827770]
[45]
Matthies A, Clavel T, Gütschow M, et al. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine. Appl Environ Microbiol 2008; 74(15): 4847-52.
[http://dx.doi.org/10.1128/AEM.00555-08] [PMID: 18539813]
[46]
Giusti M, Wrolstad R. Acylated anthocyanins from edible sources and their applications in food systems. Biochem Eng J 2003; 14: 217-25.
[http://dx.doi.org/10.1016/S1369-703X(02)00221-8]
[47]
Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem 2017; 142: 213-28.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.034] [PMID: 28793973]
[48]
Dos Santos DA. de C Braga PA, da Silva MF, Fernandes JB, Vieira PC, Magalhães AF, Magalhães EG, Marsaioli AJ, de S Moraes VR, Rattray L, Croft SL. Anti-African trypannocidal and antimalarial activity of natural flavonoids, dibenzoylmethanes and synthetic analogues. J Pharm Pharmacol 2009; 61(2): 257-66.
[http://dx.doi.org/10.1211/jpp.61.02.0017] [PMID: 19178775]
[49]
Bourjot M, Apel C, Martin MT, et al. Antiplasmodial, antitrypanosomal, and cytotoxic activities of prenylated flavonoids isolated from the stem bark of Artocarpus styracifolius. Planta Med 2010; 76(14): 1600-4.
[http://dx.doi.org/10.1055/s-0030-1249777] [PMID: 20379954]
[50]
Kirmizibekmez H, Atay I, Kaiser M, et al. Antiprotozoal activity of Melampyrum arvense and its metabolites. Phytother Res 2011; 25(1): 142-6.
[http://dx.doi.org/10.1002/ptr.3233] [PMID: 20623589]
[51]
Salem MM, Capers J, Rito S, Werbovetz KA. Antiparasitic activity of C-geranyl flavonoids from Mimulus bigelovii. Phytother Res 2011; 25(8): 1246-9.
[http://dx.doi.org/10.1002/ptr.3404] [PMID: 21796699]
[52]
Mamadalieva NZ, Herrmann F, El-Readi MZ, et al. Flavonoids in Scutellaria immaculata and S. ramosissima (Lamiaceae) and their biological activity. J Pharm Pharmacol 2011; 63(10): 1346-57.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01336.x] [PMID: 21899551]
[53]
Ortiz S, Dali-Yahia K, Vasquez-Ocmin P, et al. Heme-binding activity of methoxyflavones from Pentzia monodiana Maire (Asteraceae). Fitoterapia 2017; 118: 1-5.
[http://dx.doi.org/10.1016/j.fitote.2017.01.012] [PMID: 28167052]
[54]
Kimani NM, Matasyoh JC, Kaiser M, Brun R, Schmidt TJ. Antiprotozoal sesquiterpene lactones and other constituents from Tarchonanthus camphoratus and Schkuhria pinnata. J Nat Prod 2018; 81(1): 124-30.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00747] [PMID: 29244495]
[55]
Mamani-Matsuda M, Rambert J, Malvy D, et al. Quercetin induces apoptosis of Trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages. Antimicrob Agents Chemother 2004; 48(3): 924-9.
[http://dx.doi.org/10.1128/AAC.48.3.924-929.2004] [PMID: 14982785]
[56]
Dodson HC, Lyda TA, Chambers JW, Morris MT, Christensen KA, Morris JC. Quercetin, a fluorescent bioflavanoid, inhibits Trypanosoma brucei hexokinase 1. Exp Parasitol 2011; 127(2): 423-8.
[http://dx.doi.org/10.1016/j.exppara.2010.10.011] [PMID: 20971104]
[57]
Mamoon-Ur-Rashid. Ali S, Alamzeb M, et al. Phytochemical and antitrypanosomal investigation of the fractions and compounds isolated from Artemisia elegantissima. Pharm Biol 2014; 52(8): 983-7.
[http://dx.doi.org/10.3109/13880209.2013.874534] [PMID: 24597622]
[58]
Mai LH, Chabot GG, Grellier P, et al. Antivascular and anti-parasite activities of natural and hemisynthetic flavonoids from New Caledonian Gardenia species (Rubiaceae). Eur J Med Chem 2015; 93: 93-100.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.012] [PMID: 25659770]
[59]
Gadetskaya AV, Tarawneh AH, Zhusupova GE, et al. Sulfated phenolic compounds from Limonium caspium: Isolation, structural elucidation, and biological evaluation. Fitoterapia 2015; 104: 80-5.
[http://dx.doi.org/10.1016/j.fitote.2015.05.017] [PMID: 26025854]
[60]
Omar RM, Igoli J, Gray AI, et al. Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma Brucei. Phytochem Anal 2016; 27(2): 107-15.
[http://dx.doi.org/10.1002/pca.2605] [PMID: 26662866]
[61]
Amin A, Tuenter E, Exarchou V, et al. Phytochemical and pharmacological investigations on Nymphoides indica leaf extracts. Phytother Res 2016; 30(10): 1624-33.
[http://dx.doi.org/10.1002/ptr.5663] [PMID: 27282639]
[62]
Xiao H, Rao Ravu R, Tekwani BL, et al. Biological evaluation of phytoconstituents from Polygonum hydropiper. Nat Prod Res 2017; 31(17): 2053-7.
[http://dx.doi.org/10.1080/14786419.2016.1269094] [PMID: 28000515]
[63]
Skaf J, Hamarsheh O, Berninger M, Balasubramanian S, Oelschlaeger TA, Holzgrabe U. Improving anti-trypanosomal activity of alkamides isolated from Achillea fragrantissima. Fitoterapia 2018; 125: 191-8.
[http://dx.doi.org/10.1016/j.fitote.2017.11.001] [PMID: 29108932]
[64]
Ganapaty S, Pannakal ST, Srilakshmi GVK, Lakshmi P, Waterman PG, Brun R. Pumilanol, an antiprotozoal isoflavanol from Tephrosia pumila. Phytochem Lett 2008; 2008(1): 175-8.
[http://dx.doi.org/10.1016/j.phytol.2008.09.006]
[65]
van Baren C, Anao I, Leo Di Lira P, et al. Triterpenic acids and flavonoids from Satureja parvifolia. Evaluation of their antiprotozoal activity. Z Natforsch C J Biosci 2006; 61(3-4): 189-92.
[http://dx.doi.org/10.1515/znc-2006-3-406] [PMID: 16729575]
[66]
Hernandez FR, Turrens JF. Rotenone at high concentrations inhibits NADH-fumarate reductase and the mitochondrial respiratory chain of Trypanosoma brucei and T. cruzi. Mol Biochem Parasitol 1998; 93(1): 135-7.
[http://dx.doi.org/10.1016/S0166-6851(98)00015-2] [PMID: 9662035]
[67]
Kubata BK, Nagamune K, Murakami N, et al. Kola acuminata proanthocyanidins: a class of anti-trypanosomal compounds effective against Trypanosoma brucei. Int J Parasitol 2005; 35(1): 91-103.
[http://dx.doi.org/10.1016/j.ijpara.2004.10.019] [PMID: 15619520]
[68]
Di Pisa F, Landi G, Dello Iacono L, et al. Chroman-4-one derivatives targeting pteridine reductase 1 and showing anti-parasitic activity. Molecules 2017; 22(3)E426
[http://dx.doi.org/10.3390/molecules22030426] [PMID: 28282886]
[69]
Setzer WN, Ogungbe IV. In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants. PLoS Negl Trop Dis 2012; 6(7)e1727
[http://dx.doi.org/10.1371/journal.pntd.0001727] [PMID: 22848767]
[70]
Iwu M, Igboko O. Flavonoids of Garcinia kola. J Nat Prod 1982; 45: 650-1.
[http://dx.doi.org/10.1021/np50023a026]
[71]
Ha CH, Fatima A, Gaurav A. In silico investigation of flavonoids as potential trypanosomal nucleoside hydrolase inhibitors. Adv Bioinforma 2015; •••2015826047
[http://dx.doi.org/10.1155/2015/826047] [PMID: 26640486]
[72]
Awad HM, Boersma MG, Boeren S, et al. Identification of o-quinone/quinone methide metabolites of quercetin in a cellular in vitro system. FEBS Lett 2002; 520(1-3): 30-4.
[http://dx.doi.org/10.1016/S0014-5793(02)02754-0] [PMID: 12044865]
[73]
Walle T, Vincent TS, Walle UK. Evidence of covalent binding of the dietary flavonoid quercetin to DNA and protein in human intestinal and hepatic cells. Biochem Pharmacol 2003; 65(10): 1603-10.
[http://dx.doi.org/10.1016/S0006-2952(03)00151-5] [PMID: 12754096]
[74]
Galati G. Dietary flavonoid/polyphenolic reactive metabolites and their biological properties. Toronto: Univ. of Toronto 2004. [Ph.D. thesis
[75]
Galati G, Moridani MY, Chan TS, O’Brien PJ. Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation. Free Radic Biol Med 2001; 30(4): 370-82.
[http://dx.doi.org/10.1016/S0891-5849(00)00481-0] [PMID: 11182292]
[76]
Miranda AR, Albrecht C, Cortez MV, Soria EA. Pharmacology and toxicology of polyphenols with potential as neurotropic agents in non-communicable diseases. Curr Drug Targets 2018; 19(2): 97-110.
[http://dx.doi.org/10.2174/1389450117666161220152336] [PMID: 28000547]
[77]
Nakazumi H, Ueyama T, Kitao T. Synthesis and antibacterial activity of 2‐phenyl‐4H‐benzo[b] thiopyran‐4‐ones (thioflavones) and related compounds. ‎. J Heterocycl Chem 1984; 21(1): 193-6.
[http://dx.doi.org/10.1002/jhet.5570210138]
[78]
Dare P, Colleoni A, Setnikar I. Research on coronary dilators in the chromone group ethyl esters and basic esters of chromone-hydroxyacetic acid and flavone-hydroxyacetic acid. Farmaco, Sci 1958; 13(8): 561-73.
[79]
Weller LE, Redemann CT, Gottshall RY, Roberts JM, Lucas EH, Sell HM. Antibacterial substances in seed plants active against tubercle bacilli. II. The antibacterial principles of Primula malacoides and Buxus sempervirens. Antibiot Chemother (Northfield) 1953; 3(6): 603-6.
[PMID: 24542685]
[80]
Li Y, Kandhare AD, Mukherjee AA, Bodhankar SL. Acute and sub-chronic oral toxicity studies of hesperidin isolated from orange peel extract in Sprague Dawley rats. Regul Toxicol Pharmacol 2019; 105: 77-85.
[http://dx.doi.org/10.1016/j.yrtph.2019.04.001] [PMID: 30991075]
[81]
Kandhare AD, Bodhankar SL, Mohan V, Thakurdesai PA. Acute and repeated doses (28 days) oral toxicity study of Vicenin-1, a flavonoid glycoside isolated from fenugreek seeds in laboratory mice. Regul Toxicol Pharmacol 2016; 81: 522-31.
[http://dx.doi.org/10.1016/j.yrtph.2016.10.013] [PMID: 27773753]
[82]
Hermenean A, Ardelean A, Stan M, et al. Protective effects of naringenin on carbon tetrachloride-induced acute nephrotoxicity in mouse kidney. Chem Biol Interact 2013; 205(2): 138-47.
[http://dx.doi.org/10.1016/j.cbi.2013.06.016] [PMID: 23845967]
[83]
Arul D, Subramanian P. Inhibitory effect of naringenin (citrus flavonone) on N-nitrosodiethylamine induced hepatocarcinogenesis in rats. Biochem Biophys Res Commun 2013; 434(2): 203-9.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.039] [PMID: 23523793]
[84]
Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011; 162(6): 1239-49.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[85]
Weniger B, Robledo S, Arango GJ, et al. Antiprotozoal activities of Colombian plants. J Ethnopharmacol 2001; 78(2-3): 193-200.
[http://dx.doi.org/10.1016/S0378-8741(01)00346-4] [PMID: 11694364]
[86]
Pink R, Hudson A, Mouriès MA, Bendig M. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 2005; 4(9): 727-40.
[http://dx.doi.org/10.1038/nrd1824] [PMID: 16138106]
[87]
Don R, Ioset JR. Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology 2014; 141(1): 140-6.
[http://dx.doi.org/10.1017/S003118201300142X] [PMID: 23985066]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy