Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Modulation of Drug Crystallization and Molecular Interactions by Additives in Solid Dispersions for Improving Drug Bioavailability

Author(s): Phuong H.L. Tran, Wei Duan, Beom-Jin Lee and Thao T.D. Tran*

Volume 25, Issue 18, 2019

Page: [2099 - 2107] Pages: 9

DOI: 10.2174/1381612825666190618102717

Price: $65

Abstract

Background: An increase in poorly water-soluble drugs makes the design of drug delivery systems challenging.

Methods: Currently, a number of prospective solid dispersions have been investigated with potential applications for delivering a variety of poorly water-soluble drugs. A number of traditional solid dispersions and modifiedsolid dispersions offer attractive advantages in the fabrication, design and development of those drugs for effective therapeutics.

Results: Although traditional solid dispersions can produce a higher release rate, resulting in higher bioavailability compared to conventional dosage forms, this method is not always a promising approach. Modified-solid dispersion has demonstrated both the ability of its polymers to transform drug crystals into amorphous forms and molecular interactivity, thereby improving drug dissolution rate and bioavailability, especially with tough drugs. However, the classification of modified-solid dispersion, which guides the selection of the right strategy in solid dispersion preparation, remains ill-defined.

Conclusion: This review focused on effective strategies in using additives in solid dispersion for improving drug bioavailability.

Keywords: Modified-solid dispersion, poorly water-soluble drug, additive, pH-modifier, surfactant, swellable polymer, hydrophobic polymer.

[1]
Weerapol Y, Limmatvapirat S, Takeuchi H, Sriamornsak P. Fabrication of spontaneous emulsifying powders for improved dissolution of poorly water-soluble drugs. Powder Technol 2015; 271: 100-8.
[http://dx.doi.org/10.1016/j.powtec.2014.10.037]
[2]
Hauss DJ. Oral lipid-based formulations. Adv Drug Deliv Rev 2007; 59(7): 667-76.
[http://dx.doi.org/10.1016/j.addr.2007.05.006] [PMID: 17618704]
[3]
Ha NS, Tran TT-D, Tran PH-L, Park J-B, Lee B-J. Dissolution-enhancing mechanism of alkalizers in poloxamer-based solid dispersions and physical mixtures containing poorly water-soluble valsartan. Chem Pharm Bull (Tokyo) 2011; 59(7): 844-50.
[http://dx.doi.org/10.1248/cpb.59.844] [PMID: 21720034]
[4]
Sahbaz Y, Williams HD, Nguyen T-H, et al. Transformation of poorly water-soluble drugs into lipophilic ionic liquids enhances oral drug exposure from lipid based formulations. Mol Pharm 2015; 12(6): 1980-91.
[http://dx.doi.org/10.1021/mp500790t] [PMID: 25905624]
[5]
Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci 2015; 10: 13-23.
[http://dx.doi.org/10.1016/j.ajps.2014.08.005]
[6]
Tran PHL, Tran TTD, Park JB, Lee B-J. Controlled release systems containing solid dispersions: Strategies and mechanisms. Pharm Res 2011; 28(10): 2353-78.
[http://dx.doi.org/10.1007/s11095-011-0449-y] [PMID: 21553168]
[7]
Ngo SN, Barnes T. Is there variability in drug release and physical characteristics of amiodarone chloride from different commercially available tablets? Possible therapeutic implications. Int J Pharm Pract 2010; 18(4): 245-8.
[http://dx.doi.org/10.1111/j.2042-7174.2010.00037.x] [PMID: 20636678]
[8]
Uthappa UT, Brahmkhatri V, Sriram G, et al. Nature engineered diatom biosilica as drug delivery systems. J Control Release 2018; 281: 70-83.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.013] [PMID: 29772290]
[9]
Yan Y-D, Sung JH, Kim KK, et al. Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. Int J Pharm 2012; 422(1-2): 202-10.
[http://dx.doi.org/10.1016/j.ijpharm.2011.10.053] [PMID: 22085435]
[10]
Yang C, Xu X, Wang J, An Z. Use of the co-grinding method to enhance the dissolution behavior of a poorly water-soluble drug: Generation of solvent-free drug-polymer solid dispersions. Chem Pharm Bull (Tokyo) 2012; 60(7): 837-45.
[http://dx.doi.org/10.1248/cpb.c12-00034] [PMID: 22790815]
[11]
Frizon F. Eloy JdO, Donaduzzi CM, Mitsui ML, Marchetti JM. Dissolution rate enhancement of loratadine in polyvinylpyrrolidone K-30 solid dispersions by solvent methods. Powder Technol 2013; 235: 532-9.
[http://dx.doi.org/10.1016/j.powtec.2012.10.019]
[12]
Giri TK, Kumar K, Alexander A, et al. Novel controlled release solid dispersion for the delivery of diclofenac sodium. Curr Drug Deliv 2013; 10(4): 435-43.
[http://dx.doi.org/10.2174/1567201811310040008] [PMID: 23517623]
[13]
Li B, Konecke S, Harich K, Wegiel L, Taylor LS, Edgar KJ. Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability. Carbohydr Polym 2013; 92(2): 2033-40.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.073] [PMID: 23399255]
[14]
Tran PH, Tran HT, Lee BJ. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J Control Release 2008; 129(1): 59-65.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.001] [PMID: 18501462]
[15]
Tran TT-D, Tran PH-L, Lee B-J. Dissolution-modulating mechanism of alkalizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug. Eur J Pharm Biopharm 2009; 72(1): 83-90.
[http://dx.doi.org/10.1016/j.ejpb.2008.12.009] [PMID: 19141319]
[16]
Barmpalexis P, Kachrimanis K, Georgarakis E. Solid dispersions in the development of a nimodipine floating tablet formulation and optimization by artificial neural networks and genetic programming. Eur J Pharm Biopharm 2011; 77(1): 122-31.
[http://dx.doi.org/10.1016/j.ejpb.2010.09.017] [PMID: 20934511]
[17]
Tran TT-D, Tran PH-L, Khanh TN, Van TV, Lee B-J. Solubilization of poorly water-soluble drugs using solid dispersions. Recent Pat Drug Deliv Formul 2013; 7(2): 122-33.
[http://dx.doi.org/10.2174/1872211311307020004] [PMID: 23244679]
[18]
Sekiguchi K, Obi N. Studies on absorption of eutectic mixture. I. A Comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull (Tokyo) 1961; 9: 866-72.
[http://dx.doi.org/10.1248/cpb.9.866]
[19]
Vo CL-N, Park C, Lee B-J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm 2013; 85(3 Pt B): 799-813.
[http://dx.doi.org/10.1016/j.ejpb.2013.09.007] [PMID: 24056053]
[20]
Tran TTD, Tran PHL, Khanh TN, Van TV, Lee BJ. Solubilization of poorly water-soluble drugs using solid dispersions. Recent Pat Drug Deliv Formul 2013; 7(2): 122-33.
[http://dx.doi.org/10.2174/1872211311307020004] [PMID: 23244679]
[21]
Tran TT-D, Tran PHL, Lim J, Park JB, Choi SK, Lee BJ. Physicochemical principles of controlled release solid dispersion containing a poorly water-soluble drug. Ther Deliv 2010; 1(1): 51-62.
[http://dx.doi.org/10.4155/tde.10.3] [PMID: 22816119]
[22]
Huang Y, Dai W-G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B 2014; 4(1): 18-25.
[http://dx.doi.org/10.1016/j.apsb.2013.11.001] [PMID: 26579360]
[23]
Habib MJ. Pharmaceutical solid dispersion technology. CRC Press 2000.
[24]
Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci 1971; 60(9): 1281-302.
[http://dx.doi.org/10.1002/jps.2600600902] [PMID: 4935981]
[25]
Laitinen R, Priemel PA, Surwase S, et al. Theoretical considerations in developing amorphous solid dispersions 2014.
[http://dx.doi.org/10.1007/978-1-4939-1598-9_2]
[26]
Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000; 50(1): 47-60.
[http://dx.doi.org/10.1016/S0939-6411(00)00076-X] [PMID: 10840192]
[27]
Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 2002; 231(2): 131-44.
[http://dx.doi.org/10.1016/S0378-5173(01)00891-2] [PMID: 11755266]
[28]
Van den Mooter G. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol 2012; 9(2): e71-e174.
[http://dx.doi.org/10.1016/j.ddtec.2011.10.002] [PMID: 24064267]
[29]
Tran PHL, Tran TT-D, Lee KH, Kim DJ, Lee BJ. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility. Expert Opin Drug Deliv 2010; 7(5): 647-61.
[http://dx.doi.org/10.1517/17425241003645910] [PMID: 20205605]
[30]
Tran PHL, Tran TTD, Lee SA, Nho VH, Chi SC, Lee BJ. Roles of MgO release from polyethylene glycol 6000-based solid dispersions on microenvironmental pH, enhanced dissolution and reduced gastrointestinal damage of telmisartan. Arch Pharm Res 2011; 34(5): 747-55.
[http://dx.doi.org/10.1007/s12272-011-0508-2] [PMID: 21656360]
[31]
Tran TT-D, Tran PH-L, Choi H-G, Han H-K, Lee B-J. The roles of acidifiers in solid dispersions and physical mixtures. Int J Pharm 2010; 384(1-2): 60-6.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.039] [PMID: 19782736]
[32]
Ma X, Williams RO. Characterization of amorphous solid dispersions: An update. J Drug Deliv Sci Technol 2019; 50: 113-24.
[http://dx.doi.org/10.1016/j.jddst.2019.01.017]
[33]
Chavan RB, Rathi S, Jyothi VGSS, Shastri NR. Cellulose based polymers in development of amorphous solid dispersions. Asian J Pharm Sci 2018.
[http://dx.doi.org/10.1016/j.ajps.2018.09.003]
[34]
Yu D-G, Li J-J, Williams GR, Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J Control Release 2018; 292: 91-110.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.016] [PMID: 30118788]
[35]
DeBoyace K, Wildfong PLD. The Application of Modeling and Prediction to the Formation and Stability of Amorphous Solid Dispersions. J Pharm Sci 2018; 107(1): 57-74.
[http://dx.doi.org/10.1016/j.xphs.2017.03.029] [PMID: 28389266]
[36]
Davis M, Walker G. Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs. J Control Release 2018; 269: 110-27.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.005] [PMID: 29117503]
[37]
Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 2007; 12(23-24): 1068-75.
[http://dx.doi.org/10.1016/j.drudis.2007.09.005] [PMID: 18061887]
[38]
Tran TTD, Tran PHL. Perspectives on Strategies Using Swellable Polymers in Solid Dispersions for Controlled Drug Release. Curr Pharm Des 2017; 23(11): 1639-48.
[http://dx.doi.org/10.2174/1381612822666161021152932] [PMID: 27774901]
[39]
Morris KR, Knipp GT, Serajuddin ATM. Structural properties of polyethylene glycol-polysorbate 80 mixture, a solid dispersion vehicle. J Pharm Sci 1992; 81(12): 1185-8.
[http://dx.doi.org/10.1002/jps.2600811212] [PMID: 1491337]
[40]
Law SL, Lo WY, Lin FM, Chaing CH. Dissolution and absorption of nifedipine in polyethylene glycol solid dispersion containing phosphatidylcholine. Int J Pharm 1992; 84: 161-6.
[http://dx.doi.org/10.1016/0378-5173(92)90056-8]
[41]
Serajuddin ATM, Sheen P-C, Augustine MA. Improved dissolution of a poorly water-soluble drug from solid dispersions in polyethylene glycol: polysorbate 80 mixtures. J Pharm Sci 1990; 79(5): 463-4.
[http://dx.doi.org/10.1002/jps.2600790524] [PMID: 2352172]
[42]
Jiménez de los Santos CJ, Pérez-Martínez JI, Gómez-Pantoja ME, Moyano JR. Enhancement of albendazole dissolution properties using solid dispersions with Gelucire 50/13 and PEG 15000. J Drug Deliv Sci Technol 2017; 42: 261-72.
[http://dx.doi.org/10.1016/j.jddst.2017.03.030]
[43]
El-Badry M, Fetih G, Fathy M. Improvement of solubility and dissolution rate of indomethacin by solid dispersions in Gelucire 50/13 and PEG4000. Saudi Pharm J 2009; 17(3): 217-25.
[http://dx.doi.org/10.1016/j.jsps.2009.08.006] [PMID: 23964164]
[44]
Simonazzi A, Davies C, Cid AG, Gonzo E, Parada L, Bermúdez JM. Preparation and Characterization of Poloxamer 407 Solid Dispersions as an Alternative Strategy to Improve Benznidazole Bioperformance. J Pharm Sci 2018; 107(11): 2829-36.
[http://dx.doi.org/10.1016/j.xphs.2018.06.027] [PMID: 30005984]
[45]
Tambe A, Pandita N. Enhanced solubility and drug release profile of boswellic acid using a poloxamer-based solid dispersion technique. J Drug Deliv Sci Technol 2018; 44: 172-80.
[http://dx.doi.org/10.1016/j.jddst.2017.11.025]
[46]
Chan T, Ouyang D. Investigating the molecular dissolution process of binary solid dispersions by molecular dynamics simulations. Asian J Pharm Sc 2018; 13: 248-54.
[http://dx.doi.org/10.1016/j.ajps.2017.07.011]
[47]
Tran TTD, Tran PHL, Lee BJ. Dissolution-modulating mechanism of alkalizers and polymers in a nanoemulsifying solid dispersion containing ionizable and poorly water-soluble drug. Eur J Pharm Biopharm 2009; 72(1): 83-90.
[http://dx.doi.org/10.1016/j.ejpb.2008.12.009] [PMID: 19141319]
[48]
Tran TTD, Tran PHL, Lim J, Park JB, Choi SK, Lee BJ. Physicochemical principles of controlled release solid dispersion containing a poorly water-soluble drug. Ther Deliv 2010; 1(1): 51-62.
[http://dx.doi.org/10.4155/tde.10.3] [PMID: 22816119]
[49]
Khatri P, Shah MK, Patel N, Jain S, Vora N, Lin S. Preparation and characterization of pyrimethamine solid dispersions and an evaluation of the physical nature of pyrimethamine in solid dispersions. J Drug Deliv Sci Technol 2018; 45: 110-23.
[http://dx.doi.org/10.1016/j.jddst.2018.03.012]
[50]
Silva de Sá I, Peron AP, Leimann FV, et al. In vitro and in vivo evaluation of enzymatic and antioxidant activity, cytotoxicity and genotoxicity of curcumin-loaded solid dispersions. Food Chem Toxicol 2019; 125: 29-37.
[http://dx.doi.org/10.1016/j.fct.2018.12.037] [PMID: 30592967]
[51]
Chaudhari SP, Dugar RP. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. J Drug Deliv Sci Technol 2017; 41: 68-77.
[http://dx.doi.org/10.1016/j.jddst.2017.06.010]
[52]
Dave RH, Patel AD, Donahue E, Patel HH. To evaluate the effect of addition of an anionic surfactant on solid dispersion using model drug indomethacin. Drug Dev Ind Pharm 2012; 38(8): 930-9.
[http://dx.doi.org/10.3109/03639045.2011.633264] [PMID: 22085470]
[53]
Dannenfelser R-M, He H, Joshi Y, Bateman S, Serajuddin ATM. Development of clinical dosage forms for a poorly water soluble drug I: Application of polyethylene glycol-polysorbate 80 solid dispersion carrier system. J Pharm Sci 2004; 93(5): 1165-75.
[http://dx.doi.org/10.1002/jps.20044] [PMID: 15067693]
[54]
Pouton CW. Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 2006; 29(3-4): 278-87.
[http://dx.doi.org/10.1016/j.ejps.2006.04.016] [PMID: 16815001]
[55]
Liu C, Chen Z, Chen Y, et al. Improving Oral Bioavailability of Sorafenib by Optimizing the “Spring” and “Parachute” Based on Molecular Interaction Mechanisms. Mol Pharm 2016; 13(2): 599-608.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00837] [PMID: 26709621]
[56]
Kim S-J, Lee H-K, Na Y-G, et al. A novel composition of ticagrelor by solid dispersion technique for increasing solubility and intestinal permeability. Int J Pharm 2019; 555: 11-8.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.038] [PMID: 30448313]
[57]
Park J-B, Park C, Piao ZZ, et al. pH-independent controlled release tablets containing nanonizing valsartan solid dispersions for less variable bioavailability in humans. J Drug Deliv Sci Technol 2018; 46: 365-77.
[http://dx.doi.org/10.1016/j.jddst.2018.05.031]
[58]
Piao Z-Z, Choe J-S, Oh KT, Rhee Y-S, Lee B-J. Formulation and in vivo human bioavailability of dissolving tablets containing a self-nanoemulsifying itraconazole solid dispersion without precipitation in simulated gastrointestinal fluid. Eur J Pharm Sci 2014; 51: 67-74.
[http://dx.doi.org/10.1016/j.ejps.2013.08.037] [PMID: 24012590]
[59]
Wang X, Michoel A, Van den Mooter G. Solid state characteristics of ternary solid dispersions composed of PVP VA64, Myrj 52 and itraconazole. Int J Pharm 2005; 303(1-2): 54-61.
[http://dx.doi.org/10.1016/j.ijpharm.2005.07.002] [PMID: 16105723]
[60]
Chen Y, Wang S, Wang S, et al. Sodium Lauryl Sulfate Competitively Interacts with HPMC-AS and Consequently Reduces Oral Bioavailability of Posaconazole/HPMC-AS Amorphous Solid Dispersion. Mol Pharm 2016; 13(8): 2787-95.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00391] [PMID: 27337060]
[61]
Bassi P, Kaur G. pH modulation: a mechanism to obtain pH-independent drug release. Expert Opin Drug Deliv 2010; 7(7): 845-57.
[http://dx.doi.org/10.1517/17425247.2010.491508] [PMID: 20509776]
[62]
Kranz H, Wagner T. Effects of formulation and process variables on the release of a weakly basic drug from single unit extended release formulations. Eur J Pharm Biopharm 2006; 62(1): 70-6.
[http://dx.doi.org/10.1016/j.ejpb.2005.07.003] [PMID: 16154330]
[63]
Riis T, Bauer-Brandl A, Wagner T, Kranz H. pH-independent drug release of an extremely poorly soluble weakly acidic drug from multiparticulate extended release formulations. Eur J Pharm Biopharm 2007; 65(1): 78-84.
[http://dx.doi.org/10.1016/j.ejpb.2006.07.001] [PMID: 16919924]
[64]
Abuhelwa AY, Williams DB, Upton RN, Foster DJR. Food, gastrointestinal pH, and models of oral drug absorption. Eur J Pharm Biopharm 2017; 112: 234-48.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.034] [PMID: 27914234]
[65]
Zeeshan M, Ali H, Khan S, Khan SA, Weigmann B. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int J Pharm 2019; 558: 201-14.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.074] [PMID: 30615925]
[66]
Freerks L, Papadatou Soulou E, Batchelor H, Klein S. A review of GI conditions critical to oral drug absorption in malnourished children. Eur J Pharm Biopharm 2019; 137: 9-22.
[http://dx.doi.org/10.1016/j.ejpb.2019.02.001] [PMID: 30735799]
[67]
Shahdadi Sardo H, Saremnejad F, Bagheri S, Akhgari A, Afrasiabi Garekani H, Sadeghi F. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int J Pharm 2019; 558: 367-79.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.022] [PMID: 30664993]
[68]
Chutimaworapan S, Ritthidej GC, Yonemochi E, Oguchi T, Yamamoto K. Effect of water-soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Dev Ind Pharm 2000; 26(11): 1141-50.
[http://dx.doi.org/10.1081/DDC-100100985] [PMID: 11068687]
[69]
Franco M, Trapani G, Latrofa A, et al. Dissolution properties and anticonvulsant activity of phenytoin-polyethylene glycol 6000 and -polyvinylpyrrolidone K-30 solid dispersions. Int J Pharm 2001; 225(1-2): 63-73.
[http://dx.doi.org/10.1016/S0378-5173(01)00751-7] [PMID: 11489555]
[70]
Tran PHL, Tran TTD, Park JB, Lee BJ. Controlled release systems containing solid dispersions: strategies and mechanisms. Pharm Res 2011; 28(10): 2353-78.
[http://dx.doi.org/10.1007/s11095-011-0449-y] [PMID: 21553168]
[71]
Thoma K, Zimmer T. Retardation of weakly basic drugs with diffusion tablets. Int J Pharm 1990; 58: 197-202.
[http://dx.doi.org/10.1016/0378-5173(90)90195-A]
[72]
Streubel A, Siepmann J, Dashevsky A, Bodmeier R. pH-independent release of a weakly basic drug from water-insoluble and -soluble matrix tablets. J Control Release 2000; 67(1): 101-10.
[http://dx.doi.org/10.1016/S0168-3659(00)00200-5] [PMID: 10773333]
[73]
Tran TTD, Tran PHL, Choi HG, Han HK, Lee BJ. The roles of acidifiers in solid dispersions and physical mixtures. Int J Pharm 2010; 384(1-2): 60-6.
[http://dx.doi.org/10.1016/j.ijpharm.2009.09.039] [PMID: 19782736]
[74]
Tran PHL, Tran HTT, Lee B-J. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J Control Release 2008; 129(1): 59-65.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.001] [PMID: 18501462]
[75]
Ha NS, Tran TTD, Tran PHL, Park JB, Lee BJ. Dissolution-enhancing mechanism of alkalizers in poloxamer-based solid dispersions and physical mixtures containing poorly water-soluble valsartan. Chem Pharm Bull (Tokyo) 2011; 59(7): 844-50.
[http://dx.doi.org/10.1248/cpb.59.844] [PMID: 21720034]
[76]
Vo AQ, Feng X, Zhang J, Zhang F, Repka MA. Dual mechanism of microenvironmental pH modulation and foam melt extrusion to enhance performance of HPMCAS based amorphous solid dispersion. Int J Pharm 2018; 550(1-2): 216-28.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.042] [PMID: 30142354]
[77]
Yang M, He S, Fan Y, et al. Microenvironmental pH-modified solid dispersions to enhance the dissolution and bioavailability of poorly water-soluble weakly basic GT0918, a developing anti-prostate cancer drug: preparation, characterization and evaluation in vivo. Int J Pharm 2014; 475(1-2): 97-109.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.047] [PMID: 25171976]
[78]
McFall H, Sarabu S, Shankar V, et al. Formulation of aripiprazole-loaded pH-modulated solid dispersions via hot-melt extrusion technology: In vitro and in vivo studies. Int J Pharm 2019; 554: 302-11.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.005] [PMID: 30395959]
[79]
Meng F, Meckel J, Zhang F. Investigation of itraconazole ternary amorphous solid dispersions based on povidone and Carbopol. Eur J Pharm Sci 2017; 106: 413-21.
[http://dx.doi.org/10.1016/j.ejps.2017.06.019] [PMID: 28627470]
[80]
Hanada M, Jermain SV, Lu X, Su Y, Williams RO III. Predicting physical stability of ternary amorphous solid dispersions using specific mechanical energy in a hot melt extrusion process. Int J Pharm 2018; 548(1): 571-85.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.029] [PMID: 30006310]
[81]
Davis MT, Potter CB, Mohammadpour M, Albadarin AB, Walker GM. Design of spray dried ternary solid dispersions comprising itraconazole, soluplus and HPMCP: Effect of constituent compositions. Int J Pharm 2017; 519(1-2): 365-72.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.043] [PMID: 28131850]
[82]
Albadarin AB, Potter CB, Davis MT, et al. Development of stability-enhanced ternary solid dispersions via combinations of HPMCP and Soluplus® processed by hot melt extrusion. Int J Pharm 2017; 532(1): 603-11.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.035] [PMID: 28923766]
[83]
Van Ngo H, Nguyen PK, Van Vo T, et al. Hydrophilic-hydrophobic polymer blend for modulation of crystalline changes and molecular interactions in solid dispersion. Int J Pharm 2016; 513(1-2): 148-52.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.017] [PMID: 27613254]
[84]
Sangalli ME, Giunchedi P, Colombo P, Conte U, Gazzaniga A, La Manna A. Cross-linked sodium carboxymethylcellulose as a carrier for dissolution rate improvement of drugs. Boll Chim Farm 1989; 128(7-8): 242-7.
[PMID: 2611009]
[85]
Giunchedi P1. Conte U, La Manna A. A swellable polymer as carbamazepine dissolution rate enhancer. Boll Chim Farm 1990; 129(1): 17-20.
[PMID: 2206492]
[86]
Giunchedi P, Conte U, Maggi L, La Manna A. Hydrophilic matrices for the extended release of a model drug exhibiting pH-dependent solubility. Int J Pharm 1992; 85: 141-7.
[http://dx.doi.org/10.1016/0378-5173(92)90143-P]
[87]
Moneghini M, Carcano A, Zingone G, Perissutti B. Studies in dissolution enhancement of atenolol. Part I. Int J Pharm 1998; 175: 177-83.
[http://dx.doi.org/10.1016/S0378-5173(98)00281-6]
[88]
Williams AC, Timmins P, Lu M, Forbes RT. Disorder and dissolution enhancement: deposition of ibuprofen on to insoluble polymers. Eur J Pharm Sci 2005; 26(3-4): 288-94.
[http://dx.doi.org/10.1016/j.ejps.2005.06.006] [PMID: 16087323]
[89]
de Waard H, Hinrichs WLJ, Visser MR, Bologna C, Frijlink HW. Unexpected differences in dissolution behavior of tablets prepared from solid dispersions with a surfactant physically mixed or incorporated. Int J Pharm 2008; 349(1-2): 66-73.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.023] [PMID: 17804180]
[90]
Srinarong P, Faber JH, Visser MR, Hinrichs WLJ, Frijlink HW. Strongly enhanced dissolution rate of fenofibrate solid dispersion tablets by incorporation of superdisintegrants. Eur J Pharm Biopharm 2009; 73(1): 154-61.
[http://dx.doi.org/10.1016/j.ejpb.2009.05.006] [PMID: 19465121]
[91]
Konno H, Handa T, Alonzo DE, Taylor LS. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm 2008; 70(2): 493-9.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.023] [PMID: 18577451]
[92]
Park J-H, Choi H-K. Enhancement of solubility and dissolution of cilostazol by solid dispersion technique. Arch Pharm Res 2015; 38(7): 1336-44.
[http://dx.doi.org/10.1007/s12272-014-0547-6] [PMID: 25567762]
[93]
Janssens S, Roberts C, Smith EF, Van den Mooter G. Physical stability of ternary solid dispersions of itraconazole in polyethyleneglycol 6000/hydroxypropylmethylcellulose 2910 E5 blends. Int J Pharm 2008; 355(1-2): 100-7.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.054] [PMID: 18191508]
[94]
Davis MT, Potter CB, Walker GM. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution. Int J Pharm 2018; 544(1): 242-53.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.038] [PMID: 29689366]
[95]
Janssens S, de Armas HN, Roberts CJ, Van den Mooter G. Characterization of ternary solid dispersions of itraconazole, PEG 6000, and HPMC 2910 E5. J Pharm Sci 2008; 97(6): 2110-20.
[http://dx.doi.org/10.1002/jps.21128] [PMID: 17847067]
[96]
Ziaee A, Albadarin AB, Padrela L, Faucher A, O’Reilly E, Walker G. Spray drying ternary amorphous solid dispersions of ibuprofen - An investigation into critical formulation and processing parameters. Eur J Pharm Biopharm 2017; 120: 43-51.
[http://dx.doi.org/10.1016/j.ejpb.2017.08.005] [PMID: 28822874]
[97]
Paidi SK, Jena SK, Ahuja BK, Devasari N, Suresh S. Preparation, in vitro and in vivo evaluation of spray-dried ternary solid dispersion of biopharmaceutics classification system class II model drug. J Pharm Pharmacol 2015; 67(5): 616-29.
[http://dx.doi.org/10.1111/jphp.12358] [PMID: 25614930]
[98]
Goddeeris C, Willems T, Van den Mooter G. Formulation of fast disintegrating tablets of ternary solid dispersions consisting of TPGS 1000 and HPMC 2910 or PVPVA 64 to improve the dissolution of the anti-HIV drug UC 781. Eur J Pharm Sci 2008; 34(4-5): 293-302.
[http://dx.doi.org/10.1016/j.ejps.2008.05.005] [PMID: 18602800]
[99]
Janssens S, Denivelle S, Rombaut P, Van den Mooter G. Influence of polyethylene glycol chain length on compatibility and release characteristics of ternary solid dispersions of itraconazole in polyethylene glycol/hydroxypropylmethylcellulose 2910 E5 blends. Eur J Pharm Sci 2008; 35(3): 203-10.
[http://dx.doi.org/10.1016/j.ejps.2008.06.014] [PMID: 18656535]
[100]
Xie T, Taylor LS. Effect of Temperature and Moisture on the Physical Stability of Binary and Ternary Amorphous Solid Dispersions of Celecoxib. J Pharm Sci 2017; 106(1): 100-10.
[http://dx.doi.org/10.1016/j.xphs.2016.06.017] [PMID: 27476771]
[101]
Ohyagi N, Ueda K, Higashi K, Yamamoto K, Kawakami K, Moribe K. Synergetic Role of Hypromellose and Methacrylic Acid Copolymer in the Dissolution Improvement of Amorphous Solid Dispersions. J Pharm Sci 2017; 106(4): 1042-50.
[http://dx.doi.org/10.1016/j.xphs.2016.12.005] [PMID: 27988162]
[102]
Al-Obaidi H, Buckton G. Evaluation of griseofulvin binary and ternary solid dispersions with HPMCAS. AAPS PharmSciTech 2009; 10(4): 1172-7.
[http://dx.doi.org/10.1208/s12249-009-9319-x] [PMID: 19842041]
[103]
Jones DS, Tian Y, Li S, Yu T, Abu-Diak OA, Andrews GP. The Use of Binary Polymeric Networks in Stabilizing Polyethylene Oxide Solid Dispersions. J Pharm Sci 2016; 105(10): 3064-72.
[http://dx.doi.org/10.1016/j.xphs.2016.06.004] [PMID: 27519650]
[104]
Tajarobi F, Larsson A, Matic H, Abrahmsén-Alami S. The influence of crystallization inhibition of HPMC and HPMCAS on model substance dissolution and release in swellable matrix tablets. Eur J Pharm Biopharm 2011; 78(1): 125-33.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.020] [PMID: 21168491]
[105]
Tran TTD, Tran PHL, Nguyen KT, Tran VT. Nano-precipitation: Preparation and application in the field of pharmacy. Curr Pharm Des 2016; 22(20): 2997-3006.
[http://dx.doi.org/10.2174/1381612822666160408151702] [PMID: 27055935]
[106]
De Haan P, Lerk CF. Oral controlled release dosage forms. A review. Pharm Weekbl Sci 1984; 6(2): 57-67.
[PMID: 6374610]
[107]
Ozeki T, Yuasa H, Kanaya Y. Control of medicine release from solid dispersion through poly(ethylene oxide)-carboxyvinylpolymer interaction1. Int J Pharm 1998; 165: 239-44.
[http://dx.doi.org/10.1016/S0378-5173(98)00011-8]
[108]
Ozeki T, Yuasa H, Kanaya Y. Mechanism of medicine release from solid dispersion composed of poly(ethylene oxide)-carboxyvinylpolymer interpolymer complex and pH effect on medicine release1. Int J Pharm 1998; 171: 123-32.
[http://dx.doi.org/10.1016/S0378-5173(98)00159-8]
[109]
Ozeki T, Yuasa H, Kanaya Y. Control of medicine release from solid dispersion composed of the poly(ethylene oxide)-carboxyvinylpolymer interpolymer complex by varying molecular weight of poly(ethylene oxide). J Control Release 1999; 58(1): 87-95.
[http://dx.doi.org/10.1016/S0168-3659(98)00145-X] [PMID: 10021492]
[110]
Ozeki T, Yuasa H, Kanaya Y. Controlled release from solid dispersion composed of poly(ethylene oxide)-Carbopol interpolymer complex with various cross-linking degrees of Carbopol. J Control Release 2000; 63(3): 287-95.
[http://dx.doi.org/10.1016/S0168-3659(99)00202-3] [PMID: 10601724]
[111]
Shuwisitkul D. Hot melt extrusion: An application for enhancing drug solubility. Asian J Pharma Sci 2016; 11(1): 45-6.
[http://dx.doi.org/10.1016/j.ajps.2015.10.032]
[112]
Martinez-Marcos L, Lamprou DA, McBurney RT, Halbert GW. A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties. Int J Pharm 2016; 499(1-2): 175-85.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.006] [PMID: 26768722]
[113]
Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K. Preparation of carbamazepine-Soluplus solid dispersions by hot-melt extrusion, and prediction of drug-polymer miscibility by thermodynamic model fitting. Eur J Pharm Biopharm 2013; 84(1): 228-37.
[http://dx.doi.org/10.1016/j.ejpb.2012.12.018] [PMID: 23333900]
[114]
Adler C, Schönenberger M, Teleki A, Kuentz M. Molecularly designed lipid microdomains for solid dispersions using a polymer/inorganic carrier matrix produced by hot-melt extrusion. Int J Pharm 2016; 499(1-2): 90-100.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.057] [PMID: 26721729]
[115]
Agrawal AM, Dudhedia MS, Patel AD, Raikes MS. Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process. Int J Pharm 2013; 457(1): 71-81.
[http://dx.doi.org/10.1016/j.ijpharm.2013.08.081] [PMID: 24013161]
[116]
Nguyen TN-G, Tran PH-L, Tran TV, Vo TV. Truong-DinhTran T. Development of a modified - solid dispersion in an uncommon approach of melting method facilitating properties of a swellable polymer to enhance drug dissolution. Int J Pharm 2015; 484(1-2): 228-34.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.064] [PMID: 25735669]
[117]
Marks JA, Wegiel LA, Taylor LS, Edgar KJ. Pairwise polymer blends for oral drug delivery. J Pharm Sci 2014; 103(9): 2871-83.
[http://dx.doi.org/10.1002/jps.23991] [PMID: 24823790]
[118]
Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Effect of binary additive combinations on solution crystal growth of the poorly water-soluble drug, ritonavir. Cryst Growth Des 2012; 12: 6050-60.
[http://dx.doi.org/10.1021/cg301169t]
[119]
Liu H, Ilevbare GA, Cherniawski BP, Ritchie ET, Taylor LS, Edgar KJ. Synthesis and structure-property evaluation of cellulose ω-carboxyesters for amorphous solid dispersions. Carbohydr Polym 2014; 100: 116-25.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.049] [PMID: 24188845]
[120]
Li B, Wegiel LA, Taylor LS, Edgar KJ. Stability and solution concentration enhancement of resveratrol by solid dispersion in cellulose derivative matrices. Cellulose 2013; 20: 1249-60.
[http://dx.doi.org/10.1007/s10570-013-9889-3]
[121]
Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Understanding Polymer Properties Important for Crystal Growth Inhibition—Impact of Chemically Diverse Polymers on Solution Crystal Growth of Ritonavir. Cryst Growth Des 2012; 12: 3133-43.
[http://dx.doi.org/10.1021/cg300325p]
[122]
Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Inhibition of solution crystal growth of ritonavir by cellulose polymers – factors influencing polymer effectiveness. CrystEngComm 2012; 14: 6503-14.
[http://dx.doi.org/10.1039/c2ce25515d]
[123]
Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering. J Control Release 2014; 189: 108-22.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.036] [PMID: 24993426]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy