[1]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 3983-3988.
[2]
DeSantis, C.E.; Fedewa, S.A.; Goding Sauer, A.; Kramer, J.L.; Smith, R.A.; Jemal, A. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA Cancer J. Clin., 2016, 66(1), 31-42.
[3]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[5]
Gangopadhyay, S.; Nandy, A.; Hor, P.; Mukhopadhyay, A. Breast cancer stem cells: A novel therapeutic target. Clin. Breast Cancer, 2013, 13(1), 7-15.
[6]
Zhang, Z.; Wang, J.; Skinner, K.A.; Shayne, M.; Hajdu, S.I.; Bu, H.; Hicks, D.G.; Tang, P. Pathological features and clinical outcomes of breast cancer according to levels of oestrogen receptor expression. Histopathology, 2014, 65(4), 508-516.
[7]
Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; Rassenti, L.; Kipps, T.; Negrini, M.; Bullrich, F.; Croce, C.M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15524-15529.
[8]
Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[9]
Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[10]
Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1), 15-20.
[11]
Chen, C-Z.; Li, L.; Lodish, H.F.; Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science, 2004, 303(5654), 83-86.
[12]
Rovira, C.; Güida, M.C.; Cayota, A. MicroRNAs and other small silencing RNAs in cancer. IUBMB Life, 2010, 62(12), 859-868.
[13]
Friedman, R.C.; Farh, K.K-H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105.
[14]
Chang, C-J.; Chao, C-H.; Xia, W.; Yang, J-Y.; Xiong, Y.; Li, C-W.; Yu, W-H.; Rehman, S.K.; Hsu, J.L.; Lee, H-H.; Liu, M.; Chen, C.T.; Yu, D.; Hung, M.C. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol., 2011, 13(3), 317-323.
[15]
Tivnan, A.; Tracey, L.; Buckley, P.G.; Alcock, L.C.; Davidoff, A.M.; Stallings, R.L. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer, 2011, 11(1), 33.
[16]
Roy, S.; Levi, E.; Majumdar, A.P.; Sarkar, F.H. Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J. Hematol. Oncol., 2012, 5(1), 58.
[17]
Wu, M-Y.; Fu, J.; Xiao, X.; Wu, J.; Wu, R-C. MiR-34a regulates therapy resistance by targeting HDAC1 and HDAC7 in breast cancer. Cancer Lett., 2014, 354(2), 311-319.
[18]
Gallardo, E.; Navarro, A.; Viñolas, N.; Marrades, R.M.; Diaz, T.; Gel, B.; Quera, A.; Bandres, E.; Garcia-Foncillas, J.; Ramirez, J.; Monzo, M. miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis, 2009, 30(11), 1903-1909.
[19]
Steeg, P.S. Tumor metastasis: Mechanistic insights and clinical challenges. Nat. Med., 2006, 12(8), 895-904.
[20]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. Science, 2011, 331(6024), 1559-1564.
[21]
Rivera, E.; Gomez, H. Chemotherapy resistance in metastatic breast cancer: The evolving role of ixabepilone. Breast Cancer Res., 2010, 12(2)(Suppl. 2), S2.
[22]
Naumov, G.N.; Townson, J.L.; MacDonald, I.C.; Wilson, S.M.; Bramwell, V.H.; Groom, A.C.; Chambers, A.F. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res. Treat., 2003, 82(3), 199-206.
[23]
Wang, J.; Zhang, X.; Wang, L.; Yang, Y.; Dong, Z.; Wang, H.; Du, L.; Wang, C. MicroRNA-214 suppresses oncogenesis and exerts impact on prognosis by targeting PDRG1 in bladder cancer. PLoS One, 2015, 10(2)e0118086
[24]
Calin, G.A.; Croce, C.M. MicroRNA-cancer connection: The beginning of a new tale. Cancer Res., 2006, 66(15), 7390-7394.
[25]
van Kouwenhove, M.; Kedde, M.; Agami, R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat. Rev. Cancer, 2011, 11(9), 644-656.
[26]
Bian, H-B.; Pan, X.; Yang, J-S.; Wang, Z-X.; De, W. Upregulation of microRNA-451 increases cisplatin sensitivity of non-small cell lung cancer cell line (A549). J. Exp. Clin. Cancer Res., 2011, 30(1), 20.
[27]
Zhang, B.; Pan, X.; Cobb, G.P.; Anderson, T.A. microRNAs as oncogenes and tumor suppressors. Dev. Biol., 2007, 302(1), 1-12.
[28]
Le Quesne, J.; Caldas, C. Micro-RNAs and breast cancer. Mol. Oncol., 2010, 4(3), 230-241.
[29]
Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; Varela, I.; Phillimore, B.; Begum, S.; McDonald, N.Q.; Butler, A.; Jones, D.; Raine, K.; Latimer, C.; Santos, C.R.; Nohadani, M.; Eklund, A.C.; Spencer-Dene, B.; Clark, G.; Pickering, L.; Stamp, G.; Gore, M.; Szallasi, Z.; Downward, J.; Futreal, P.A.; Swanton, C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med., 2012, 366(10), 883-892.
[30]
Misso, G.; Di Martino, M.T.; De Rosa, G.; Farooqi, A.A.; Lombardi, A.; Campani, V.; Zarone, M.R.; Gullà, A.; Tagliaferri, P.; Tassone, P.; Caraglia, M. Mir-34: A new weapon against cancer? Mol.
Ther. Nucleic Acids, 2014, 3e, 194.
[31]
Mlcochova, H.; Machackova, T.; Rabien, A.; Radova, L.; Fabian, P.; Iliev, R.; Slaba, K.; Poprach, A.; Kilic, E.; Stanik, M. Epithelial-mesenchymal transition-associated microRNA/mRNA signature is linked to metastasis and prognosis in clear-cell renal cell carcinoma. Sci. Rep., 2016, 6, 31852.
[32]
Hermeking, H. The miR-34 family in cancer and apoptosis. Cell Death Differ., 2010, 17(2), 193-199.
[33]
Imani, S.; Hosseinifard, H.; Cheng, J.; Wei, C.; Fu, J. Prognostic value of EMT-inducing transcription factors (EMT-TFs) in metastatic breast cancer: A systematic review and meta-analysis. Sci. Rep., 2016, 6, 28587.
[34]
Pang, R.T.; Leung, C.O.; Ye, T-M.; Liu, W.; Chiu, P.C.; Lam, K.K.; Lee, K-F.; Yeung, W.S. MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis, 2010, 31(6), 1037-1044.
[35]
Pang, M.F.; Georgoudaki, A.M.; Lambut, L.; Johansson, J.; Tabor, V.; Hagikura, K.; Jin, Y.; Jansson, M.; Alexander, J.S.; Nelson, C.M.; Jakobsson, L.; Betsholtz, C.; Sund, M.; Karlsson, M.C.; Fuxe, J. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene, 2016, 35(6), 748-760.
[36]
Ginestier, C.; Liu, S.; Diebel, M.E.; Korkaya, H.; Luo, M.; Brown, M.; Wicinski, J.; Cabaud, O.; Charafe-Jauffret, E.; Birnbaum, D.; Guan, J.L.; Dontu, G.; Wicha, M.S. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J. Clin. Invest., 2010, 120(2), 485-497.
[37]
Kang, L.; Mao, J.; Tao, Y.; Song, B.; Ma, W.; Lu, Y.; Zhao, L.; Li, J.; Yang, B.; Li, L. MicroRNA-34a suppresses the breast cancer stem cell-like characteristics by downregulating Notch1 pathway. Cancer Sci., 2015, 106(6), 700-708.
[38]
Zhang, H.; Li, N.; Zhang, J.; Jin, F.; Shan, M.; Qin, J.; Wang, Y. The influence of miR-34a expression on stemness and cytotoxic susceptibility of breast cancer stem cells. Cancer Biol. Ther., 2016, 17(6), 614-624.
[39]
Liu, T.; Liu, P.Y.; Marshall, G.M. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res., 2009, 69(5), 1702-1705.
[40]
Luo, J.; Nikolaev, A.Y.; Imai, S.; Chen, D.; Su, F.; Shiloh, A.; Guarente, L.; Gu, W. Negative control of p53 by Sir2α promotes cell survival under stress. Cell, 2001, 107(2), 137-148.
[41]
Lee, J.T.; Gu, W. SIRT1: Regulator of p53 deacetylation. Genes Cancer, 2013, 4(3-4), 112-117.
[42]
Yamakuchi, M.; Ferlito, M.; Lowenstein, C.J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13421-13426.
[43]
Yamakuchi, M.; Lowenstein, C.J. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle, 2009, 8(5), 712-715.
[44]
Ma, W.; Xiao, G.G.; Mao, J.; Lu, Y.; Song, B.; Wang, L.; Fan, S.; Fan, P.; Hou, Z.; Li, J.; Yu, X.; Wang, B.; Wang, H.; Wang, H.; Xu, F.; Li, Y.; Liu, Q.; Li, L. Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget, 2015, 6(12), 10432-10444.
[45]
Li, L.; Yuan, L.; Luo, J.; Gao, J.; Guo, J.; Xie, X. MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin. Exp. Med., 2013, 13(2), 109-117.
[46]
Li, L.; Xie, X.; Luo, J.; Liu, M.; Xi, S.; Guo, J.; Kong, Y.; Wu, M.; Gao, J.; Xie, Z.; Tang, J.; Wang, X.; Wei, W.; Yang, M.; Hung, M.C.; Xie, X. Targeted expression of miR-34a using the T-VISA system suppresses breast cancer cell growth and invasion. Mol. Ther., 2012, 20(12), 2326-2334.
[47]
Zhao, G.; Guo, J.; Li, D.; Jia, C.; Yin, W.; Sun, R.; Lv, Z.; Cong, X. MicroRNA-34a suppresses cell proliferation by targeting LMTK3 in human breast cancer mcf-7 cell line. DNA Cell Biol., 2013, 32(12), 699-707.
[48]
Li, X.J.; Ji, M.H.; Zhong, S.L.; Zha, Q.B.; Xu, J.J.; Zhao, J.H.; Tang, J.H. MicroRNA-34a modulates chemosensitivity of breast cancer cells to adriamycin by targeting Notch1. Arch. Med. Res., 2012, 43(7), 514-521.
[49]
Yang, S.; Li, Y.; Gao, J.; Zhang, T.; Li, S.; Luo, A.; Chen, H.; Ding, F.; Wang, X.; Liu, Z. MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene, 2013, 32(36), 4294-4303.
[50]
Mitra, A.K.; Agrahari, V.; Mandal, A.; Cholkar, K.; Natarajan, C.; Shah, S.; Joseph, M.; Trinh, H.M.; Vaishya, R.; Yang, X. Novel delivery approaches for cancer therapeutics. J. Control. Release, 2015, 219, 248-268.
[51]
Meacham, C.E.; Morrison, S.J. Tumour heterogeneity and cancer cell plasticity. Nature, 2013, 501(7467), 328-337.
[52]
Magee, J.A.; Piskounova, E.; Morrison, S.J. Cancer stem cells: Impact, heterogeneity, and uncertainty. Cancer Cell, 2012, 21(3), 283-296.
[53]
He, Q.; Guo, S.; Qian, Z.; Chen, X. Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem. Soc. Rev., 2015, 44(17), 6258-6286.
[54]
Cullis, P.R.; Hope, M.J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther., 2017, 25(7), 1467-1475.
[55]
Xu, M.; Li, D.; Yang, C.; Ji, J-S. MicroRNA-34a inhibition of the TLR signaling pathway via CXCL10 suppresses breast cancer cell invasion and migration. Cell. Physiol. Biochem., 2018, 46(3), 1286-1304.
[56]
Haussecker, D. The business of RNAi therapeutics in 2012. Mol.
Ther. Nucleic Acids, 2012, 1e8
[57]
Walsh, G. Biopharmaceutical benchmarks 2018. Nat. Biotechnol., 2018, 36(12), 1136-1145.
[58]
Tolcher, A.W.; Rodrigueza, W.V.; Rasco, D.W.; Patnaik, A.; Papadopoulos, K.P.; Amaya, A.; Moore, T.D.; Gaylor, S.K.; Bisgaier, C.L.; Sooch, M.P.; Woolliscroft, M.J.; Messmann, R.A. A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2014, 73(2), 363-371.
[59]
Beg, M.S.; Brenner, A.J.; Sachdev, J.; Borad, M.; Kang, Y-K.; Stoudemire, J.; Smith, S.; Bader, A.G.; Kim, S.; Hong, D.S. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs, 2017, 35(2), 180-188.
[60]
Kasinski, A.L.; Kelnar, K.; Stahlhut, C.; Orellana, E.; Zhao, J.; Shimer, E.; Dysart, S.; Chen, X.; Bader, A.G.; Slack, F.J. A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene, 2015, 34(27), 3547-3555.
[61]
Daige, C.L.; Wiggins, J.F.; Priddy, L.; Nelligan-Davis, T.; Zhao, J.; Brown, D. Systemic delivery of a miR-34a mimic as a potential
therapeutic for liver cancer. Mol. Cancer Ther, 2014.molcanther.
0209.2014..
[62]
Tazawa, H.; Tsuchiya, N.; Izumiya, M.; Nakagama, H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl. Acad. Sci. USA, 2007, 104(39), 15472-15477.
[63]
Ottosen, S.; Parsley, T.B.; Yang, L.; Zeh, K.; van Doorn, L-J.; van der Veer, E.; Raney, A.K.; Hodges, M.R.; Patick, A.K. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob. Agents Chemother., 2015, 59(1), 599-608.
[64]
Chakraborty, C.; Sharma, A.R.; Sharma, G.; Doss, C.G.P.; Lee, S-S. Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine. Mol. Ther. Nucleic Acids, 2017, 8, 132-143.
[65]
Gebert, L.F.; Rebhan, M.A.; Crivelli, S.E.; Denzler, R.; Stoffel, M.; Hall, J. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res., 2014, 42(1), 609-621.
[66]
Goyal, R.; Kapadia, C.H.; Melamed, J.R.; Riley, R.S.; Day, E.S. Layer-by-layer assembled gold nanoshells for the intracellular delivery of miR-34a. Cell. Mol. Bioeng., 2018, 11(5), 383-396.
[67]
He, Q.; Guo, S.; Qian, Z.; Chen, X. Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem. Soc. Rev., 2015, 44(17), 6258-6286.
[68]
Cullis, P.R.; Hope, M.J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther., 2017, 25(7), 1467-1475.
[69]
Trang, P.; Wiggins, J.F.; Daige, C.L.; Cho, C.; Omotola, M.; Brown, D.; Weidhaas, J.B.; Bader, A.G.; Slack, F.J. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther., 2011, 19(6), 1116-1122.
[70]
Bravo, V.; Rosero, S.; Ricordi, C.; Pastori, R.L. Instability of miRNA and cDNAs derivatives in RNA preparations. Biochem. Biophys. Res. Commun., 2007, 353(4), 1052-1055.
[71]
Lovis, P.; Roggli, E.; Laybutt, D.R.; Gattesco, S.; Yang, J-Y.; Widmann, C.; Abderrahmani, A.; Regazzi, R. Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction. Diabetes, 2008, 57(10), 2728-2736.
[72]
Backe, M.B.; Novotny, G.W.; Christensen, D.P.; Grunnet, L.G.; Mandrup-Poulsen, T. Altering β-cell number through stable alteration of miR-21 and miR-34a expression. Islets, 2014, 6(1)e27754
[73]
Guengerich, F.P. Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J., 2006, 8(1), E101-E111.
[74]
Khatsenko, O.; Morgan, R.; Truong, L.; York-Defalco, C.; Sasmor, H.; Conklin, B.; Geary, R.S. Absorption of antisense oligonucleotides in rat intestine: effect of chemistry and length. Antisense Nucleic Acid Drug Dev., 2000, 10(1), 35-44.
[75]
Stenvang, J.; Petri, A.; Lindow, M.; Obad, S.; Kauppinen, S. Inhibition of microRNA function by antimiR oligonucleotides. Silence, 2012, 3(1), 1.
[76]
Agostini, M.; Knight, R.A. miR-34: From bench to bedside. Oncotarget, 2014, 5(4), 872-881.
[77]
Eades, G.; Yao, Y.; Yang, M.; Zhang, Y.; Chumsri, S.; Zhou, Q. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J. Biol. Chem., 2011, 286(29), 25992-26002.
[78]
Guo, X.; Wu, Y.; Hartley, R.S. MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol., 2009, 6(5), 575-583.
[79]
Shimono, Y.; Zabala, M.; Cho, R.W.; Lobo, N.; Dalerba, P.; Qian, D.; Diehn, M.; Liu, H.; Panula, S.P.; Chiao, E.; Dirbas, F.M.; Somlo, G.; Pera, R.A.; Lao, K.; Clarke, M.F. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 2009, 138(3), 592-603.
[80]
Wu, F.; Zhu, S.; Ding, Y.; Beck, W.T.; Mo, Y-Y. MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin. Cancer Res., 2009, 15(5), 1550-1557.
[81]
Imani, S.; Zhang, X.; Hosseinifard, H.; Fu, S.; Fu, J. The diagnostic role of microRNA-34a in breast cancer: A systematic review and meta-analysis. Oncotarget, 2017, 8(14), 23177-23187.