Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Nature-derived Quinolines and Isoquinolines: A Medicinal Chemistry Perspective

Author(s): Mohit Gupta* and Saloni Patel

Volume 7, Issue 1, 2021

Published on: 14 June, 2019

Page: [72 - 92] Pages: 21

DOI: 10.2174/2215083805666190614115701

Price: $65

Abstract

Quinoline and isoquinoline motifs are commonly encountered in natural products of diverse origins. These moderately basic fused-heterocyclic rings containing natural products are adorned with remarkable biological activities with clinical use in various diseases demonstrating nature elegance and creativity. Therefore, these privileged rings have attracted profound interest from the scientific community. In this perspective, we have discussed medicinal chemistry perspective of the natural products containing quinoline and isoquinoline scaffolds.

Keywords: Quinoline, isoquinoline, medicinal chemistry, natural products, fused-heterocycles, biological activities.

Graphical Abstract

[1]
Joule J, Mills K, Smith G. Quinolines and isoquinolines: Reactions and synthesis Heterocyclic Chemistry. In: Springer 1995; pp. 120-45.
[2]
Michael JP. Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 1997; 14(1): 11-20.
[http://dx.doi.org/10.1039/np9971400011] [PMID: 9121729]
[3]
Menachery MD, Lavanier GL, Wetherly ML, Guinaudeau H, Shamma M. Simple isoquinoline alkaloids. J Nat Prod 1986; 49(5): 745-78.
[http://dx.doi.org/10.1021/np50047a001]
[4]
Mann J, Davidson RS, Hobbs JB, Banthorpe DV, Harborne JB. Natural products: Their chemistry and biological significance. In: Longman Scientific & Technical. Harlow 1994; p. 455.
[5]
Hawkins KM, Smolke CD. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 2008; 4(9): 564-73.
[http://dx.doi.org/10.1038/nchembio.105] [PMID: 18690217]
[6]
Boger DL, Ichikawa S. Total syntheses of thiocoraline and BE-22179: Establishment of relative and absolute stereochemistry. J Am Chem Soc 2000; 122(12): 2956-7.
[http://dx.doi.org/10.1021/ja0001660]
[7]
Shang X-F, Morris-Natschke SL, Liu Y-Q, et al. Biologically active quinoline and quinazoline alkaloids part I. Med Res Rev 2018; 38(3): 775-828.
[http://dx.doi.org/10.1002/med.21466] [PMID: 28902434]
[8]
Shang X-F, Morris-Natschke SL, Yang G-Z, et al. Biologically active quinoline and quinazoline alkaloids part II. Med Res Rev 2018; 38(5): 1614-60.
[http://dx.doi.org/10.1002/med.21492] [PMID: 29485730]
[9]
Wiesner J, Ortmann R, Jomaa H, Schlitzer M. New antimalarial drugs. Angew Chem Int Ed Engl 2003; 42(43): 5274-93.
[http://dx.doi.org/10.1002/anie.200200569] [PMID: 14613157]
[10]
Manske RH. The chemistry of quinolines. Chem Rev 1942; 30(1): 113-44.
[http://dx.doi.org/10.1021/cr60095a006]
[11]
Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA. Plant Antitumor Agents. I. The Isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata1,2. J Am Chem Soc 1966; 88(16): 3888-90.
[http://dx.doi.org/10.1021/ja00968a057]]
[12]
Liu Y-Q, Li W-Q, Morris-Natschke SL, et al. Perspectives on biologically active camptothecin derivatives. Med Res Rev 2015; 35(4): 753-89.
[http://dx.doi.org/10.1002/med.21342] [PMID: 25808858]
[13]
Hughes CC, MacMillan JB, Gaudêncio SP, Fenical W, La Clair JJ. Ammosamides A and B target myosin. Angew Chem Int Ed Engl 2009; 48(4): 728-32.
[http://dx.doi.org/10.1002/anie.200804107] [PMID: 19097126]
[14]
Hughes CC, MacMillan JB, Gaudêncio SP, Jensen PR, Fenical W. The ammosamides: Structures of cell cycle modulators from a marine-derived Streptomyces species. Angew Chem Int Ed Engl 2009; 48(4): 725-7.
[http://dx.doi.org/10.1002/anie.200804890] [PMID: 19090514]
[15]
Fu Y-H, Di Y-T, He H-P, Li S-L, Zhang Y, Hao X-J. Angustifonines A and B, cytotoxic bisindole alkaloids from Bousigonia angustifolia. J Nat Prod 2014; 77(1): 57-62.
[http://dx.doi.org/10.1021/np4005823] [PMID: 24417634]
[16]
Kim WG, Kim J-P, Kim CJ, Lee KH, Yoo ID, Benzastatins A. B, C, and D: New free radical scavengers from Streptomyces nitrosporeus 30643. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 1996; 49(1): 20-5.
[http://dx.doi.org/10.7164/antibiotics.49.20] [PMID: 8609080]
[17]
Kim W-G, Kim J-P, Yoo ID, Benzastatins A, Benzastatins A. B, C, and D: new free radical scavengers from Streptomyces nitrosporeus 30643. II. Structural determination. J Antibiot (Tokyo) 1996; 49(1): 26-30.
[http://dx.doi.org/10.7164/antibiotics.49.26] [PMID: 8609081]
[18]
Okada H, Suzuki H, Yoshinari T, et al. A new topoisomerase II inhibitor, BE-22179, produced by a streptomycete. I. Producing strain, fermentation, isolation and biological activity. J Antibiot (Tokyo) 1994; 47(2): 129-35.
[http://dx.doi.org/10.7164/antibiotics.47.129] [PMID: 8150706]
[19]
Boger DL, Ichikawa S, Tse WC, Hedrick MP, Jin Q. Total syntheses of thiocoraline and BE-22179 and assessment of their DNA binding and biological properties. J Am Chem Soc 2001; 123(4): 561-8.
[http://dx.doi.org/10.1021/ja003602r] [PMID: 11456568]
[20]
Liu YQ, Li WQ, Morris-Natschke SL, et al. Perspectives on biologically active camptothecin derivatives. Med Res Rev 2015; 35(4): 753-89.
[http://dx.doi.org/10.1002/med.21342] [PMID: 25808858]
[21]
de Carvalho PR, Ropero DR, Pinheiro MM, Fernandes PD, Boylan F. Quinoline alkaloids isolated from Choisya Aztec-Pearl and their contribution to the overall antinociceptive activity of this plant. PLoS One 2016; 11(10)e0164998
[http://dx.doi.org/10.1371/journal.pone.0164998] [PMID: 27768733]
[22]
Chen K-S, Chang Y-L, Teng C-M, Chen C-F, Wu Y-C. Furoquinolines with antiplatelet aggregation activity from leaves of Melicope confusa. Planta Med 2000; 66(1): 80-1.
[http://dx.doi.org/10.1055/s-0029-1243116] [PMID: 10705744]
[23]
Nam K-W, Je K-H, Shin Y-J, Kang SS, Mar W. Inhibitory effects of furoquinoline alkaloids from Melicope confusa and Dictamnus albus against human phosphodiesterase 5 (hPDE5A) in vitro. Arch Pharm Res 2005; 28(6): 675-9.
[http://dx.doi.org/10.1007/BF02969357 PMID: 16042076]
[24]
Cheng JT, Chang TK, Chen IS. Skimmianine and related furoquinolines function as antagonists of 5-hydroxytryptamine receptors in animals. J Auton Pharmacol 1994; 14(5): 365-74.
[http://dx.doi.org/10.1111/j.1474-8673.1994.tb00617.xPMID: 7829541]
[25]
Wu TS, Shi LS, Wang JJ, Iou SC, Chang HC, Chen YP, et al. Cytotoxic and antiplatelet aggregation principles of Ruta graveolens. J Chin Chem Soc (Taipei) 2003; 50(1): 171-8.
[http://dx.doi.org/10.1002/jccs.200300024]
[26]
Chen JJ, Huang HY, Duh CY, Chen IS. Cytotoxic constituents from the stem bark of Zanthoxylum pistaciiflorum. J Chin Chem Soc (Taipei) 2004; 51(3): 659-63.
[http://dx.doi.org/10.1002/jccs.200400099]]
[27]
Lee HS, Oh WK, Choi HC, et al. Inhibition of angiotensin II receptor binding by quinolone alkaloids from Evodia rutaecarpa. Phytotherapy Research. An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 1998 May; 12(3): 212-4.
[28]
Jin HZ, Lee JH, Lee D, et al. Quinolone alkaloids with inhibitory activity against nuclear factor of activated T cells from the fruits of Evodia rutaecarpa. Biol Pharm Bull 2004; 27(6): 926-8.
[http://dx.doi.org/10.1248/bpb.27.926] [PMID: 15187449]
[29]
Rho TC, Bae E-A, Kim D-H, et al. Anti-Helicobacter pylori activity of quinolone alkaloids from Evodiae fructus. Biol Pharm Bull 1999; 22(10): 1141-3.
[http://dx.doi.org/10.1248/bpb.22.1141] [PMID: 10549874]
[30]
Hamasaki N, Ishii E, Tominaga K, et al. Highly selective antibacterial activity of novel alkyl quinolone alkaloids from a Chinese herbal medicine, Gosyuyu (Wu-Chu-Yu), against Helicobacter pylori in vitro. Microbiol Immunol 2000; 44(1): 9-15.
[http://dx.doi.org/10.1111/j.1348-0421.2000.tb01240.x] [PMID: 10711594]
[31]
Adams M, Wube AA, Bucar F, Bauer R, Kunert O, Haslinger E. Quinolone alkaloids from Evodia rutaecarpa: A potent new group of antimycobacterial compounds. Int J Antimicrob Agents 2005; 26(3): 262-4.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.06.003]] [PMID: 16051468]
[32]
Ko JS, Rho M-C, Chung MY, et al. Quinolone alkaloids, diacylglycerol acyltransferase inhibitors from the fruits of Evodia rutaecarpa. Planta Med 2002; 68(12): 1131-3.
[http://dx.doi.org/10.1055/s-2002-36358] [PMID: 12494344]
[33]
Cui B, Chai H, Dong Y, et al. Quinoline alkaloids from Acronychia laurifolia. Phytochemistry 1999; 52(1): 95-8.
[http://dx.doi.org/10.1016/S0031-9422(99)00039-4] [PMID: 10466225]
[34]
Chen I-S, Chen H-F, Cheng M-J, et al. Quinoline alkaloids and other constituents of Melicope semecarpifolia with antiplatelet aggregation activity. J Nat Prod 2001; 64(9): 1143-7.
[http://dx.doi.org/10.1021/np010122k] [PMID: 11575945]
[35]
Lal B, Bhise NB, Gidwani RM, Lakdawala AD, Joshi K, Patvardhan S. Isolation, synthesis and biological activity of Evolitrine and analogs. Arkivoc 2005 Jan 1; 11: 77-97.
[36]
Ito C, Itoigawa M, Sato A, et al. Chemical constituents of Glycosmis arborea: Three new carbazole alkaloids and their biological activity. J Nat Prod 2004; 67(9): 1488-91.
[http://dx.doi.org/10.1021/np0400611] [PMID: 15387647]
[37]
Chen I-S, Tsai I-W, Teng C-M, Chen J-J, Chang Y-L, Ko F-N, et al. Pyranoquinoline alkaloids from Zanthoxylum simulans. Phytochemistry 1997; 46(3): 525-9.
[http://dx.doi.org/10.1016/S0031-9422(97)00280-X]
[38]
Cheng M-J, Lee K-H, Tsai I-L, Chen I-S. Two new sesquiterpenoids and anti-HIV principles from the root bark of Zanthoxylum ailanthoides. Bioorg Med Chem 2005; 13(21): 5915-20.
[http://dx.doi.org/10.1016/j.bmc.2005.07.050] [PMID: 16140017]
[39]
Herman JD, Pepper LR, Cortese JF, Estiu G, Galinsky K, Zuzarte-Luis V, et al. The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Sci Transl Med 7(288)2015;
[http://dx.doi.org/10.1126/scitranslmed.aaa3575]
[40]
Jansen O, Akhmedjanova V, Angenot L, et al. Screening of 14 alkaloids isolated from Haplophyllum A. Juss. for their cytotoxic properties. J Ethnopharmacol 2006; 105(1-2): 241-5.
[http://dx.doi.org/10.1016/j.jep.2005.11.001] [PMID: 16330172]
[41]
Hanawa F, Fokialakis N, Skaltsounis A-L. Photo-activated DNA binding and antimicrobial activities of furoquinoline and pyranoquinolone alkaloids from Rutaceae. Planta Med 2004; 70(6): 531-5.
[http://dx.doi.org/10.1055/s-2004-827153] [PMID: 15229804]
[42]
Cantrell CL, Schrader KK, Mamonov LK, et al. Isolation and identification of antifungal and antialgal alkaloids from Haplophyllum sieversii. J Agric Food Chem 2005; 53(20): 7741-8.
[http://dx.doi.org/10.1021/jf051478v] [PMID: 16190626]
[43]
Kamikawa T, Hanaoka Y, Fujie S, et al. SRS-A antagonist pyranoquinolone alkaloids from east African Fagara plants and their synthesis. Bioorg Med Chem 1996; 4(8): 1317-20.
[http://dx.doi.org/10.1016/0968-0896(96)00110-1] [PMID: 8879553]
[44]
Won K-J, Chung K-S, Lee YS, et al. Haplophytin-A induces caspase-8-mediated apoptosis via the formation of death-inducing signaling complex in human promyelocytic leukemia HL-60 cells. Chem Biol Interact 2010; 188(3): 505-11.
[http://dx.doi.org/10.1016/j.cbi.2010.09.001] [PMID: 20833157]
[45]
Basco LK, Mitaku S, Skaltsounis A-L, et al. In vitro activities of furoquinoline and acridone alkaloids against Plasmodium falciparum. Antimicrob Agents Chemother 1994; 38(5): 1169-71.
[http://dx.doi.org/10.1128/AAC.38.5.1169] [PMID: 8067758]
[46]
de Souza RC, Fernandes JB, Vieira PC, Fatima M, da Silva GF, Godoy MFP, et al. A new imidazole alkaloid and other constituents from Pilocarpus grandiflorus and their antifungal activity. Z Naturforsch, B. Chem Sci 2005; 60(7): 787-91.
[47]
Cheng J-T, Chang TK, Chen IS. Skimmianine and related furoquinolines function as antagonists of 5-hydroxytryptamine receptors in animals. J Auton Pharmacol 1994; 14(5): 365-74.
[http://dx.doi.org/10.1111/j.1474-8673.1994.tb00617.x] [PMID: 7829541]
[48]
Hassani M, Cai W, Koelsch KH, et al. Lavendamycin antitumor agents: structure-based design, synthesis, and NAD(P)H:quinone oxidoreductase 1 (NQO1) model validation with molecular docking and biological studies. J Med Chem 2008; 51(11): 3104-15.
[http://dx.doi.org/10.1021/jm701066a] [PMID: 18457384]
[49]
Cardoso-Lopes EM, Maier JA, da Silva MR, et al. Alkaloids from stems of Esenbeckia leiocarpa Engl. (Rutaceae) as potential treatment for Alzheimer disease. Molecules 2010; 15(12): 9205-13.
[http://dx.doi.org/10.3390/molecules15129205] [PMID: 21160449]
[50]
Gan C-Y, Robinson WT, Etoh T, Hayashi M, Komiyama K, Kam T-S. Leucophyllidine, a cytotoxic bisindole alkaloid constituted from the union of an eburnan and a new vinylquinoline alkaloid. Org Lett 2009; 11(17): 3962-5.
[http://dx.doi.org/10.1021/ol9016172] [PMID: 19708704]
[51]
Konishi M, Ohkuma H, Sakai F, et al. BBM-928, a new antitumor antibiotic complex. III. Structure determination of BBM-928 A, B and C. J Antibiot (Tokyo) 1981; 34(2): 148-59.
[http://dx.doi.org/10.7164/antibiotics.34.148] [PMID: 7298509]
[52]
Huang C-H, Mirabelli CK, Mong S, Crooke ST. Intermolecular cross-linking of DNA through bifunctional intercalation of an antitumor antibiotic, luzopeptin A (BBM-928A). Cancer Res 1983; 43(6): 2718-24.
[PMID: 6303566]
[53]
Huang C-H, Crooke ST. Effects of structural modifications of antitumor antibiotics (luzopeptins) on the interactions with deoxyribonucleic acid. Cancer Res 1985; 45(8): 3768-73.
[PMID: 4016750]
[54]
Take Y, Inouye Y, Nakamura S, Allaudeen HS, Kubo A. Comparative studies of the inhibitory properties of antibiotics on human immunodeficiency virus and avian myeloblastosis virus reverse transcriptases and cellular DNA polymerases. J Antibiot (Tokyo) 1989; 42(1): 107-15.
[http://dx.doi.org/10.7164/antibiotics.42.107] [PMID: 2466028]
[55]
Miyanaga A, Janso JE, McDonald L, et al. Discovery and assembly-line biosynthesis of the lymphostin pyrroloquinoline alkaloid family of mTOR inhibitors in Salinispora bacteria. J Am Chem Soc 2011; 133(34): 13311-3.
[http://dx.doi.org/10.1021/ja205655w]] [PMID: 21815669]
[56]
Liu B, Wang L, Chen G, Han C, Wang J. Isolation and crystal structure of marcanine A from Polyalthia plagioneura. Molecules 2010; 15(9): 6349-56.
[http://dx.doi.org/10.3390/molecules15096349] [PMID: 20877226]
[57]
Alvar J, Cañavate C, Cruz I, Desjeux P, Moreno J, Nieto J. Leishmania/HIV co-infections in the second decade 2006.
[58]
Coy Barrera CA, Coy Barrera ED, Granados Falla DS, Delgado Murcia G, Cuca Suarez LE. Seco-limonoids and quinoline alkaloids from Raputia heptaphylla and their antileishmanial activity. Chem Pharm Bull (Tokyo) 2011; 59(7): 855-9.
[http://dx.doi.org/10.1248/cpb.59.855] [PMID: 21720036]
[59]
Cuca Suarez LE, Pattarroyo ME, Lozano JM, Delle Monache F. Biological activity of secondary metabolites from Peltostigma guatemalense. Nat Prod Res 2009; 23(4): 370-4.
[http://dx.doi.org/10.1080/14786410802228439] [PMID: 19296377]
[60]
Bouquet J, Rivaud M, Chevalley S, Deharo E, Jullian V, Valentin A. Biological activities of nitidine, a potential anti-malarial lead compound. Malar J 2012; 11(1): 67.
[http://dx.doi.org/10.1186/1475-2875-11-67] [PMID: 22404785]
[61]
Kimura Y, Kusano M, Koshino H, Uzawa J, Fujioka S, Tani K. Penigequinolones A and B, pollen-growth inhibitors produced by Penicilium sp., No. 410. Tetrahedron Lett 1996; 37(28): 4961-4.
[http://dx.doi.org/10.1016/0040-4039(96)00978-1]
[62]
Wahyuni TS, Widyawaruyanti A, Lusida MI, et al. Inhibition of hepatitis C virus replication by chalepin and pseudane IX isolated from Ruta angustifolia leaves. Fitoterapia 2014; 99: 276-83.
[http://dx.doi.org/10.1016/j.fitote.2014.10.011] [PMID: 25454460]
[63]
Matson JA, Bush JA. Sandramycin, a novel antitumor antibiotic produced by a Nocardioides sp. Production, isolation, characterization and biological properties. J Antibiot (Tokyo) 1989; 42(12): 1763-7.
[http://dx.doi.org/10.7164/antibiotics.42.1763] [PMID: 2621159]
[64]
Boger DL, Chen J-H, Saionz KW. (−)-Sandramycin: total synthesis and characterization of DNA binding properties. J Am Chem Soc 1996; 118(7): 1629-44.
[http://dx.doi.org/10.1021/ja952799y]]
[65]
Boger DL, Chen J-H, Saionz KW, Jin Q. Synthesis of key sandramycin analogs: Systematic examination of the intercalation chromophore. Bioorg Med Chem 1998; 6(1): 85-102.
[http://dx.doi.org/10.1016/S0968-0896(97)10014-1] [PMID: 9502108]
[66]
Li Y, Zheng D, Li J, et al. Sannanine, a new cytotoxic alkaloid from Streptomyces sannanensis. J Antibiot (Tokyo) 2009; 62(11): 647-8.
[http://dx.doi.org/10.1038/ja.2009.95 ] [PMID: 19798119]
[67]
Cai X-H, Shang J-H, Feng T, Luo X-D. Novel alkaloids from Alstonia scholaris. Z Naturforsch, B J Chem Sci 2010; 65(9): 1164-8.
[http://dx.doi.org/10.1515/znb-2010-0918]
[68]
Napolitano HB, Silva M, Ellena J, Rocha WC, Vieira PC, Thiemann OH, et al. Redetermination of skimmianine: A new inhibitor against the Leishmania APRT enzyme. Acta Crystallogr Sect E Struct Rep Online 2003; 59(10): o1503-5.
[http://dx.doi.org/10.1107/S1600536803019913]
[69]
Chen J-J, Huang H-Y, Duh C-Y, Chen I-S. Cytotoxic Constituents from the Stem Bark of Zanthoxylum Pistaciiflorum. J Chin Chem Soc (Taipei) 2004; 51(3): 659-63.
[http://dx.doi.org/10.1002/jccs.200400099]]
[70]
Basco LK, Mitaku S, Skaltsounis AL, et al. In vitro activities of furoquinoline and acridone alkaloids against Plasmodium falciparum. Antimicrob Agents Chemother 1994; 38(5): 1169-71.
[http://dx.doi.org/10.1128/AAC.38.5.1169] [PMID: 8067758]
[71]
Hanawa F, Fokialakis N, Skaltsounis A-L. Photo-activated DNA binding and antimicrobial activities of furoquinoline and pyranoquinolone alkaloids from rutaceae. Planta Med 2004; 70(6): 531-5.
[http://dx.doi.org/10.1055/s-2004-827153] [PMID: 15229804]
[72]
Siavelis JC, Bourdakou MM, Athanasiadis EI, Spyrou GM, Nikita KS. Bioinformatics methods in drug repurposing for Alzheimer’s disease. Brief Bioinform 2016; 17(2): 322-35.
[http://dx.doi.org/10.1093/bib/bbv048] [PMID: 26197808]
[73]
Wang H, Yeo SL, Xu J, et al. Isolation of streptonigrin and its novel derivative from Micromonospora as inducing agents of p53-dependent cell apoptosis. J Nat Prod 2002; 65(5): 721-4.
[http://dx.doi.org/10.1021/np0104572] [PMID: 12027749]
[74]
Romero F, Espliego F, Pérez Baz J, et al. Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. I. Taxonomy, fermentation, isolation, and biological activities. J Antibiot (Tokyo) 1997; 50(9): 734-7.
[http://dx.doi.org/10.7164/antibiotics.50.734] [PMID: 9360617]
[75]
Perez Baz J, Cañedo LM, Fernández Puentes JL, Silva Elipe MV. Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora. II. Physico-chemical properties and structure determination. J Antibiot (Tokyo) 1997; 50(9): 738-41.
[http://dx.doi.org/10.7164/antibiotics.50.738]] [PMID: 9360618]
[76]
Erba E, Bergamaschi D, Ronzoni S, et al. Mode of action of thiocoraline, a natural marine compound with anti-tumour activity. Br J Cancer 1999; 80(7): 971-80.
[http://dx.doi.org/10.1038/sj.bjc.6690451]] [PMID: 10362104]
[77]
Loya S, Rudi A, Tal R, Kashman Y, Loya Y, Hizi A. 3,5,8-Trihydroxy-4-quinolone, a novel natural inhibitor of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2. Arch Biochem Biophys 1994; 309(2): 315-22.
[http://dx.doi.org/10.1006/abbi.1994.1119] [PMID: 7510944]
[78]
Christopher E, Bedir E, Dunbar C, Khan IA, Okunji CO, Schuster BM, et al. Indoloquinazoline Alkaloids from Araliopsis tabouensis. Helv Chim Acta 2003; 86(8): 2914-8.
[http://dx.doi.org/10.1002/hlca.200390239]
[79]
Jadulco RC, Pond CD, Van Wagoner RM, et al. 4-Quinolone alkaloids from Melochia odorata. J Nat Prod 2014; 77(1): 183-7.
[http://dx.doi.org/10.1021/np400847t] [PMID: 24392742]
[80]
Cretton S, Breant L, Pourrez L, et al. Antitrypanosomal quinoline alkaloids from the roots of Waltheria indica. J Nat Prod 2014; 77(10): 2304-11.
[http://dx.doi.org/10.1021/np5006554] [PMID: 25314007]
[81]
Cretton S, Bréant L, Pourrez L, et al. Chemical constituents from Waltheria indica exert in vitro activity against Trypanosoma brucei and T. cruzi. Fitoterapia 2015; 105: 55-60.
[http://dx.doi.org/10.1016/j.fitote.2015.06.007 PMID: 26072041]
[82]
Gantier JC, Fournet A, Munos MH, Hocquemiller R. The effect of some 2-substituted quinolines isolated from Galipea longiflora on Plasmodium vinckei petteri infected mice. Planta Med 1996; 62(3): 285-6.
[http://dx.doi.org/10.1055/s-2006-957883] [PMID: 8693048]
[83]
Fournet A, Barrios AA, Muñoz V, Hocquemiller R, Roblot F, Cavé A, et al. Antiprotozoal activity of quinoline alkaloids isolated from Galipea longiflora, a Bolivian plant used as a treatment for cutaneous leishmaniasis. Phytother Res 1994; 8(3): 174-8.
[http://dx.doi.org/10.1002/ptr.2650080312]
[84]
Fournet A, Barrios AA, Muñoz V, Hocquemiller R, Cavé A, Bruneton J. 2-substituted quinoline alkaloids as potential antileishmanial drugs. Antimicrob Agents Chemother 1993; 37(4): 859-63.
[http://dx.doi.org/10.1128/AAC.37.4.859] [PMID: 8494383]
[85]
Fournet A, Gantier JC, Gautheret A, et al. The activity of 2-substituted quinoline alkaloids in BALB/c mice infected with Leishmania donovani. J Antimicrob Chemother 1994; 33(3): 537-44.
[http://dx.doi.org/10.1093/jac/33.3.537] [PMID: 8040117]
[86]
Fournet A, Ferreira ME, Rojas De Arias A, et al. In vivo efficacy of oral and intralesional administration of 2-substituted quinolines in experimental treatment of new world cutaneous leishmaniasis caused by Leishmania amazonensis. Antimicrob Agents Chemother 1996; 40(11): 2447-51.
[http://dx.doi.org/10.1128/AAC.40.11.2447] [PMID: 8913444]
[87]
Belliard AM, Leroy C, Banide H, Farinotti R, Lacour B. Decrease of intestinal P-glycoprotein activity by 2n-propylquinoline, a new oral treatment for visceral leishmaniasis. Exp Parasitol 2003; 103(1-2): 51-6.
[http://dx.doi.org/10.1016/S0014-4894(03)00070-5] [PMID: 12810046]
[88]
Fournet A, Mahieux R, Fakhfakh MA, Franck X, Hocquemiller R, Figadère B. Substituted quinolines induce inhibition of proliferation of HTLV-1 infected cells. Bioorg Med Chem Lett 2003; 13(5): 891-4.
[http://dx.doi.org/10.1016/S0960-894X(02)01085-5] [PMID: 12617915]
[89]
Lee HS, Oh WK, Choi HC, Lee JW, Kang DO, Park CS, et al. Inhibition of angiotensin II receptor binding by quinolone alkaloids from Evodia rutaecarpa. Phytother Res 1998; 12(3): 212-4.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199805) 12:3<212:AID-PTR216>3.0.CO;2-5]
[90]
Zhang PT, Pan BY, Liao QF, et al. Separation of Five Quinolone Alkaloids from Fruits of Evodia rutaecarpa by High-speed Counter-current Chromatography. Chin Herb Med 2014; 6(1): 47-52.
[http://dx.doi.org/10.1016/S1674-6384(14)60006-X]
[91]
Rho TC, Bae EA, Kim DH, et al. Anti-Helicobacter pylori activity of quinolone alkaloids from Evodiae fructus. Biol Pharm Bull 1999; 22(10): 1141-3.
[http://dx.doi.org/10.1248/bpb.22.1141] [PMID: 10549874]
[92]
Sugiyama R, Nishimura S, Ozaki T, Asamizu S, Onaka H, Kakeya H. 5-Alkyl-1,2,3,4-tetrahydroquinolines, new membrane-interacting lipophilic metabolites produced by combined culture of Streptomyces nigrescens and Tsukamurella pulmonis. Org Lett 2015; 17(8): 1918-21.
[http://dx.doi.org/10.1021/acs.orglett.5b00607] [PMID: 25826296]
[93]
Siuda JF. Chemical defense mechanisms of marine organisms. Identification of 8-hydroxy-4-quinolone from the ink of the giant octopus, Octopus dofleini martini. Lloydia 1974; 37(3): 501-3.
[PMID: 4437309]
[94]
Lee W, Lee J, Kulkarni R, et al. Antithrombotic and antiplatelet activities of small-molecule alkaloids from Scolopendra subspinipes mutilans. Sci Rep 2016; 6: 21956.
[http://dx.doi.org/10.1038/srep21956]] [PMID: 26905699]
[95]
McCormick JL, McKee TC, Cardellina JH II, Boyd MR. HIV inhibitory natural products. 26. Quinoline alkaloids from Euodia roxburghiana. J Nat Prod 1996; 59(5): 469-71.
[http://dx.doi.org/10.1021/np960250m] [PMID: 8778237]
[96]
Ahmed N, Brahmbhatt KG, Sabde S, Mitra D, Singh IP, Bhutani KK. Synthesis and anti-HIV activity of alkylated quinoline 2,4-diols. Bioorg Med Chem 2010; 18(8): 2872-9.
[http://dx.doi.org/10.1016/j.bmc.2010.03.015] [PMID: 20350812]
[97]
Varamini P, Javidnia K, Soltani M, Mehdipour AR, Ghaderi A. Cytotoxic activity and cell cycle analysis of quinoline alkaloids isolated from Haplophyllum canaliculatum Boiss. Planta Med 2009; 75(14): 1509-16.
[http://dx.doi.org/10.1055/s-0029-1185807 ] [PMID: 19551611]
[98]
Mantena SK, Sharma SD, Katiyar SK. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. Mol Cancer Ther 2006; 5(2): 296-308.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0448] [PMID: 16505103]
[99]
Pan G-Y, Huang Z-J, Wang G-J, et al. The antihyperglycaemic activity of berberine arises from a decrease of glucose absorption. Planta Med 2003; 69(7): 632-6.
[http://dx.doi.org/10.1055/s-2003-41121] [PMID: 12898419]
[100]
Yu H-H, Kim K-J, Cha J-D, et al. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J Med Food 2005; 8(4): 454-61.
[http://dx.doi.org/10.1089/jmf.2005.8.454] [PMID: 16379555]
[104]
Shamma M. The isoquinoline alkaloids chemistry and pharmacology. In: Elsevier 2012.
[105]
Legendre O, Pecic S, Chaudhary S, Zimmerman SM, Fantegrossi WE, Harding WW. Synthetic studies and pharmacological evaluations on the MDMA (‘Ecstasy’) antagonist nantenine. Bioorg Med Chem Lett 2010; 20(2): 628-31.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.053] [PMID: 19963380]
[106]
Clair D. Mesenteric Syndromes.In: Moore WS, Ahn SS, Eds Endovascular Surgery. 4th ed. Philadelphia: W.B. Saunders 2011; pp. 367-84.
[http://dx.doi.org/10.1016/B978-1-4160-6208-0.10035-7]
[107]
Tan GT, Kinghorn AD, Hughes SH, Pezzuto JM. Psychotrine and its O-methyl ether are selective inhibitors of human immunodeficiency virus-1 reverse transcriptase. J Biol Chem 1991; 266(35): 23529-36.
[PMID: 1721050]
[108]
Morais LC, Barbosa-Filho JM, Almeida RN. Central depressant effects of reticuline extracted from Ocotea duckei in rats and mice. J Ethnopharmacol 1998; 62(1): 57-61.
[http://dx.doi.org/10.1016/S0378-8741(98)00044-0] [PMID: 9720612]
[109]
Das M, Khanna SK. Clinicoepidemiological, toxicological, and safety evaluation studies on argemone oil. Crit Rev Toxicol 1997; 27(3): 273-97.
[http://dx.doi.org/10.3109/10408449709089896] [PMID: 9189656]
[110]
Yang K, Jin G, Wu J. The neuropharmacology of (-)-stepholidine and its potential applications. Curr Neuropharmacol 2007; 5(4): 289-94.
[http://dx.doi.org/10.2174/157015907782793649] [PMID: 19305745]
[111]
Zhou H-H, Wu D-L, Gao L-Y, Fang Y, Ge W-H. L-Tetrahydropalmatine alleviates mechanical hyperalgesia in models of chronic inflammatory and neuropathic pain in mice. Neuroreport 2016; 27(7): 476-80.
[http://dx.doi.org/10.1097/WNR.0000000000000560] [PMID: 26981712]
[112]
Maroko PR, Maroko Peter R. Compounds, compositions and method of treatments for improving circulatory performance United State patent US 4,761,417 1988.
[113]
Wenningmann I, Dilger JP. The kinetics of inhibition of nicotinic acetylcholine receptors by (+)-tubocurarine and pancuronium. Mol Pharmacol 2001; 60(4): 790-6.
[PMID: 11562442]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy