Abstract
Far from serving as an inert skeletal scaffold, bone is a dynamic tissue that cycles through tightly coordinated cycles of developmental growth and regeneration. Bone growth, which determines the overall growth of vertebrates, is well-characterized histologically and increasingly understood at the molecular level. In recent years traditional positional cloning applied to diseases of simple Mendelian inheritance have revealed genes important in the proper formation of bone. Functional studies of these genes, aided considerably by insights provided by studies of homologous genes in animal models and other organisms, have led to significant advances in our understanding of the pathways of mammalian bone morphogenesis. One such disorder, hereditary multiple exostoses, is caused by members of the EXT tumor suppressor gene family. Progress in the molecular dissection of this disorder, with emphasis on important genomic techniques and strategies, is reviewed herein. We are now challenged to reconstruct the biochemical pathway of chondrogenesis / osteogenesis defined by the EXT genes as a step toward therapeutic control of bone growth and malignancy.
Keywords: EXT Gene Family, Hereditary multiple exostosis (HME), glycosamino-glycans (GAGs), GROWTH FACTORS, insulin-like growth factor (IGF), transforming growth factor beta (TGF-b), bone morphogenetic proteins (BMPs), Parathyroid hormone (PTH), parathyroid-related peptide (PTHrP), vascular endothelial growth factor (VEGF)
Current Genomics
Title: EXTraordinary Bones: Functional and Genetic Analysis of the EXT Gene Family
Volume: 2 Issue: 2
Author(s): Carol A. Wise
Affiliation:
Keywords: EXT Gene Family, Hereditary multiple exostosis (HME), glycosamino-glycans (GAGs), GROWTH FACTORS, insulin-like growth factor (IGF), transforming growth factor beta (TGF-b), bone morphogenetic proteins (BMPs), Parathyroid hormone (PTH), parathyroid-related peptide (PTHrP), vascular endothelial growth factor (VEGF)
Abstract: Far from serving as an inert skeletal scaffold, bone is a dynamic tissue that cycles through tightly coordinated cycles of developmental growth and regeneration. Bone growth, which determines the overall growth of vertebrates, is well-characterized histologically and increasingly understood at the molecular level. In recent years traditional positional cloning applied to diseases of simple Mendelian inheritance have revealed genes important in the proper formation of bone. Functional studies of these genes, aided considerably by insights provided by studies of homologous genes in animal models and other organisms, have led to significant advances in our understanding of the pathways of mammalian bone morphogenesis. One such disorder, hereditary multiple exostoses, is caused by members of the EXT tumor suppressor gene family. Progress in the molecular dissection of this disorder, with emphasis on important genomic techniques and strategies, is reviewed herein. We are now challenged to reconstruct the biochemical pathway of chondrogenesis / osteogenesis defined by the EXT genes as a step toward therapeutic control of bone growth and malignancy.
Export Options
About this article
Cite this article as:
Wise A. Carol, EXTraordinary Bones: Functional and Genetic Analysis of the EXT Gene Family, Current Genomics 2001; 2 (2) . https://dx.doi.org/10.2174/1389202013350959
DOI https://dx.doi.org/10.2174/1389202013350959 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
![](/images/wayfinder.jpg)
- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
MicroRNA-96 is Downregulated in Sepsis Neonates and Attenuates LPSInduced Inflammatory Response by Inhibiting IL-16 in Monocytes
Combinatorial Chemistry & High Throughput Screening New Approaches to Target Cancer Stem Cells: Current Scenario
Mini-Reviews in Medicinal Chemistry Rexinoids for Prevention and Treatment of Cancer: Opportunities and Challenges
Current Topics in Medicinal Chemistry Update on Targets of Biologic Therapies for Rheumatoid Arthritis
Current Rheumatology Reviews Aggrecanase: The Family and Its Inhibitors
Current Medicinal Chemistry - Anti-Inflammatory & Anti-Allergy Agents Novel Benzo[B]Furans with Anti-Microtubule Activity Upregulate Expression of Apoptotic Genes and Arrest Leukemia Cells in G2/M Phase
Anti-Cancer Agents in Medicinal Chemistry Potential Association Between TLR4 and Chitinase 3-Like 1 (CHI3L1/YKL-40) Signaling on Colonic Epithelial Cells in Inflammatory Bowel Disease and Colitis-Associated Cancer
Current Molecular Medicine New Indications for Established Drugs: Combined Tumor-Stroma-Targeted Cancer Therapy with PPARγ Agonists, COX-2 Inhibitors, mTOR Antagonists and Metronomic Chemotherapy
Current Cancer Drug Targets Histone Deacetylase Inhibitors: Recent Insights from Basic to Clinical Knowledge & Patenting of Anti-Cancer Actions
Recent Patents on Anti-Cancer Drug Discovery miRNAs in Melanoma: Tumor Suppressors and Oncogenes with Prognostic Potential
Current Medicinal Chemistry The Role of Imaging in Computer-Assisted Tumor Surgery of the Sacrum and Pelvis
Current Medical Imaging Small-molecule Inhibitors of Epigenetic Mutations as Compelling Drugtargets for Myelodysplastic Syndromes
Current Cancer Drug Targets Current Management of Chordoma
Current Drug Therapy The Roles of Endoplasmic Reticulum Stress in the Pathophysiological Development of Cartilage and Chondrocytes
Current Pharmaceutical Design Development of Novel Therapeutics Targeting Isocitrate Dehydrogenase Mutations in Cancer
Current Topics in Medicinal Chemistry Anti-Angiogenic Therapies for Children with Cancer
Current Cancer Drug Targets Association of GRP78, HIF-1α and BAG3 Expression with the Severity of Chronic Lymphocytic Leukemia
Anti-Cancer Agents in Medicinal Chemistry Combination Therapy of Cisplatin and other Agents for Osteosarcoma: A Review
Current Cancer Therapy Reviews Molecular Signaling Pathways as Potential Therapeutic Targets in Osteosarcoma
Current Medicinal Chemistry Berberine Exerts Anti-cancer Activity by Modulating Adenosine Monophosphate- Activated Protein Kinase (AMPK) and the Phosphatidylinositol 3-Kinase/ Protein Kinase B (PI3K/AKT) Signaling Pathways
Current Pharmaceutical Design