Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Perspective Design of Chalcones for the Management of CNS Disorders: A Mini-Review

Author(s): Bijo Mathew*, Della Grace Thomas Parambi, Vishnu Sankar Sivasankarapillai, Md. Sahab Uddin, Jerad Suresh, Githa Elizabeth Mathew, Monu Joy, Akash Marathakam and Sheeba Varghese Gupta

Volume 18, Issue 6, 2019

Page: [432 - 445] Pages: 14

DOI: 10.2174/1871527318666190610111246

Price: $65

Abstract

The development of chalcone-based compounds for CNS disorders has been explored by many research groups. Chalcones are being considered as a potent organic scaffold with widespread applications in the field of drug discovery and medicinal chemistry. The planar or semi-planar geometry of chalcones with various functionalities impinged on the terminal aromatic systems renders the molecule its bio-activity including anti-cancer, anti-malarial, anti-microbial, anti-fungal, antileishmanial, anti-viral, anti-diabetic, anti-hypertensive properties, etc. Moreover, cutting-edge research has been executed in the domain of Central Nervous System (CNS) based scheme, further, their identification and classifications also remain of high interest in the field of medicinal chemistry but the specific reviews are limited. Hence, the present review highlights the significance of chalcones toward their CNS activities (up to 2019), which include anti-depressant activity, anxiolytic activity, activity with GABA receptors, acetylcholinesterase (AChE) and butyryl cholinesterase (BChE) inhibitions, activity as adenosine receptor antagonists anti-Alzheimer’s agents, β-amyloid plaques imaging agents, monoamine oxidase inhibition. To our knowledge, this is the first review exclusively for CNS activity profile of chalcones.

Keywords: Chalcones, anti-depressant activity, anxiolytic activity, GABA receptors, acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitions, anti-Alzheimer’s agents, β-amyloid plaques imaging agents, monoamine oxidase inhibition.

Graphical Abstract

[1]
Chaves OA, Mathew B, Sobrinho DC, et al. Spectroscopic, zeta potential and molecular docking analysis on the interaction between human serum albumin and halogenated thienyl chalcones. J Mol Liq 2017; 242: 1016-26.
[2]
Dimmock JR, Elias DW, Beazely MA, Kandepu NM. Bioactivities of chalcones. Curr Med Chem 1999; 6(12): 1125-49.
[3]
Mathew B, Suresh J, Anbazhagan S, Paulraj J, Krishnan GK. Heteroaryl chalcones: Mini review about their therapeutic voyage. BioMed Prev Nut 2014; 4: 451-8.
[4]
Jandial DD, Blair CA, Zhang S, Krill LS, Zhang YB, Zi X. Molecular targeted approaches to cancer therapy and prevention using chalcones. Curr Cancer Drug Targets 2014; 14(2): 181-200.
[5]
Mathew B, Adeniyi AA, Joy M, et al. Anti-oxidant behaviour of functionalized chalcone-a combined quantum chemical and crystallographic structural investigation. J Mol Struct 2017; 1147: 682-96.
[6]
Tadigoppula N, Korthikunta V, Gupta S, et al. Synthesis and insight into the structure-activity relationships of chalcones as antimalarial agents. J Med Chem 2013; 56(1): 31-45.
[7]
Abdullah MI, Mahmood A, Madni M, Masood S, Kashif M. Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor. Bioorg Chem 2014; 54: 31-7.
[8]
Lahtchev KL, Batovska DI, Parushev SP, Ubiyvovk VM, Sibirny AA. Antifungal activity of chalcones: A mechanistic study using various yeast strains. Eur J Med Chem 2008; 43(10): 2220-8.
[9]
Zhai L, Chen M, Blom J, Theander TG, Christensen SB, Kharazmi A. The antileishmanial activity of novel oxygenated chalcones and their mechanism of action. J Antimicrob Chemother 1999; 43(6): 793-803.
[10]
Rizvi SUF, Siddiqui HL, Johns M, Detorio M, Schinazi RF. Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives. Med Chem Res 2012; 21: 3741-9.
[11]
Satyanarayana M, Tiwari P, Tripathi BK, Srivastava AK, Pratap R. Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines. Bioorg Med Chem 2004; 12(5): 883-9.
[12]
Yarishkin OV, Ryu HW, Park JY, Yang MS, Hong SG, Park KH. Sulfonate chalcone as new class voltage-dependent K+ channel blocker. Bioorg Med Chem Lett 2008; 18(1): 137-40.
[13]
Nowakowska Z. A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 2007; 42(2): 125-37.
[14]
Batovska DI, Todorova IT. Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol 2010; 5(1): 1-29.
[15]
Sahu NK, Balbhadra SS, Choudhary J, Kohli DV. Exploring pharmacological significance of chalcone scaffold: A review. Curr Med Chem 2012; 19(2): 209-25.
[16]
Bukhari SNA, Jantan I, Jasamai M. Anti-inflammatory trends of 1, 3-diphenyl-2-propen-1-one derivatives. Mini Rev Med Chem 2013; 13(1): 87-94.
[17]
Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones: A mini review. Eur J Med Chem 2014; 85: 758-77.
[18]
Mahapatra DK, Bharti SK, Asati V. Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives. Eur J Med Chem 2015; 101: 496-524.
[19]
Karthikeyan C, Moorthy NSHN, Ramasamy S, et al. Advances in chalcones with anticancer activities. Recent Pat Anti-Cans Drug Discov 2015; 10(1): 97-115.
[20]
Rahul S, Rakesh K, Rishi K, et al. A review on mechanisms of antitumor activity of chalcones. Anticancer Agents Med Chem 2016; 16: 200-11.
[21]
Mahapatra DK, Asati V, Bharti SK. Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. Eur J Med Chem 2015; 92: 839-65.
[22]
Mahapatra DK, Bharti SK. Therapeutic potential of chalcones as cardiovascular agents. Life Sci 2016; 148: 154-72.
[23]
Claisen L, Claparéde A. Condensationen von Ketonen mit Aldehyden. Chem Ber 1881; 14: 2460-8.
[24]
Schmidt JG. Ueber die Einwirkung von Aceton auf Furfurol und auf Bittermandelöl bei Gegenwart von Alkalilauge. Chem Ber 1881; 14: 1459-61.
[25]
Kazuo I, Ken-ichi W. Catalysis of metal (II) acetate 2-2ʹbipyridine complexes in the aldol condensation. Bull Chem Soc Jpn 1981; 54: 1195-8.
[26]
Xu LW, Li L, Xia CG, Zhao PQ. Efficient coupling reactions of arylalkynes and aldehydes leading to the synthesis of enones. Helv Chim Acta 2004; 87: 3080-4.
[27]
Eddarir S, Cotelle N, Bakkour Y, Rolando C. An efficient synthesis of chalcones based on the Suzuki reaction. Tetrahedron Lett 2003; 44: 5359-63.
[28]
Wu XF, Neumann H, Spannenberg A, Schulz T, Jiao H, Beller M. Development of a general palladium-catalyzed carbonylative Heck reaction of aryl halides. J Am Chem Soc 2010; 132(41): 14596-602.
[29]
Bhukari SNA, Jasamai M, Jantan I, Ahmad W. Review of methods and various catalysts used for chalcone synthesis. Mini Rev Org Chem 2013; 10: 73-83.
[30]
Fringuelli F, Pizzo F, Vittoriani C, Vaccaro L. Polystyryl-supported TBD as an efficient and reusable catalyst under solvent-free conditions. Chem Commun (Camb) 2004; 130(23): 2756-7.
[31]
Siddiqui ZN, Musthafa TNM. An efficient and novel synthesis of chromonyl chalcones using recyclable Zn(l-proline)2 catalyst in water. Tetrahedron Lett 2011; 52: 4008-13.
[32]
Zeng M, Wang L, Shao J, Zhong Q. A facile synthesis of α, α′-bis(substituted benzylidene)cycloalkanones catalyzed by bis(p-ethoxyphenyl)telluroxide(bmpto) under microwave irradiation. Synth Commun 1997; 27: 351-4.
[33]
Kakati D, Sarma JC. Microwave assisted solvent free synthesis of 1,3-diphenylpropenones. Chem Cent J 2011; 5: 8.
[34]
Schramm OG. Multi-component Heterocycle Syntheses Based Upon Sonogashira Coupling Isomerization. Thesis Heidelberg University 2006.
[35]
Mathew B, Haridas A, Suresh J, Mathew GE, Uçar G, Jayaprakash V. Monoamine oxidase inhibitory actions of chalcones. A mini review. Cent Nerv Syst Agents Med Chem 2016; 16(2): 120-36.
[36]
Mathew B, Suresh J, Anbazhagan S. Synthesis, preclinical evaluation and antidepressant activity of 5-substituted phenyl-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazole-1-carbothioamides. EXCLI J 2014; 13: 437-45.
[37]
Mathew B, Suresh J, Anbazhagan S. Development of novel (1-H) benzimidazole bearing pyrimidine-trione based MAO-A inhibitors: Synthesis, docking studies and antidepressant activity. J Saudi Chem Soc 2016; 20: S132-9.
[38]
Wang W, Hu X, Zhao Z, et al. Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(5): 1179-84.
[39]
Sui X, Zhao DH, Qu YL, Zhang RP, Guan LP. Synthesis and studies on antidepressant activity of 2´, 4´, 6´-trihydroxychalcone derivatives. Med Chem Res 2012; 21: 1290-6.
[40]
Guan LP, Zhao DH, Chang Y, Sun Y, Ding XL, Jiang JD. Design, synthesis and antidepressant activity evaluation of 2-hydroxy-4-6- diisoprenylchalcone derivatives. Med Chem Res 2013; 22: 5218-26.
[41]
Afzal O, Bawas S, Kumar S, Kumar R, Hassan MQ. Design, synthesis and evaluation of novel 2-piperidinyl quinoline chalcones/ amines as potential antidepressant agents. Lett Drug Des Discov 2013; 10: 75-85.
[42]
Guan LP, Zhao DH, Chang Y, Wen ZS, Tang LM, Huang FF. Synthesis of 2,4-dihydroxychalcone derivatives as potential antidepressant effect. Drug Res (Stuttg) 2013; 63(1): 46-51.
[43]
Jamal H, Ansari WH, Rizvi SJ. Evaluation of chalcones--a flavonoid subclass for their anxiolytic effects in rats using elevated plus maze and open field behaviour tests. Fundam Clin Pharmacol 2008; 22(6): 673-81.
[44]
Cao Y, Wang Y, Ji C, Ye J. Determination of liquiritigenin and isoliquiritigenin in Glycyrrhiza uralensis and its medicinal preparations by capillary electrophoresis with electrochemical detection. J Chromatogr A 2004; 1042(1-2): 203-9.
[45]
Jang EY, Choe ES, Hwang M, et al. Isoliquiritigenin suppresses cocaine-induced extracellular dopamine release in rat brain through GABA(B) receptor. Eur J Pharmacol 2008; 587(1-3): 124-8.
[46]
Cho S, Kim S, Jin Z, et al. Isoliquiritigenin, a chalcone compound, is a positive allosteric modulator of GABAA receptors and shows hypnotic effects. Biochem Biophys Res Commun 2011; 413(4): 637-42.
[47]
Tumiatti V, Minarini A, Bolognesi ML, Milelli A, Rosini M, Melchiorre C. Tacrine derivatives and Alzheimer’s disease. Curr Med Chem 2010; 17(17): 1825-38.
[48]
Giacobini E. Cholinesterase inhibitors: New roles and therapeutic alternatives. Pharmacol Res 2004; 50(4): 433-40.
[49]
Andersson CD, Forsgren N, Akfur C, et al. Divergent structure-activity relationships of structurally similar acetylcholinesterase inhibitors. J Med Chem 2013; 56(19): 7615-24.
[50]
Hasan A, Khan KM, Sher M, et al. Synthesis and inhibitory potential towards acetylcholinesterase, butyrylcholinesterase and lipoxygenase of some variably substituted chalcones. J Enzyme Inhib Med Chem 2005; 20(1): 41-7.
[51]
Saranya AV, Rav S. In vitro acetylcholinesterase inhibition activity of chalcones with phenothiazine moiety. Res J Recent Sci 2012; 1: 40-3.
[52]
Kang JE, Cho JK, Curtis-Long MJ, et al. Inhibitory evaluation of sulfonamide chalcones on β-Secretase and acylcholinesterase. Molecules 2012; 18(1): 140-53.
[53]
Liu HR, Liu XJ, Fan HQ, Tang JJ, Gao XH, Liu WK. Design, synthesis and pharmacological evaluation of chalcone derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem 2014; 22(21): 6124-33.
[54]
Liu HR, Zhou C, Fan HQ, et al. Novel potent and selective acetylcholinesterase inhibitors as potential drugs for the treatment of Alzheimer’s disease: Synthesis, pharmacological evaluation, and molecular modeling of amino alkyl substituted fluoro-chalcones derivatives. Chem Biol Drug Des 2015; 86(4): 517-22.
[55]
Liu H, Fan H, Gao X, et al. Design, synthesis and preliminary structure-activity relationship investigation of nitrogen-containing chalcone derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors: A further study based on Flavokawain B Mannich base derivatives. J Enzyme Inhib Med Chem 2016; 31(4): 580-9.
[56]
Selkoe DJ. Alzheimer’s disease: Genes, proteins, and therapy. Physiol Rev 2001; 81(2): 741-66.
[57]
Bag S, Ghosh S, Tulsan R, et al. Design, synthesis and biological activity of multifunctional α,β-unsaturated carbonyl scaffolds for Alzheimer’s disease. Bioorg Med Chem Lett 2013; 23(9): 2614-8.
[58]
Sashidhara KV, Modukuri RK, Jadiya P, et al. Benzofuran-chalcone hybrids as potential multifunctional agents against Alzheimer’s disease: Synthesis and in vivo studies with transgenic Caenorhabditis elegans. ChemMedChem 2014; 9(12): 2671-84.
[59]
Hardy JA, Higgins GA. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[60]
Mathis CA, Wang Y, Klunk WE. Imaging beta-amyloid plaques and neurofibrillary tangles in the aging human brain. Curr Pharm Des 2004; 10(13): 1469-92.
[61]
Yang Y, Zhang X, Cui M, et al. Preliminary characterization and in vivo studies of structurally identical 18F- and 125I-labeled benzyloxybenzenes for pet/spectimaging of β-amyloid plaques. Sci Rep 2015; 5: 12084.
[62]
Camus V, Payoux P, Barré L, et al. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur J Nucl Med Mol Imaging 2012; 39(4): 621-31.
[63]
Ono M, Hori M, Haratake M, Tomiyama T, Mori H, Nakayama M. Structure-activity relationship of chalcones and related derivatives as ligands for detecting of β-amyloid plaques in the brain. Bioorg Med Chem 2007; 15(19): 6388-96.
[64]
Ono M, Haratake M, Mori H, Nakayama M. Novel chalcones as probes for in vivo imaging of β-amyloid plaques in Alzheimer’s brains. Bioorg Med Chem 2007; 15(21): 6802-9.
[65]
Ono M, Ikeoka R, Watanabe H, et al. Synthesis and evaluation of novel chalcone derivatives with (99m)Tc/Re complexes as potential probes for detection of β-amyloid plaques. ACS Chem Neurosci 2010; 1(9): 598-607.
[66]
Cui M, Ono M, Kimura H, Liu BL, Saji H. Synthesis and biological evaluation of indole-chalcone derivatives as β-amyloid imaging probe. Bioorg Med Chem Lett 2011; 21(3): 980-2.
[67]
Fuchigami T, Yamashita Y, Haratake M, Ono M, Yoshida S, Nakayama M. Synthesis and evaluation of ethyleneoxylated and allyloxylated chalcone derivatives for imaging of amyloid β plaques by SPECT. Bioorg Med Chem 2014; 22(9): 2622-8.
[68]
Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 2006; 5(3): 247-64.
[69]
Vazquez-Rodriguez S, Matos MJ, Santana L, et al. Chalcone-based derivatives as new scaffolds for hA3 adenosine receptor antagonists. J Pharm Pharmacol 2013; 65(5): 697-703.
[70]
Youdim MB, Edmondson D, Tripton K. The therapeutic potential of MAO inhibitors: Safety and future. Nat Rev Neurosci 2006; 7: 295-309.
[71]
De Monte CD, Ascenzio M, Guglielmi P, Mancini V, Carradori S. Opening new scenario for human MAO inhibitors. Cent Nerv Syst Agents Med Chem 2016; 16(2): 98-104.
[72]
Mathew B, Mathew GE, Suresh J, et al. Perspective design for the treatment of depression and neurological disorders. Curr Enzym Inhib 2016; 12: 115-22.
[73]
Carradori S, D’Ascenzio M, Chimenti P, Secci D, Bolasco A. Selective MAO-B inhibitors: A lesson from natural products. Mol Divers 2014; 18(1): 219-43.
[74]
Chimenti F, Fioravanti R, Bolasco A, et al. Chalcones: A valid scaffold for monoamine oxidases inhibitors. J Med Chem 2009; 52(9): 2818-24.
[75]
Robinson SJ, Petzer JP, Petzer A, Bergh JJ, Lourens ACU. Selected furanochalcones as inhibitors of monoamine oxidase. Bioorg Med Chem Lett 2013; 23(17): 4985-9.
[76]
Jo G, Ahn S, Kim BG, et al. Chromenylchalcones with inhibitory effects on monoamine oxidase B. Bioorg Med Chem 2013; 21(24): 7890-7.
[77]
Evranos-Aksöz B, Yabanoğlu-Çiftçi S, Uçar G, Yelekçi K, Ertan R. Synthesis of some novel hydrazone and 2-pyrazoline derivatives: Monoamine oxidase inhibitory activities and docking studies. Bioorg Med Chem Lett 2014; 24(15): 3278-84.
[78]
Choi JW, Jang BK, Cho NC, et al. Synthesis of a series of unsaturated ketone derivatives as selective and reversible monoamine oxidase inhibitors. Bioorg Med Chem 2015; 23(19): 6486-96.
[79]
Evranos-Aksöz B, Baysal İ, Yabanoğlu-Çiftçi S, et al. Synthesis and screening of human monoamine oxidase-A inhibitor effect of new 2-pyrazoline and hydrazone derivatives. Arch Pharm (Weinheim) 2015; 348(10): 743-56.
[80]
Mathew B, Mathew GE, Uçar G, et al. Development of fluorinated methoxylated chalcones as selective monoamine oxidase-B inhibitors: Synthesis, biochemistry and molecular docking studies. Bioorg Chem 2015; 62: 22-9.
[81]
Mathew B, Uçar G, Yabanoğlu-Çiftçi S, et al. Development of fluorinated thienylchalcones as monoamine oxidase-b inhibitors: Design, synthesis, biological evaluation and molecular docking studies. Lett Org Chem 2015; 12: 605-13.
[82]
Zaib S, Rizvi SUF, Aslam S, et al. Quinolinyl-thienyl chalcones as monoamine oxidase inhibitors and their in silico modeling studies. Med Chem 2015; 11(6): 580-9.
[83]
Zaib S, Farooq Rizvi SU, Aslam S, Ahmad M, Al-Rashida M, Iqbal J. Monoamine oxidase inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones. Med Chem 2015; 11(5): 497-505.
[84]
Morales-Camilo N, Salas CO, Sanhueza C, et al. Synthesis, biological evaluation, and molecular simulation of chalcones and aurones as selective MAO-B inhibitors. Chem Biol Drug Des 2015; 85(6): 685-95.
[85]
Minders C, Petzer JP, Petzer A, Lourens ACU. Monoamine oxidase inhibitory activities of heterocyclic chalcones. Bioorg Med Chem Lett 2015; 25(22): 5270-6.
[86]
Mathew B, Mathew GE, Ucar G, Baysal I, Suresh J, Mathew S. Potent and selective monoamine oxidase-b inhibitory activity: Fluoro vs. trifluoromethyl-4-hydroxylated chalcone derivatives Chem Biodivers 2-16(13): 1046-52.
[87]
Mathew B, Uçar G, Mathew GE, et al. Monoamine oxidase inhibitory activity: Methyl- versus chloro-chalcone derivatives. ChemMedChem 2016; 11(24): 2649-55.
[88]
Hammuda A, Shalaby R, Rovida S, Edmondson DE, Binda C, Khalil A. Design and synthesis of novel chalcones as potent selective monoamine oxidase-B inhibitors. Eur J Med Chem 2016; 114: 162-9.
[89]
Mathew B, Haridas A, Uçar G, et al. Exploration of chlorinated thienyl chalcones: A new class of monoamine oxidase-B inhibitors. Int J Biol Macromol 2016; 91: 680-95.
[90]
Mathew B, Haridas A, Uçar G, et al. Synthesis, biochemistry, and computational studies of brominated thienyl chalcones: A new class of reversible MAO-B inhibitors. ChemMedChem 2016; 11(11): 1161-71.
[91]
Mathew B, Adeniyi AA, Dev S, et al. Pharmacophore based 3D-QSAR analysis of thienyl chalcone as new class of human MAO-B inhibitors. Investigation of combined quantum chemical and molecular dynamics approach. J Phys Chem B 2017; 121(6): 1186-203.
[92]
Sasidharan R, Manju SL, Uçar G, Baysal I, Mathew B. Identification of indole based chalcones: Discovery of potent, selective and reversible class of MAO-B inhibitors. Arch Pharm (Weinheim) 2016; 349(8): 627-37.
[93]
Chaves OA, Sasidharan R, dos Santos de Oliveria CHC, et al. In vitro study of the interaction between HSA and indolylchalcone, a potent human MAO-B inhibitor: Spectroscopic and molecular modeling studies. ChemistrySelect 2019; 4: 1007-14.
[94]
Mathew B, Mathew GE, Ucar G, et al. Monoamine oxidase inhibitory activity of methoxy-substituted chalcones. Int J Biol Macromol 2017; 104(Pt A): 1321-9.
[95]
Mathew B, Ucar G, Raphael C, Mathew GE, Joy M, Machaba KE. Characterization of thienylchalcones as hMAO-B inhibitors: Synthesis, biochemistry and molecular dynamics studies. ChemistrySelect 2017; 2: 11113-9.
[96]
Suresh J, Baek SC, Ramakrishnan SP, Kim H, Mathew B. Discovery of potent and reversible MAO-B inhibitors as furanochalcones. Int J Biol Macromol 2018; 108: 660-4.
[97]
Sasidharan R, Baek SC, Sreedharannair Leelabaiamma M, Kim H, Mathew B. Imidazole bearing chalcones as a new class of monoamine oxidase inhibitors. Biomed Pharmacother 2018; 106: 8-13.
[98]
Mathew B, Baek SC, Thomas Parambi DG, et al. Potent and highly selective dual-targeting monoamine oxidase-B inhibitors: Fluorinated chalcones of morpholine versus imidazole. Arch Pharm (Weinheim) 2019; 352(4)e1800309
[99]
Lakshminarayan B, Baek SC, Kannappan N, et al. Ethoxylated head of chalcones as a new class of Multi-targeted MAO inhibitors. ChemistrySelect 2019; 4: 6614-9.
[100]
Katsori AM, Hadjipavlou-Litina D. Recent progress in therapeutic applications of chalcones. Expert Opin Ther Patents 2011; 21(10): 1575-96.
[101]
Matos MJ, Vazquez-Rodriguez S, Uriarte E, Santana L. Potential pharmacological uses of chalcones: A patent review. Expert Opin Ther Patents 2014; 25(3): 351-66.
[102]
Toray Industries. Tissue transglutaminase inhibitors containing chalcone derivatives (1-thienyl-3-phenyl-2-propen-1-ones) and anti- Alzheimer agents containing them. JP180955 2013.
[103]
Zhao HF, Wang G, Wu CP, et al. A multi-targeted natural flavonoid myricetin suppresses lamellipodia and focal adhesions formation and impedes glioblastoma cell invasiveness and abnormal motility. CNS Neurol Disord Drug Targets 2018; 17(7): 557-67.
[104]
Neganova ME, Klochkov SG, Petrova LN, et al. Securinine derivatives as potential anti-amyloid therapeutic approach. CNS Neurol Disord Drug Targets 2017; 16(3): 351-5.
[105]
Dereli FTG, Ilhan M, Akkol EK. New drug discovery from medicinal plants and phytoconstituents for depressive disorders. CNS Neurol Disord Drug Targets 2019; 18(2): 92-102.
[106]
Sharma S, Sarathlal KC, Taliyan R. Epigenetics in neurodegenerative diseases: The role of histone deacetylases. CNS Neurol Disord Drug Targets 2019; 18(1): 11-8.
[107]
Kumar A, Dhawan A, Kadam A, Shinde A. Autophagy and mitochondria: Targets in neurodegenerative disorders. CNS Neurol Disord Drug Targets 2018; 17(9): 696-705.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy