Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Mitogen-Induced Interferon Gamma Production in Human Whole Blood: The Effect of Heat and Cations

Author(s): Ji-Hyun Nam, Bomi Cha, Jun-Young Park, Fukushi Abekura, Cheorl-Ho Kim* and Jeong-Ran Kim*

Volume 20, Issue 7, 2019

Page: [562 - 572] Pages: 11

DOI: 10.2174/1389201020666190528093432

Price: $65

Abstract

Background: Interferon-gamma release assays (IGRAs) are blood tests used to measure the amount of interferon-γ (IFN-γ) released by T lymphocytes after stimulation by antigens specific for the diagnosis of latent tuberculosis infection. A mitogen serves as a positive control to assess the immune function in IGRAs.

Methods: This in vitro study was conducted to evaluate IFN-γ production by human whole blood stimulated with heat-treated and/or cation-supplemented phytohemagglutinin (PHA), concanavalin A (Con A) and pokeweed mitogen (PWM), using QuantiFERON-TB Gold Kit ELISA tests.

Results: The optimal concentrations of PWM, Con A and PHA for IGRAs were 2 µg/mL, 5 µg/mL and 10 µg/mL, respectively. The results showed that IFN-γ production in response to PWM was the highest and PHA was the lowest amount. The median values of three mitogens were in the following order: PWM≥Con A≥ positive control>>PHA-P>>negative control. PWM and PHA were heat stable, while Con A was heat sensitive. The mitogen response of lymphocytes to untreated or heat-treated PWM and heat-treated Con A was increased in 1 mM Ca2+-supplemented groups, whereas the response to heat-treated PHA was decreased. Exposure to 1 mM Mg2+ had no effect on untreated or heat-treated PWM, and a concentration of 1 mM Zn2+ inhibited the stimulation of un-treated PWM. We found that calcium supplementation improved the PWM-induced production of IFN-γ.

Conclusion: Therefore, PWM is an appropriate mitogen for use as a positive control in IGRAs. It is a potential indicator of cytokine production in the diagnostic as well as research settings, and calcium supplementation improved stimulation.

Keywords: Pokeweed mitogen, phytohemagglutinin, concanavalin A, interferon gamma, heat stability, calcium, magnesium, zinc.

Graphical Abstract

[1]
Banaei, N.; Gaur, R.L.; Pai, M. Interferon gamma release assays for latent tuberculosis: what are the sources of variability? J. Clin. Microbiol., 2016, 54(4), 845-850. [http://dx.doi.org/10.1128/JCM.02803-15]. [PMID: 26763969].
[2]
Pai, M.; Denkinger, C.M.; Kik, S.V.; Rangaka, M.X.; Zwerling, A.; Oxlade, O.; Metcalfe, J.Z.; Cattamanchi, A.; Dowdy, D.W.; Dheda, K.; Banaei, N. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin. Microbiol. Rev., 2014, 27(1), 3-20. [http://dx.doi.org/10.1128/CMR.00034-13]. [PMID: 24396134].
[3]
Norian, R.; Delirezh, N.; Azadmehr, A. Evaluation of proliferation and cytokines production by mitogen-stimulated bovine peripheral blood mononuclear cells. Vet. Res. Forum, 2015, 6(4), 265-271. [PMID: 26973760].
[4]
Mak, T.W.; Saunders, M.E. The immune response: Basic and clinical principles; Academic Press, 2005, pp. 373-401.
[5]
Lis, H.; Sharon, N. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev., 1998, 98(2), 637-674. [http://dx.doi.org/10.1021/cr940413g]. [PMID: 11848911].
[6]
Ashraf, M.T.; Khan, R.H. Mitogenic lectins. Med. Sci. Monit., 2003, 9(11), RA265-RA269. [PMID: 14586291].
[7]
Delves, P.I.; Roitt, I.M.C.E. Encyclopedia of immunology; Academic Press, 1998, pp. 1535-1541.
[8]
Movafagh, A.; Heydary, H.; Mortazavi-Tabatabaei, S.A.; Azargashb, E. The significance application of indigenous phytohemagglutinin (PHA) mitogen on metaphase and cell culture procedure. Iran. J. Pharm. Res., 2011, 10(4), 895-903. [PMID: 24250428].
[9]
Katial, R.K.; Sachanandani, D.; Pinney, C.; Lieberman, M.M. Cytokine production in cell culture by peripheral blood mononuclear cells from immunocompetent hosts. Clin. Diagn. Lab. Immunol., 1998, 5(1), 78-81. [PMID: 9455885].
[10]
Yang, J.S.; Kim, H.J.; Ryu, Y.H.; Yun, C.H.; Chung, D.K.; Han, S.H. Endotoxin contamination in commercially available pokeweed mitogen contributes to the activation of murine macrophages and human dendritic cell maturation. Clin. Vaccine Immunol., 2006, 13(3), 309-313. [http://dx.doi.org/10.1128/CVI.13.3.309-313.2006]. [PMID: 16522770].
[11]
Ai, W.; Li, H.; Song, N.; Li, L.; Chen, H. Optimal method to stimulate cytokine production and its use in immunotoxicity assessment. Int. J. Environ. Res. Public Health, 2013, 10(9), 3834-3842. [http://dx.doi.org/10.3390/ijerph10093834]. [PMID: 23985769].
[12]
Molaae, N.; Mosayebi, G.; Pishdadian, A.; Ejtehadifar, M.; Ganji, A. Evaluating the proliferation of human peripheral blood mononuclear cells using MTT assay. Int. J. Basic Sci. Med., 2017, 2, 25-28. [http://dx.doi.org/10.15171/ijbsm.2017.06].
[13]
Umezawa, H., Ed.; Small molecular immunomodifiers of microbial origin: fundamental and clinical studies of bestatin; Elsevier, 2014, p. 238.
[14]
Conti, P.; Gigante, G.E.; Cifone, M.G.; Alesse, E.; Fieschi, C.; Bologna, M.; Angeletti, P.U. Mitogen dose-dependent effect of weak pulsed electromagnetic field on lymphocyte blastogenesis. FEBS Lett., 1986, 199(1), 130-134. [http://dx.doi.org/10.1016/0014-5793(86)81238-8]. [PMID: 3082675].
[15]
Wagner, U.; Burkhardt, E.; Failing, K. Evaluation of canine lymphocyte proliferation: comparison of three different colorimetric methods with the 3H-thymidine incorporation assay. Vet. Immunol. Immunopathol., 1999, 70(3-4), 151-159. [http://dx.doi.org/10.1016/S0165-2427(99)00041-0]. [PMID: 10507358].
[16]
Börjeson, J.; Reisfeld, R.; Chessin, L.N.; Welsh, P.D.; Douglas, S.D. Studies on human peripheral blood lymphocytes in vitro. I. Biological and physicochemical properties of the pokeweed mitogen. J. Exp. Med., 1966, 124(5), 859-872. [http://dx.doi.org/10.1084/jem.124.5.859]. [PMID: 5926300].
[17]
Kudou, M.; Shiraki, K.; Takagi, M. Characterization of heat-induced aggregates of concanavalin A using fluorescent probes. Sci. Technol. Adv. Mater., 2004, 5, 339-341. [http://dx.doi.org/10.1016/j.stam.2003.12.012].
[18]
Carpentieri, U.; Myers, J.; Daeschner, C.W., III; Haggard, M.E. Effects of iron, copper, zinc, calcium, and magnesium on human lymphocytes in culture. Biol. Trace Elem. Res., 1988, 16(2), 165-176. [http://dx.doi.org/10.1007/BF02797101]. [PMID: 2484545].
[19]
Hadden, J., Ed.; Immunopharmacology; Springer Science & Business Media, 2012, Vol. 3, p. 30.
[20]
Modiano, J.F.; Kelepouris, E.; Kern, J.A.; Nowell, P.C. Requirement for extracellular calcium or magnesium in mitogen-induced activation of human peripheral blood lymphocytes. J. Cell. Physiol., 1988, 135(3), 451-458. [http://dx.doi.org/10.1002/jcp.1041350312]. [PMID: 3135293].
[21]
Allwood, G.; Asherson, G.L.; Davey, M.J.; Goodford, P.J. The early uptake of radioactive calcium by human lymphocytes treated with phytohaemagglutinin. Immunology, 1971, 21(3), 509-516. [PMID: 5568327].
[22]
Milner, S.M. Activation of lymphocytes by concanavalin A requires calcium ions. Cell Biol. Int. Rep., 1979, 3(1), 35-43. [http://dx.doi.org/10.1016/0309-1651(79)90066-3]. [PMID: 455487].
[23]
Durlach, J. Physicochemical, Nutritional and Functional Properties of the Epicarp, Flesh and Pitted Sample of Doum Fruit (Hyphaene Thebaica); Magnesium Clin. Pract, 1988, p. 360.
[24]
Ng, L.L.; Davies, J.E.; Garrido, M.C. Intracellular free magnesium in human lymphocytes and the response to lectins. Clin. Sci. (Lond.), 1991, 80(6), 539-547. [http://dx.doi.org/10.1042/cs0800539]. [PMID: 1647916].
[25]
Son, E.W.; Lee, S.R.; Choi, H.S.; Koo, H.J.; Huh, J.E.; Kim, M.H.; Pyo, S. Effects of supplementation with higher levels of manganese and magnesium on immune function. Arch. Pharm. Res., 2007, 30(6), 743-749. [http://dx.doi.org/10.1007/BF02977637]. [PMID: 17679553].
[26]
Gross, R.L.; Osdin, N.; Fong, L.; Newberne, P.M.I.I. Depressed immunological function in zinc-deprived rats as measured by mitogen response of spleen, thymus, and peripheral blood. Am. J. Clin. Nutr., 1979, 32(6), 1260-1266. [http://dx.doi.org/10.1093/ajcn/32.6.1260]. [PMID: 312599].
[27]
Wellinghausen, N.; Rink, L. The significance of zinc for leukocyte biology. J. Leukoc. Biol., 1998, 64(5), 571-577. [http://dx.doi.org/10.1002/jlb.64.5.571]. [PMID: 9823760].
[28]
Gaworski, C.L.; Sharma, R.P. The effects of heavy metals on [3H]thymidine uptake in lymphocytes. Toxicol. Appl. Pharmacol., 1978, 46(2), 305-313. [http://dx.doi.org/10.1016/0041-008X(78)90076-5]. [PMID: 153598].
[29]
Sigel, H., Ed.; Metal ions in biological systems: Zinc and its role in biology and nutrition; CRC press, 1983, Vol. 15, pp. 33-35.
[30]
Driessen, C.; Hirv, K.; Rink, L.; Kirchner, H. Induction of cytokines by zinc ions in human peripheral blood mononuclear cells and separated monocytes. Lymphokine Cytokine Res., 1994, 13(1), 15-20. [PMID: 8186320].
[31]
Haase, H.; Rink, L. The immune system and the impact of zinc during aging. Immun. Ageing, 2009, 6, 9. [http://dx.doi.org/10.1186/1742-4933-6-9]. [PMID: 19523191].
[32]
Hart, D.A. Effect of zinc chloride on hamster lymphoid cells: Mitogenicity and differential enhancement of lipopolysaccharide stimulation of lymphocytes. Infect. Immun., 1978, 19(2), 457-461. [PMID: 344210].
[33]
Feske, S.; Skolnik, E.Y.; Prakriya, M. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol., 2012, 12(7), 532-547. [http://dx.doi.org/10.1038/nri3233]. [PMID: 22699833].
[34]
Liu, B.; Bian, H.J.; Bao, J.K. Plant lectins: Potential antineoplastic drugs from bench to clinic. Cancer Lett., 2010, 287(1), 1-12. [http://dx.doi.org/10.1016/j.canlet.2009.05.013]. [PMID: 19487073].
[35]
da Silva, L.C.N.; Correia, M.T.D.S. Plant lectins and Toll-like receptors: Implications for therapy of microbial infections. Front. Microbiol., 2014, 5, 20. [http://dx.doi.org/10.3389/fmicb.2014.00020]. [PMID: 24550893].
[36]
Sharon, N. Lectins: Carbohydrate-specific reagents and biological recognition molecules. J. Biol. Chem., 2007, 282(5), 2753-2764. [http://dx.doi.org/10.1074/JBC.X600004200]. [PMID: 17145746].
[37]
Unitt, J.; Hornigold, D. Plant lectins are novel Toll-like receptor agonists. Biochem. Pharmacol., 2011, 81(11), 1324-1328. [http://dx.doi.org/10.1016/j.bcp.2011.03.010]. [PMID: 21420389].
[38]
Dar, A.A.; Patil, R.S.; Chiplunkar, S.V. Insights into the relationship between toll like receptors and gamma delta T cell responses. Front. Immunol., 2014, 5, 366. [http://dx.doi.org/10.3389/fimmu.2014.00366]. [PMID: 25132835].
[39]
Azzolina, L.S.; Stevanoni, G.; Tommasi, M.; Tridente, G. Phenotypic analysis of human peripheral blood lymphocytes by automatic sampling flow cytometry after stimulation with mitogens or allogeneic cells. Ric. Clin. Lab., 1990, 20(3), 209-216. [PMID: 2237164].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy