Review Article

硫醇依赖性抗氧化系统在细菌药物敏感性和耐药性中的作用和机理

卷 27, 期 12, 2020

页: [1940 - 1954] 页: 15

弟呕挨: 10.2174/0929867326666190524125232

价格: $65

摘要

抗生素在预防和治疗细菌感染性疾病中起着不可替代的作用。然而,由于抗生素的不当使用,细菌耐药性成为全世界公共卫生的主要挑战。诸如谷胱甘肽之类的小硫醇分子可以直接与某些抗生素反应并结合,从而有助于药物的敏感性和耐药性。最近,越来越多的证据表明,某些抗生素的抗菌活性与活性氧(ROS)之间有着密切的联系。硫氧还蛋白和谷胱甘肽系统是维持细胞ROS水平的两个主要细胞二硫键还原酶系统。因此,这两个硫醇依赖性抗氧化剂系统可能会影响抗生素的敏感性和耐药性。微生物配备了不同的硫醇依赖性抗氧化剂系统,这使硫醇依赖性抗氧化剂系统在抗生素敏感性中的作用和耐药性在各种细菌中有所不同。在这里,我们将集中于对巯基依赖性抗氧化剂系统在细菌抗生素敏感性和耐药性方面的研究进展进行综述。

关键词: 抗生素,耐药性,ROS,硫醇,硫氧还蛋白系统,谷胱甘肽。

[1]
Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull. World Health Organ., 2001, 79(8), 780-790.
[PMID: 11545337]
[2]
Alanis, A.J. Resistance to antibiotics: are we in the post-antibiotic era? Arch. Med. Res., 2005, 36(6), 697-705.
[http://dx.doi.org/10.1016/j.arcmed.2005.06.009] [PMID: 16216651]
[3]
Tenover, F.C. Development and spread of bacterial resistance to antimicrobial agents: an overview. Clin. Infect. Dis., 2001, 33(3)(Suppl. 3), S108-S115.
[http://dx.doi.org/10.1086/321834] [PMID: 11524705]
[4]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[5]
Baquero, F.; Blázquez, J. Evolution of antibiotic resistance. Trends Ecol. Evol. (Amst.), 1997, 12(12), 482-487.
[http://dx.doi.org/10.1016/S0169-5347(97)01223-8] [PMID: 21238165]
[6]
Schürch, A.C.; van Schaik, W. Challenges and opportunities for whole-genome sequencing-based surveillance of antibiotic resistance. Ann. N. Y. Acad. Sci., 2017, 1388(1), 108-120.
[http://dx.doi.org/10.1111/nyas.13310] [PMID: 28134443]
[7]
Wright, G.D. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv. Drug Deliv. Rev., 2005, 57(10), 1451-1470.
[http://dx.doi.org/10.1016/j.addr.2005.04.002] [PMID: 15950313]
[8]
Lambert, P.A. Bacterial resistance to antibiotics: modified target sites. Adv. Drug Deliv. Rev., 2005, 57(10), 1471-1485.
[http://dx.doi.org/10.1016/j.addr.2005.04.003] [PMID: 15964098]
[9]
Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control, 2006, 34(5)(Suppl. 1), S3-S10.
[http://dx.doi.org/10.1016/j.ajic.2006.05.219] [PMID: 16813980]
[10]
Kumar, A.; Schweizer, H.P. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv. Drug Deliv. Rev., 2005, 57(10), 1486-1513.
[http://dx.doi.org/10.1016/j.addr.2005.04.004] [PMID: 15939505]
[11]
Pugazhendhi, A.; Dhanarani, S.; Shankar, C.; Prakash, P.; Ranganathan, K.; Saratale, R.G.; Thamaraiselvi, K. Electrophoretic pattern of glutathione S-transferase (GST) in antibiotic resistance Gram-positive bacteria from poultry litter. Microb. Pathog., 2017, 110, 285-290.
[http://dx.doi.org/10.1016/j.micpath.2017.07.003] [PMID: 28687323]
[12]
Schairer, D.O.; Chouake, J.S.; Kutner, A.J.; Makdisi, J.; Nosanchuk, J.D.; Friedman, A.J. Evaluation of the antibiotic properties of glutathione. J. Drugs Dermatol., 2013, 12(11), 1272-1277.
[PMID: 24196336]
[13]
Berndt, C.; Lillig, C.H. Glutathione, glutaredoxins, and iron. Antioxid. Redox Signal., 2017, 27(15), 1235-1251.
[http://dx.doi.org/10.1089/ars.2017.7132] [PMID: 28537421]
[14]
Ouyang, Y.; Peng, Y.; Li, J.; Holmgren, A.; Lu, J. Modulation of thiol-dependent redox system by metal ions via thioredoxin and glutaredoxin systems. Metallomics, 2018, 10(2), 218-228.
[http://dx.doi.org/10.1039/C7MT00327G] [PMID: 29410996]
[15]
Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med., 2014, 66, 75-87.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.036] [PMID: 23899494]
[16]
Lu, J.; Holmgren, A. Thioredoxin system in cell death progression. Antioxid. Redox Signal., 2012, 17(12), 1738-1747.
[http://dx.doi.org/10.1089/ars.2012.4650] [PMID: 22530689]
[17]
Arnér, E.S.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem., 2000, 267(20), 6102-6109.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01701.x] [PMID: 11012661]
[18]
Arnér, E.S. Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions. Biochim. Biophys. Acta, 2009, 1790(6), 495-526.
[http://dx.doi.org/10.1016/j.bbagen.2009.01.014] [PMID: 19364476]
[19]
Matsuzawa, A. Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate. Arch. Biochem. Biophys., 2017, 617, 101-105.
[http://dx.doi.org/10.1016/j.abb.2016.09.011] [PMID: 27665998]
[20]
Holmgren, A.; Sengupta, R. The use of thiols by ribonucleotide reductase. Free Radic. Biol. Med., 2010, 49(11), 1617-1628.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.005] [PMID: 20851762]
[21]
Holmgren, A. Thioredoxin. Annu. Rev. Biochem., 1985, 54, 237-271.
[http://dx.doi.org/10.1146/annurev.bi.54.070185.001321] [PMID: 3896121]
[22]
Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact., 2014, 224, 164-175.
[http://dx.doi.org/10.1016/j.cbi.2014.10.016] [PMID: 25452175]
[23]
Vatansever, F.; de Melo, W.C.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.A.; Yin, R.; Tegos, G.P.; Hamblin, M.R. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev., 2013, 37(6), 955-989.
[http://dx.doi.org/10.1111/1574-6976.12026] [PMID: 23802986]
[24]
Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 2007, 130(5), 797-810.
[http://dx.doi.org/10.1016/j.cell.2007.06.049] [PMID: 17803904]
[25]
Keren, I.; Wu, Y.; Inocencio, J.; Mulcahy, L.R.; Lewis, K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science, 2013, 339(6124), 1213-1216.
[http://dx.doi.org/10.1126/science.1232688] [PMID: 23471410]
[26]
Liu, Y.; Imlay, J.A. Cell death from antibiotics without the involvement of reactive oxygen species. Science, 2013, 339(6124), 1210-1213.
[http://dx.doi.org/10.1126/science.1232751] [PMID: 23471409]
[27]
Fang, F.C. Antibiotic and ROS linkage questioned. Nat. Biotechnol., 2013, 31(5), 415-416.
[http://dx.doi.org/10.1038/nbt.2574] [PMID: 23657395]
[28]
Wright, G.D.; Hung, D.T.; Helmann, J.D. How antibiotics kill bacteria: new models needed? Nat. Med., 2013, 19(5), 544-545.
[http://dx.doi.org/10.1038/nm.3198] [PMID: 23652106]
[29]
Dwyer, D.J.; Kohanski, M.A.; Collins, J.J. Role of reactive oxygen species in antibiotic action and resistance. Curr. Opin. Microbiol., 2009, 12(5), 482-489.
[http://dx.doi.org/10.1016/j.mib.2009.06.018] [PMID: 19647477]
[30]
Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol., 2010, 8(6), 423-435.
[http://dx.doi.org/10.1038/nrmicro2333] [PMID: 20440275]
[31]
Dwyer, D.J.; Collins, J.J.; Walker, G.C. Unraveling the physiological complexities of antibiotic lethality. Annu. Rev. Pharmacol. Toxicol., 2015, 55, 313-332.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124712] [PMID: 25251995]
[32]
Lobritz, M.A.; Belenky, P.; Porter, C.B.M.; Gutierrez, A.; Yang, J.H.; Schwarz, E.G.; Dwyer, D.J.; Khalil, A.S.; Collins, J.J. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl. Acad. Sci. USA, 2015, 112(27), 8173-8180.
[http://dx.doi.org/10.1073/pnas.1509743112] [PMID: 26100898]
[33]
Mishra, S.; Imlay, J. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch. Biochem. Biophys., 2012, 525(2), 145-160.
[http://dx.doi.org/10.1016/j.abb.2012.04.014] [PMID: 22609271]
[34]
Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev., 1998, 11(1), 142-201.
[http://dx.doi.org/10.1128/CMR.11.1.142] [PMID: 9457432]
[35]
Gomes, T.A.; Elias, W.P.; Scaletsky, I.C.; Guth, B.E.; Rodrigues, J.F.; Piazza, R.M.; Ferreira, L.C.; Martinez, M.B. Diarrheagenic Escherichia coli. Braz. J. Microbiol., 2016, 47(1)(Suppl. 1), 3-30.
[http://dx.doi.org/10.1016/j.bjm.2016.10.015] [PMID: 27866935]
[36]
Russo, T.A.; Johnson, J.R. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect., 2003, 5(5), 449-456.
[http://dx.doi.org/10.1016/S1286-4579(03)00049-2] [PMID: 12738001]
[37]
Lennon, B.W.; Williams, C.H., Jr; Ludwig, M.L. Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase. Science, 2000, 289(5482), 1190-1194.
[http://dx.doi.org/10.1126/science.289.5482.1190] [PMID: 10947986]
[38]
Becker, K.; Gromer, S.; Schirmer, R.H.; Müller, S. Thioredoxin reductase as a pathophysiological factor and drug target. Eur. J. Biochem., 2000, 267(20), 6118-6125.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01703.x] [PMID: 11012663]
[39]
Potamitou, A.; Holmgren, A.; Vlamis-Gardikas, A. Protein levels of Escherichia coli thioredoxins and glutaredoxins and their relation to null mutants, growth phase, and function. J. Biol. Chem., 2002, 277(21), 18561-18567.
[http://dx.doi.org/10.1074/jbc.M201225200] [PMID: 11893749]
[40]
Collet, J.F.; D’Souza, J.C.; Jakob, U.; Bardwell, J.C. Thioredoxin 2, an oxidative stress-induced protein, contains a high affinity zinc binding site. J. Biol. Chem., 2003, 278(46), 45325-45332.
[http://dx.doi.org/10.1074/jbc.M307818200] [PMID: 12952960]
[41]
Zhao, R.; Masayasu, H.; Holmgren, A. Ebselen: a substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant. Proc. Natl. Acad. Sci. USA, 2002, 99(13), 8579-8584.
[http://dx.doi.org/10.1073/pnas.122061399] [PMID: 12070343]
[42]
Lu, J.; Vlamis-Gardikas, A.; Kandasamy, K.; Zhao, R.; Gustafsson, T.N.; Engstrand, L.; Hoffner, S.; Engman, L.; Holmgren, A. Inhibition of bacterial thioredoxin reductase: an antibiotic mechanism targeting bacteria lacking glutathione. FASEB J., 2013, 27(4), 1394-1403.
[http://dx.doi.org/10.1096/fj.12-223305] [PMID: 23248236]
[43]
Zou, L.; Lu, J.; Wang, J.; Ren, X.; Zhang, L.; Gao, Y.; Rottenberg, M.E.; Holmgren, A. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections. EMBO Mol. Med., 2017, 9(8), 1165-1178.
[http://dx.doi.org/10.15252/emmm.201707661] [PMID: 28606995]
[44]
Smirnova, G.; Muzyka, N.; Lepekhina, E.; Oktyabrsky, O. Roles of the glutathione- and thioredoxin-dependent systems in the Escherichia coli responses to ciprofloxacin and ampicillin. Arch. Microbiol., 2016, 198(9), 913-921.
[http://dx.doi.org/10.1007/s00203-016-1247-z] [PMID: 27277520]
[45]
Dwyer, D.J.; Belenky, P.A.; Yang, J.H.; MacDonald, I.C.; Martell, J.D.; Takahashi, N.; Chan, C.T.Y.; Lobritz, M.A.; Braff, D.; Schwarz, E.G.; Ye, J.D.; Pati, M.; Vercruysse, M.; Ralifo, P.S.; Allison, K.R.; Khalil, A.S.; Ting, A.Y.; Walker, G.C.; Collins, J.J. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA, 2014, 111(20), E2100-E2109.
[http://dx.doi.org/10.1073/pnas.1401876111] [PMID: 24803433]
[46]
Dwyer, D.J.; Kohanski, M.A.; Hayete, B.; Collins, J.J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol., 2007, 3, 91.
[http://dx.doi.org/10.1038/msb4100135] [PMID: 17353933]
[47]
Brynildsen, M.P.; Winkler, J.A.; Spina, C.S.; MacDonald, I.C.; Collins, J.J. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat. Biotechnol., 2013, 31(2), 160-165.
[http://dx.doi.org/10.1038/nbt.2458] [PMID: 23292609]
[48]
Morones-Ramirez, J.R.; Winkler, J.A.; Spina, C.S.; Collins, J.J. Silver enhances antibiotic activity against gram-negative bacteria. Sci. Transl. Med., 2013, 5(190)190ra81
[http://dx.doi.org/10.1126/scitranslmed.3006276] [PMID: 23785037]
[49]
Zou, L.; Wang, J.; Gao, Y.; Ren, X.; Rottenberg, M.E.; Lu, J.; Holmgren, A. Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production. Sci. Rep., 2018, 8(1), 11131.
[http://dx.doi.org/10.1038/s41598-018-29313-w] [PMID: 30042429]
[50]
Goswami, M.; Mangoli, S.H.; Jawali, N. Effects of glutathione and ascorbic acid on streptomycin sensitivity of Escherichia coli. Antimicrob. Agents Chemother., 2007, 51(3), 1119-1122.
[http://dx.doi.org/10.1128/AAC.00779-06] [PMID: 17210778]
[51]
Dhamdhere, G.; Krishnamoorthy, G.; Zgurskaya, H.I. Interplay between drug efflux and antioxidants in Escherichia coli resistance to antibiotics. Antimicrob. Agents Chemother., 2010, 54(12), 5366-5368.
[http://dx.doi.org/10.1128/AAC.00719-10] [PMID: 20876376]
[52]
Attarian, R.; Bennie, C.; Bach, H.; Av-Gay, Y. Glutathione disulfide and S-nitrosoglutathione detoxification by Mycobacterium tuberculosis thioredoxin system. FEBS Lett., 2009, 583(19), 3215-3220.
[http://dx.doi.org/10.1016/j.febslet.2009.09.007] [PMID: 19737561]
[53]
Nakazawa, T. [What we can learn from the genome sequence of gastric pathogen Helicobacter pylori]. Tanpakushitsu Kakusan Koso, 1998, 43(1), 81-85.
[PMID: 9455152]
[54]
Fahey, R.C.; Brown, W.C.; Adams, W.B.; Worsham, M.B. Occurrence of glutathione in bacteria. J. Bacteriol., 1978, 133(3), 1126-1129.
[http://dx.doi.org/10.1128/JB.133.3.1126-1129.1978] [PMID: 417060]
[55]
Casey, A.L.; Lambert, P.A.; Elliott, T.S. Staphylococci. Int. J. Antimicrob. Agents, 2007, 29(Suppl. 3), S23-S32.
[http://dx.doi.org/10.1016/S0924-8579(07)72175-1] [PMID: 17659209]
[56]
El Feghaly, R.E.; Stamm, J.E.; Fritz, S.A.; Burnham, C.A. Presence of the bla(Z) beta-lactamase gene in isolates of Staphylococcus aureus that appear penicillin susceptible by conventional phenotypic methods. Diagn. Microbiol. Infect. Dis., 2012, 74(4), 388-393.
[http://dx.doi.org/10.1016/j.diagmicrobio.2012.07.013] [PMID: 22959917]
[57]
Chambers, H.F. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis., 2001, 7(2), 178-182.
[http://dx.doi.org/10.3201/eid0702.010204] [PMID: 11294701]
[58]
Chambers, H.F.; Deleo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol., 2009, 7(9), 629-641.
[http://dx.doi.org/10.1038/nrmicro2200] [PMID: 19680247]
[59]
Uziel, O.; Borovok, I.; Schreiber, R.; Cohen, G.; Aharonowitz, Y. Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J. Bacteriol., 2004, 186(2), 326-334.
[http://dx.doi.org/10.1128/JB.186.2.326-334.2004] [PMID: 14702300]
[60]
Courcelle, J.; Hanawalt, P.C. RecA-dependent recovery of arrested DNA replication forks. Annu. Rev. Genet., 2003, 37, 611-646.
[http://dx.doi.org/10.1146/annurev.genet.37.110801.142616] [PMID: 14616075]
[61]
Páez, P.L.; Becerra, M.C.; Albesa, I. Effect of the association of reduced glutathione and ciprofloxacin on the antimicrobial activity in Staphylococcus aureus. FEMS Microbiol. Lett., 2010, 303(1), 101-105.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01867.x] [PMID: 20030722]
[62]
Becerra, M.C.; Albesa, I. Oxidative stress induced by ciprofloxacin in Staphylococcus aureus. Biochem. Biophys. Res. Commun., 2002, 297(4), 1003-1007.
[http://dx.doi.org/10.1016/S0006-291X(02)02331-8] [PMID: 12359254]
[63]
Ngo, H.X.; Shrestha, S.K.; Green, K.D.; Garneau-Tsodikova, S. Development of ebsulfur analogues as potent antibacterials against methicillin-resistant Staphylococcus aureus. Bioorg. Med. Chem., 2016, 24(24), 6298-6306.
[http://dx.doi.org/10.1016/j.bmc.2016.03.060] [PMID: 27073054]
[64]
Smith, A.; Rowan, R.; McCann, M.; Kavanagh, K. Exposure of Staphylococcus aureus to silver(I) induces a short term protective response. Biometals, 2012, 25(3), 611-616.
[http://dx.doi.org/10.1007/s10534-012-9549-3] [PMID: 22534827]
[65]
Perera, V.R.; Newton, G.L.; Pogliano, K. Bacillithiol: a key protective thiol in Staphylococcus aureus. Expert Rev. Anti Infect. Ther., 2015, 13(9), 1089-1107.
[http://dx.doi.org/10.1586/14787210.2015.1064309] [PMID: 26184907]
[66]
Pöther, D.C.; Gierok, P.; Harms, M.; Mostertz, J.; Hochgräfe, F.; Antelmann, H.; Hamilton, C.J.; Borovok, I.; Lalk, M.; Aharonowitz, Y.; Hecker, M. Distribution and infection-related functions of bacillithiol in Staphylococcus aureus. Int. J. Med. Microbiol., 2013, 303(3), 114-123.
[http://dx.doi.org/10.1016/j.ijmm.2013.01.003] [PMID: 23517692]
[67]
Posada, A.C.; Kolar, S.L.; Dusi, R.G.; Francois, P.; Roberts, A.A.; Hamilton, C.J.; Liu, G.Y.; Cheung, A. Importance of bacillithiol in the oxidative stress response of Staphylococcus aureus. Infect. Immun., 2014, 82(1), 316-332.
[http://dx.doi.org/10.1128/IAI.01074-13] [PMID: 24166956]
[68]
Chandrangsu, P.; Dusi, R.; Hamilton, C.J.; Helmann, J.D. Methylglyoxal resistance in Bacillus subtilis: contributions of bacillithiol-dependent and independent pathways. Mol. Microbiol., 2014, 91(4), 706-715.
[http://dx.doi.org/10.1111/mmi.12489] [PMID: 24330391]
[69]
Fang, Z.; Dos Santos, P.C. Protective role of bacillithiol in superoxide stress and Fe-S metabolism in Bacillus subtilis. MicrobiologyOpen, 2015, 4(4), 616-631.
[http://dx.doi.org/10.1002/mbo3.267] [PMID: 25988368]
[70]
Rosario-Cruz, Z.; Boyd, J.M. Physiological roles of bacillithiol in intracellular metal processing. Curr. Genet., 2016, 62(1), 59-65.
[http://dx.doi.org/10.1007/s00294-015-0511-0] [PMID: 26259870]
[71]
Bohr, U.R.; Annibale, B.; Franceschi, F.; Roccarina, D.; Gasbarrini, A. Extragastric manifestations of Helicobacter pylori infection -- other Helicobacters. Helicobacter, 2007, 12(Suppl. 1), 45-53.
[http://dx.doi.org/10.1111/j.1523-5378.2007.00533.x] [PMID: 17727460]
[72]
Calvet, X. Helicobacter pylori infection: treatment options. Digestion, 2006, 73(Suppl. 1), 119-128.
[http://dx.doi.org/10.1159/000089787] [PMID: 16498260]
[73]
Glupczynski, Y. Antimicrobial resistance in Helicobacter pylori: a global overview. Acta Gastroenterol. Belg., 1998, 61(3), 357-366.
[http://dx.doi.org/10.1007/978-94-011-4882-5_42] [PMID: 9795473]
[74]
De Francesco, V.; Giorgio, F.; Hassan, C.; Manes, G.; Vannella, L.; Panella, C.; Ierardi, E.; Zullo, A.; Worldwide, H. Worldwide H. pylori antibiotic resistance: a systematic review. J. Gastrointestin. Liver Dis., 2010, 19(4), 409-414.
[PMID: 21188333]
[75]
Handa, O.; Naito, Y.; Yoshikawa, T. Redox biology and gastric carcinogenesis: the role of Helicobacter pylori. Redox report : communications in free radical research, 2011, 16(1), 1-7.
[76]
Allocati, N.; Federici, L.; Masulli, M.; Di Ilio, C. Glutathione transferases in bacteria. FEBS J., 2009, 276(1), 58-75.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06743.x] [PMID: 19016852]
[77]
Davies, G.R.; Simmonds, N.J.; Stevens, T.R.; Sheaff, M.T.; Banatvala, N.; Laurenson, I.F.; Blake, D.R.; Rampton, D.S. Helicobacter pylori stimulates antral mucosal reactive oxygen metabolite production in vivo. Gut, 1994, 35(2), 179-185.
[http://dx.doi.org/10.1136/gut.35.2.179] [PMID: 8307467]
[78]
Baker, L.M.; Raudonikiene, A.; Hoffman, P.S.; Poole, L.B. Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J. Bacteriol., 2001, 183(6), 1961-1973.
[http://dx.doi.org/10.1128/JB.183.6.1961-1973.2001] [PMID: 11222594]
[79]
Shi, Y.; Liu, L.; Zhang, T.; Shen, L.; Liu, L.; Zhang, J.; Zhang, Y.; Wang, X.; Yang, S.; Lu, F.; Chen, X.; Ding, S. The involvement of Helicobacter pylori thioredoxin-1 in gastric carcinogenesis. J. Med. Microbiol., 2013, 62(Pt 8), 1226-1234.
[http://dx.doi.org/10.1099/jmm.0.056903-0] [PMID: 23558136]
[80]
Comtois, S.L.; Gidley, M.D.; Kelly, D.J. Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. Microbiology, 2003, 149(Pt 1), 121-129.
[http://dx.doi.org/10.1099/mic.0.25896-0] [PMID: 12576586]
[81]
Harbut, M.B.; Vilchèze, C.; Luo, X.; Hensler, M.E.; Guo, H.; Yang, B.; Chatterjee, A.K.; Nizet, V.; Jacobs, W.R., Jr; Schultz, P.G.; Wang, F. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc. Natl. Acad. Sci. USA, 2015, 112(14), 4453-4458.
[http://dx.doi.org/10.1073/pnas.1504022112] [PMID: 25831516]
[82]
Owings, J.P.; McNair, N.N.; Mui, Y.F.; Gustafsson, T.N.; Holmgren, A.; Contel, M.; Goldberg, J.B.; Mead, J.R. Auranofin and N-heterocyclic carbene gold-analogs are potent inhibitors of the bacteria Helicobacter pylori. FEMS Microbiol. Lett., 2016, 363(14)fnw148
[http://dx.doi.org/10.1093/femsle/fnw148] [PMID: 27279627]
[83]
Frankenberg, L.; Brugna, M.; Hederstedt, L. Enterococcus faecalis heme-dependent catalase. J. Bacteriol., 2002, 184(22), 6351-6356.
[http://dx.doi.org/10.1128/JB.184.22.6351-6356.2002] [PMID: 12399505]
[84]
Zámocký, M.; Koller, F. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog. Biophys. Mol. Biol., 1999, 72(1), 19-66.
[http://dx.doi.org/10.1016/S0079-6107(98)00058-3] [PMID: 10446501]
[85]
Zervas, S.J.; Zemel, L.S.; Romness, M.J.; Kaplan, E.L.; Salazar, J.C. Streptococcus pyogenes pyomyositis. Pediatr. Infect. Dis. J., 2002, 21(2), 166-168.
[http://dx.doi.org/10.1097/00006454-200202000-00017] [PMID: 11840087]
[86]
Billal, D.S.; Hotomi, M.; Yan, S.S.; Fedorko, D.P.; Shimada, J.; Fujihara, K.; Yamanaka, N. Loss of erythromycin resistance genes from strains of Streptococcus pyogenes that have developed resistance to levofloxacin. Diagn. Microbiol. Infect. Dis., 2009, 64(2), 225-228.
[http://dx.doi.org/10.1016/j.diagmicrobio.2009.01.034] [PMID: 19345038]
[87]
King, K.Y.; Horenstein, J.A.; Caparon, M.G. Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J. Bacteriol., 2000, 182(19), 5290-5299.
[http://dx.doi.org/10.1128/JB.182.19.5290-5299.2000] [PMID: 10986229]
[88]
Brenot, A.; King, K.Y.; Janowiak, B.; Griffith, O.; Caparon, M.G. Contribution of glutathione peroxidase to the virulence of Streptococcus pyogenes. Infect. Immun., 2004, 72(1), 408-413.
[http://dx.doi.org/10.1128/IAI.72.1.408-413.2004] [PMID: 14688122]
[89]
Reinemer, P.; Dirr, H.W.; Ladenstein, R.; Schäffer, J.; Gallay, O.; Huber, R. The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J., 1991, 10(8), 1997-2005.
[http://dx.doi.org/10.1002/j.1460-2075.1991.tb07729.x] [PMID: 2065650]
[90]
Sinning, I.; Kleywegt, G.J.; Cowan, S.W.; Reinemer, P.; Dirr, H.W.; Huber, R.; Gilliland, G.L.; Armstrong, R.N.; Ji, X.; Board, P.G. Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. J. Mol. Biol., 1993, 232(1), 192-212.
[http://dx.doi.org/10.1006/jmbi.1993.1376] [PMID: 8331657]
[91]
Allocati, N.; Favaloro, B.; Masulli, M.; Alexeyev, M.F.; Di Ilio, C. Proteus mirabilis glutathione S-transferase B1-1 is involved in protective mechanisms against oxidative and chemical stresses. Biochem. J., 2003, 373(Pt 1), 305-311.
[http://dx.doi.org/10.1042/bj20030184] [PMID: 12667139]
[92]
Kanai, T.; Takahashi, K.; Inoue, H. Three distinct-type glutathione S-transferases from Escherichia coli important for defense against oxidative stress. J. Biochem., 2006, 140(5), 703-711.
[http://dx.doi.org/10.1093/jb/mvj199] [PMID: 17018556]
[93]
Perito, B.; Allocati, N.; Casalone, E.; Masulli, M.; Dragani, B.; Polsinelli, M.; Aceto, A.; Di Ilio, C. Molecular cloning and overexpression of a glutathione transferase gene from Proteus mirabilis. Biochem. J., 1996, 318(Pt 1), 157-162.
[http://dx.doi.org/10.1042/bj3180157] [PMID: 8761466]
[94]
Allocati, N.; Favaloro, B.; Masulli, M.; Tamburro, A.; Rotilio, D.; Di Ilio, C. In vivo effect of xenobiotic compounds on the Proteus mirabilis glutathione transferase B1-1. Chem. Biol. Interact., 2001, 133(1-3), 261-264.
[PMID: 11306050]
[95]
Arca, P.; Hardisson, C.; Suárez, J.E. Purification of a glutathione S-transferase that mediates fosfomycin resistance in bacteria. Antimicrob. Agents Chemother., 1990, 34(5), 844-848.
[http://dx.doi.org/10.1128/AAC.34.5.844] [PMID: 2193621]
[96]
Mendoza, C.; Garcia, J.M.; Llaneza, J.; Mendez, F.J.; Hardisson, C.; Ortiz, J.M. Plasmid-determined resistance to fosfomycin in Serratia marcescens. Antimicrob. Agents Chemother., 1980, 18(2), 215-219.
[http://dx.doi.org/10.1128/AAC.18.2.215] [PMID: 7004337]
[97]
Arca, P.; Rico, M.; Braña, A.F.; Villar, C.J.; Hardisson, C.; Suárez, J.E. Formation of an adduct between fosfomycin and glutathione: a new mechanism of antibiotic resistance in bacteria. Antimicrob. Agents Chemother., 1988, 32(10), 1552-1556.
[http://dx.doi.org/10.1128/AAC.32.10.1552] [PMID: 3056239]
[98]
Cao, M.; Bernat, B.A.; Wang, Z.; Armstrong, R.N.; Helmann, J.D.; Fos, B. FosB, a cysteine-dependent fosfomycin resistance protein under the control of sigma(W), an extracytoplasmic-function sigma factor in Bacillus subtilis. J. Bacteriol., 2001, 183(7), 2380-2383.
[http://dx.doi.org/10.1128/JB.183.7.2380-2383.2001] [PMID: 11244082]
[99]
Fillgrove, K.L.; Pakhomova, S.; Newcomer, M.E.; Armstrong, R.N. Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms. J. Am. Chem. Soc., 2003, 125(51), 15730-15731.
[http://dx.doi.org/10.1021/ja039307z] [PMID: 14677948]
[100]
Fillgrove, K.L.; Pakhomova, S.; Schaab, M.R.; Newcomer, M.E.; Armstrong, R.N. Structure and mechanism of the genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes. Biochemistry, 2007, 46(27), 8110-8120.
[http://dx.doi.org/10.1021/bi700625p] [PMID: 17567049]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy