Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Natural Products for Regulating Macrophages M2 Polarization

Author(s): Zhen Chang, Youhan Wang, Chang Liu, Wanli Smith and Lingbo Kong*

Volume 15, Issue 7, 2020

Page: [559 - 569] Pages: 11

DOI: 10.2174/1574888X14666190523093535

Price: $65

Abstract

Macrophages M2 polarization have been taken as an anti-inflammatory progression during inflammation. Natural plant-derived products, with potential therapeutic and preventive activities against inflammatory diseases, have received increasing attention in recent years because of their whole regulative effects and specific pharmacological activities. However, the molecular mechanisms about how different kinds of natural compounds regulate macrophages polarization still unclear. Therefore, in the current review, we summarized the detailed research progress on the active compounds derived from herbal plants with regulating effects on macrophages, especially M2 polarization. These natural occurring compounds including flavonoids, terpenoids, glycosides, lignans, coumarins, alkaloids, polyphenols and quinones. In addition, we extensively discussed the cellular mechanisms underlying the M2 polarization for each compound, which could provide potential therapeutic strategies aiming macrophages M2 polarization.

Keywords: M2 polarization, natural occurring compounds, macrophages, molecular, polyphenols, resveratrol.

[1]
Hudson A, Lopez E, Almalki AJ, Roe AL, Calderón AI. A review of the toxicity of compounds found in herbal dietary supplements. Planta Med 2018; 84(9-10): 613-26.
[http://dx.doi.org/10.1055/a-0605-3786] [PMID: 29672820]
[2]
Han K, Zhang L, Wang M, Zhang R, Wang C, Zhang C. Prediction methods of herbal compounds in chinese medicinal herbs. Molecules 2018; 23(9): E2303
[http://dx.doi.org/10.3390/molecules23092303] [PMID: 30201875]
[3]
Klinkert K, Whelan D, Clover AJP, Leblond AL, Kumar AHS, Caplice NM. Selective M2 macrophage depletion leads to prolonged inflammation in surgical wounds. Eur Surg Res 2017; 58(3-4): 109-20.
[http://dx.doi.org/10.1159/000451078] [PMID: 28056458]
[4]
Ohashi T, Aoki M, Tomita H, et al. M2-like macrophage polarization in high lactic acid-producing head and neck cancer. Cancer Sci 2017; 108(6): 1128-34.
[http://dx.doi.org/10.1111/cas.13244] [PMID: 28370718]
[5]
Lee KC. On the origin and mode of action of functionally distinct macrophage subpopulations. Mol Cell Biochem 1980; 30(1): 39-55.
[http://dx.doi.org/10.1007/BF00215304] [PMID: 6991911]
[6]
Svedberg FR, Guilliams M. Cellular origin of human cardiac macrophage populations. Nat Med 2018; 24(8): 1091-2.
[http://dx.doi.org/10.1038/s41591-018-0143-2] [PMID: 30082862]
[7]
Kasloff SB, Weingartl HM. Swine alveolar macrophage cell model allows optimal replication of influenza A viruses regardless of their origin. Virology 2016; 490: 91-8.
[http://dx.doi.org/10.1016/j.virol.2016.01.006] [PMID: 26855331]
[8]
Bursuker I, Goldman R. On the origin of macrophage heterogeneity: a hypothesis. J Reticuloendothel Soc 1983; 33(3): 207-20.
[PMID: 6300396]
[9]
Tan HY, Wang N, Li S, Hong M, Wang X, Feng Y. The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases. Oxid Med Cell Longev 2016; 2016: 2795090
[http://dx.doi.org/10.1155/2016/2795090] [PMID: 27143992]
[10]
Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5(12): 953-64.
[http://dx.doi.org/10.1038/nri1733] [PMID: 16322748]
[11]
Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 1993; 259(5102): 1739-42.
[http://dx.doi.org/10.1126/science.8456300] [PMID: 8456300]
[12]
Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3(1): 23-35.
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[13]
Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 2011; . 13e23
[http://dx.doi.org/10.1017/S1462399411001943] [PMID: 21740602]
[14]
Hagemann T, Biswas SK, Lawrence T, Sica A, Lewis CE. Regulation of macrophage function in tumors: the multifaceted role of NF-kappaB. Blood 2009; 113(14): 3139-46.
[http://dx.doi.org/10.1182/blood-2008-12-172825] [PMID: 19171876]
[15]
Zizzo G, Hilliard BA, Monestier M, Cohen PL. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol 2012; 189(7): 3508-20.
[http://dx.doi.org/10.4049/jimmunol.1200662] [PMID: 22942426]
[16]
Colin S, Chinetti-Gbaguidi G, Staels B. Macrophage phenotypes in atherosclerosis. Immunol Rev 2014; 262(1): 153-66.
[http://dx.doi.org/10.1111/imr.12218] [PMID: 25319333]
[17]
del Cornò M, Scazzocchio B, Masella R, Gessani S. Regulation of Dendritic Cell Function by Dietary Polyphenols. Crit Rev Food Sci Nutr 2016; 56(5): 737-47.
[http://dx.doi.org/10.1080/10408398.2012.713046] [PMID: 24941314]
[18]
Brisdelli F, D’Andrea G, Bozzi A. Resveratrol: a natural polyphenol with multiple chemopreventive properties. Curr Drug Metab 2009; 10(6): 530-46.
[http://dx.doi.org/10.2174/138920009789375423] [PMID: 19702538]
[19]
Cho DI, Koo NY, Chung WJ, et al. Effects of resveratrol-related hydroxystilbenes on the nitric oxide production in macrophage cells: structural requirements and mechanism of action. Life Sci 2002; 71(17): 2071-82.
[http://dx.doi.org/10.1016/S0024-3205(02)01971-9] [PMID: 12175900]
[20]
Catalgol B, Batirel S, Taga Y, Ozer NK. Resveratrol: French paradox revisited. Front Pharmacol 2012; 3: 141.
[http://dx.doi.org/10.3389/fphar.2012.00141] [PMID: 22822401]
[21]
Sun L, Chen B, Jiang R, Li J, Wang B. Resveratrol inhibits lung cancer growth by suppressing M2-like polarization of tumor associated macrophages. Cell Immunol 2017; 311: 86-93.
[http://dx.doi.org/10.1016/j.cellimm.2016.11.002] [PMID: 27825563]
[22]
Mu X, Shi W, Xu Y, et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle 2018; 17(4): 428-38.
[http://dx.doi.org/10.1080/15384101.2018.1444305] [PMID: 29468929]
[23]
Hirsch S, Austyn JM, Gordon S. Expression of the macrophage-specific antigen F4/80 during differentiation of mouse bone marrow cells in culture. J Exp Med 1981; 154(3): 713-25.
[http://dx.doi.org/10.1084/jem.154.3.713] [PMID: 7276827]
[24]
Leiro J, Alvarez E, García D, Orallo F. Resveratrol modulates rat macrophage functions. Int Immunopharmacol 2002; 2(6): 767-74.
[http://dx.doi.org/10.1016/S1567-5769(02)00014-0] [PMID: 12095167]
[25]
Grant L, Shearer KD, Czopek A, et al. Myeloid-cell protein tyrosine phosphatase-1B deficiency in mice protects against high-fat diet and lipopolysaccharide-induced inflammation, hyperinsulinemia, and endotoxemia through an IL-10 STAT3-dependent mechanism. Diabetes 2014; 63(2): 456-70.
[http://dx.doi.org/10.2337/db13-0885] [PMID: 24186864]
[26]
Lu X, Malumbres R, Shields B, et al. PTP1B is a negative regulator of interleukin 4-induced STAT6 signaling. Blood 2008; 112(10): 4098-108.
[http://dx.doi.org/10.1182/blood-2008-03-148726] [PMID: 18716132]
[27]
Velagapudi R, Baco G, Khela S, Okorji U, Olajide O. Pomegranate inhibits neuroinflammation and amyloidogenesis in IL-1β-stimulated SK-N-SH cells. Eur J Nutr 2016; 55(4): 1653-60.
[http://dx.doi.org/10.1007/s00394-015-0984-0] [PMID: 26155780]
[28]
Zhao F, Pang W, Zhang Z, et al. Pomegranate extract and exercise provide additive benefits on improvement of immune function by inhibiting inflammation and oxidative stress in high-fat-diet-induced obesity in rats. J Nutr Biochem 2016; 32: 20-8.
[http://dx.doi.org/10.1016/j.jnutbio.2016.02.003] [PMID: 27142733]
[29]
Xu X, Guo Y, Zhao J, et al. Punicalagin, a PTP1B inhibitor, induces M2c phenotype polarization via up-regulation of HO-1 in murine macrophages. Free Radic Biol Med 2017; 110: 408-20.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.06.014] [PMID: 28690198]
[30]
Zhang M, Nakamura K, Kageyama S, et al. Myeloid HO-1 modulates macrophage polarization and protects against ischemia-reperfusion injury. JCI Insight 2018; 3(19): 120596
[http://dx.doi.org/10.1172/jci.insight.120596] [PMID: 30282830]
[31]
Ke B, Shen XD, Ji H, et al. HO-1-STAT3 axis in mouse liver ischemia/reperfusion injury: regulation of TLR4 innate responses through PI3K/PTEN signaling. J Hepatol 2012; 56(2): 359-66.
[http://dx.doi.org/10.1016/j.jhep.2011.05.023] [PMID: 21756853]
[32]
Chahar MK, Sharma N, Dobhal MP, Joshi YC. Flavonoids: A versatile source of anticancer drugs. Pharmacogn Rev 2011; 5(9): 1-12.
[http://dx.doi.org/10.4103/0973-7847.79093] [PMID: 22096313]
[33]
Liu Z, Liu Y, Pu Z, et al. Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnol Lett 2013; 35(11): 1765-80.
[http://dx.doi.org/10.1007/s10529-013-1277-4] [PMID: 23881316]
[34]
Zhang Y, Li X, Ciric B, et al. Therapeutic effect of baicalin on experimental autoimmune encephalomyelitis is mediated by SOCS3 regulatory pathway. Sci Rep 2015; 5: 17407.
[http://dx.doi.org/10.1038/srep17407] [PMID: 26616302]
[35]
Zhu W, Jin Z, Yu J, et al. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype. Int Immunopharmacol 2016; 35: 119-26.
[http://dx.doi.org/10.1016/j.intimp.2016.03.030] [PMID: 27039210]
[36]
Du X, Jiang C, Lv Y, et al. Isoflurane promotes phagocytosis of apoptotic neutrophils through AMPK-mediated ADAM17/Mer signaling. PLoS One 2017; 12(7): e0180213
[http://dx.doi.org/10.1371/journal.pone.0180213] [PMID: 28671983]
[37]
Lai YS, Putra RBDS, Aui SP, Chang KT. M2C Polarization by Baicalin Enhances Efferocytosis via Upregulation of MERTK Receptor. Am J Chin Med 2018; 46(8): 1899-914.
[http://dx.doi.org/10.1142/S0192415X18500957] [PMID: 30518232]
[38]
Li KK, Xu F, Li SS, Cao GY, Gong XJ. Cytotoxic epimeric ginsenosides from the flower buds of Panax ginseng. Steroids 2019; 143: 1-5.
[http://dx.doi.org/10.1016/j.steroids.2018.12.002] [PMID: 30543815]
[39]
Zhang XJ, He C, Tian K, Li P, Su H, Wan JB. Ginsenoside Rb1 attenuates angiotensin II-induced abdominal aortic aneurysm through inactivation of the JNK and p38 signaling pathways. Vascul Pharmacol 2015; 73: 86-95.
[http://dx.doi.org/10.1016/j.vph.2015.04.003] [PMID: 25912763]
[40]
Zhang X, Liu MH, Qiao L, et al. Ginsenoside Rb1 enhances atherosclerotic plaque stability by skewing macrophages to the M2 phenotype. J Cell Mol Med 2018; 22(1): 409-16.
[http://dx.doi.org/10.1111/jcmm.13329] [PMID: 28944992]
[41]
Zhao TT, et al. Isoliquiritigenin (ISL) and its formulations: potential antitumor agents. Curr Med Chem 2018.
[PMID: 30417769]
[42]
Woo KJ, Jeong YJ, Inoue H, Park JW, Kwon TK. Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity. FEBS Lett 2005; 579(3): 705-11.
[http://dx.doi.org/10.1016/j.febslet.2004.12.048] [PMID: 15670832]
[43]
Grivennikov S, Karin E, Terzic J, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009; 15(2): 103-13.
[http://dx.doi.org/10.1016/j.ccr.2009.01.001] [PMID: 19185845]
[44]
Zhao H, Zhang X, Chen X, et al. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6. Toxicol Appl Pharmacol 2014; 279(3): 311-21.
[http://dx.doi.org/10.1016/j.taap.2014.07.001] [PMID: 25026504]
[45]
Zheng H, et al. New Terpenoids And Lignans From The Twigs Of Tripterygium Hypoglaucum. Nat Prod Res 2020; 34(13): 1853-61.
[http://dx.doi.org/10.1080/14786419.2018.1564297] [PMID: 30691300]
[46]
Roeder S, Hartmann AM, Effmert U, Piechulla B. Regulation of simultaneous synthesis of floral scent terpenoids by the 1,8-cineole synthase of Nicotiana suaveolens. Plant Mol Biol 2007; 65(1-2): 107-24.
[http://dx.doi.org/10.1007/s11103-007-9202-7] [PMID: 17611797]
[47]
Gallily R, Yekhtin Z, Hanuš LO. The Anti-Inflammatory Properties of Terpenoids from Cannabis. Cannabis Cannabinoid Res 2018; 3(1): 282-90.
[http://dx.doi.org/10.1089/can.2018.0014] [PMID: 30596146]
[48]
Salminen A, Lehtonen M, Paimela T, Kaarniranta K. Celastrol: Molecular targets of Thunder God Vine. Biochem Biophys Res Commun 2010; 394(3): 439-42.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.050] [PMID: 20226165]
[49]
Gadani SP, Walsh JT, Smirnov I, Zheng J, Kipnis J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 2015; 85(4): 703-9.
[http://dx.doi.org/10.1016/j.neuron.2015.01.013] [PMID: 25661185]
[50]
Yang Y, Liu H, Zhang H, et al. ST2/IL-33-Dependent Microglial Response Limits Acute Ischemic Brain Injury. J Neurosci 2017; 37(18): 4692-704.
[http://dx.doi.org/10.1523/JNEUROSCI.3233-16.2017] [PMID: 28389473]
[51]
Jiang M, Liu X, Zhang D, et al. Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization. J Neuroinflammation 2018; 15(1): 78.
[http://dx.doi.org/10.1186/s12974-018-1124-6] [PMID: 29540209]
[52]
Oyarce P, De Meester B, Fonseca F, et al. Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing. Nat Plants 2019; 5(2): 225-37.
[http://dx.doi.org/10.1038/s41477-018-0350-3] [PMID: 30692678]
[53]
Gao S, Zhou J, Liu N, et al. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. J Mol Cell Cardiol 2015; 85: 131-9.
[http://dx.doi.org/10.1016/j.yjmcc.2015.04.025] [PMID: 25944087]
[54]
Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 2007; 117(5): 1155-66.
[http://dx.doi.org/10.1172/JCI31422] [PMID: 17476345]
[55]
Yu CR, Kirken RA, Malabarba MG, Young HA, Ortaldo JR. Differential regulation of the Janus kinase-STAT pathway and biologic function of IL-13 in primary human NK and T cells: a comparative study with IL-4. J Immunol 1998; 161(1): 218-27.
[PMID: 9647227]
[56]
Gagliardi M, Strazzullo M, Matarazzo MR. DNMT3B Functions: Novel Insights From Human Disease. Front Cell Dev Biol 2018; 6: 140.
[http://dx.doi.org/10.3389/fcell.2018.00140] [PMID: 30406101]
[57]
Chen F, Guo N, Cao G, Zhou J, Yuan Z. Molecular analysis of curcumin-induced polarization of murine RAW264.7 macrophages. J Cardiovasc Pharmacol 2014; 63(6): 544-52.
[http://dx.doi.org/10.1097/FJC.0000000000000079] [PMID: 24709638]
[58]
Nakajima K, Maeda N, Oiso S, Kariyazono H. Decreased Plasma Octanoylated Ghrelin Levels in Mice by Oleanolic Acid. J Oleo Sci 2019; 68(1): 103-9.
[http://dx.doi.org/10.5650/jos.ess18148] [PMID: 30542007]
[59]
Andersen MN, Etzerodt A, Graversen JH, et al. STAT3 inhibition specifically in human monocytes and macrophages by CD163-targeted corosolic acid-containing liposomes. Cancer Immunol Immunother 2019; 68(3): 489-502.
[http://dx.doi.org/10.1007/s00262-019-02301-3] [PMID: 30637473]
[60]
Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 2007; 7(1): 41-51.
[http://dx.doi.org/10.1038/nri1995] [PMID: 17186030]
[61]
Fujiwara Y, Komohara Y, Kudo R, et al. Oleanolic acid inhibits macrophage differentiation into the M2 phenotype and glioblastoma cell proliferation by suppressing the activation of STAT3. Oncol Rep 2011; 26(6): 1533-7.
[PMID: 21922144]
[62]
Wang G, Zhang B, Wang Y, Han S, Wang C. Crocin promotes apoptosis of human skin cancer cells by inhibiting the JAK/STAT pathway. Exp Ther Med 2018; 16(6): 5079-84.
[http://dx.doi.org/10.3892/etm.2018.6865] [PMID: 30542463]
[63]
Li J, Lei HT, Cao L, Mi YN, Li S, Cao YX. Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization. Int Immunopharmacol 2018; 55: 120-7.
[http://dx.doi.org/10.1016/j.intimp.2017.11.037] [PMID: 29248792]
[64]
Tabata K, Matsumoto K, Watanabe H. Paeoniflorin, a major constituent of peony root, reverses muscarinic M1-receptor antagonist-induced suppression of long-term potentiation in the rat hippocampal slice. Jpn J Pharmacol 2000; 83(1): 25-30.
[http://dx.doi.org/10.1254/jjp.83.25] [PMID: 10887937]
[65]
Tarassishin L, Suh HS, Lee SC. Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway. J Neuroinflammation 2011; 8: 187.
[http://dx.doi.org/10.1186/1742-2094-8-187] [PMID: 22208359]
[66]
Shi X, Cai X, Di W, et al. MFG-E8 selectively inhibited Aβ-induced microglial M1 polarization via NF-κB and PI3K-Akt pathways. Mol Neurobiol 2017; 54(10): 7777-88.
[http://dx.doi.org/10.1007/s12035-016-0255-y] [PMID: 27844286]
[67]
Luo XQ, Li A, Yang X, et al. Paeoniflorin exerts neuroprotective effects by modulating the M1/M2 subset polarization of microglia/macrophages in the hippocampal CA1 region of vascular dementia rats via cannabinoid receptor 2. Chin Med 2018; 13: 14.
[http://dx.doi.org/10.1186/s13020-018-0173-1] [PMID: 29560022]
[68]
Al-Anazi A, Parhar R, Saleh S, et al. Data on hypoxia-induced VEGF, leptin and NF-kB p65 expression. Data Brief 2018; 21: 2395-7.
[http://dx.doi.org/10.1016/j.dib.2018.10.147] [PMID: 30547064]
[69]
Afewerki S, Wang JX, Liao WW, Córdova A. The chemical synthesis and applications of tropane alkaloids. Alkaloids Chem Biol 2019; 81: 151-233.
[http://dx.doi.org/10.1016/bs.alkal.2018.06.001] [PMID: 30685050]
[70]
Wang XP, Lei F, Du F, et al. Protection of Gastrointestinal Mucosa from Acute Heavy Alcohol Consumption: The Effect of Berberine and Its Correlation with TLR2, 4/IL1β-TNFα Signaling. PLoS One 2015; 10(7): e0134044
[http://dx.doi.org/10.1371/journal.pone.0134044] [PMID: 26226164]
[71]
Na YR, Yoon YN, Son DI, Seok SH. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model. PLoS One 2013; 8(5): e63451
[http://dx.doi.org/10.1371/journal.pone.0063451] [PMID: 23667623]
[72]
Piao M, Cao H, He N, et al. Berberine Inhibits Intestinal Polyps Growth in Apc (min/+) Mice via Regulation of Macrophage Polarization. Evid Based Complement Alternat Med 2016;.: 20165137505
[http://dx.doi.org/10.1155/2016/5137505] [PMID: 27493671]
[73]
Jiang RW, Hon PM, Zhou Y, et al. Alkaloids and chemical diversity of Stemona tuberosa. J Nat Prod 2006; 69(5): 749-54.
[http://dx.doi.org/10.1021/np050539g] [PMID: 16724834]
[74]
Lin LG, Zhong QX, Cheng TY, et al. Stemoninines from the roots of Stemona tuberosa. J Nat Prod 2006; 69(7): 1051-4.
[http://dx.doi.org/10.1021/np0505317] [PMID: 16872143]
[75]
Song Y, Wu Y, Li X, et al. Protostemonine attenuates alternatively activated macrophage and DRA-induced asthmatic inflammation. Biochem Pharmacol 2018; 155: 198-206.
[http://dx.doi.org/10.1016/j.bcp.2018.07.003] [PMID: 29991449]
[76]
Adaszek Ł, Gadomska D, Mazurek Ł, Łyp P, Madany J, Winiarczyk S. Properties of capsaicin and its utility in veterinary and human medicine. Res Vet Sci 2019; 123: 14-9.
[http://dx.doi.org/10.1016/j.rvsc.2018.12.002] [PMID: 30579138]
[77]
Bok E, Chung YC, Kim KS, Baik HH, Shin WH, Jin BK. Modulation of M1/M2 polarization by capsaicin contributes to the survival of dopaminergic neurons in the lipopolysaccharide-lesioned substantia nigra in vivo. Exp Mol Med 2018; 50(7): 1-14.
[http://dx.doi.org/10.1038/s12276-018-0111-4] [PMID: 29968707]
[78]
Lopes RL, Borges TJ, Zanin RF, Bonorino C. IL-10 is required for polarization of macrophages to M2-like phenotype by mycobacterial DnaK (heat shock protein 70). Cytokine 2016; 85: 123-9.
[http://dx.doi.org/10.1016/j.cyto.2016.06.018] [PMID: 27337694]
[79]
Park KW, Lee HG, Jin BK, Lee YB. Interleukin-10 endogenously expressed in microglia prevents lipopolysaccharide-induced neurodegeneration in the rat cerebral cortex in vivo. Exp Mol Med 2007; 39(6): 812-9.
[http://dx.doi.org/10.1038/emm.2007.88] [PMID: 18160852]
[80]
Park SY, Hong SS, Han XH, et al. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production. Chem Pharm Bull (Tokyo) 2007; 55(1): 150-2.
[http://dx.doi.org/10.1248/cpb.55.150] [PMID: 17202721]
[81]
Hyam SR, Lee IA, Gu W, et al. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages. Eur J Pharmacol 2013; 708(1-3): 21-9.
[http://dx.doi.org/10.1016/j.ejphar.2013.01.014] [PMID: 23375938]
[82]
Huang XL, Xu J, Zhang XH, et al. PI3K/Akt signaling pathway is involved in the pathogenesis of ulcerative colitis. Inflamm Res 2011; 60(8): 727-34.
[http://dx.doi.org/10.1007/s00011-011-0325-6] [PMID: 21442372]
[83]
Peng XD, Wu XH, Chen LJ, et al. Inhibition of phosphoinositide 3-kinase ameliorates dextran sodium sulfate-induced colitis in mice. J Pharmacol Exp Ther 2010; 332(1): 46-56.
[http://dx.doi.org/10.1124/jpet.109.153494] [PMID: 19828878]
[84]
Shang XY, Yuan ZB. Determination of six effective components in Rheum by cyclodextrin modified micellar electrokinetic chromatography. Yao Xue Xue Bao 2002; 37(10): 798-801.
[PMID: 12567865]
[85]
Jia X, Yu F, Wang J, et al. Emodin suppresses pulmonary metastasis of breast cancer accompanied with decreased macrophage recruitment and M2 polarization in the lungs. Breast Cancer Res Treat 2014; 148(2): 291-302.
[http://dx.doi.org/10.1007/s10549-014-3164-7] [PMID: 25311112]
[86]
Detsi A, Kontogiorgis C, Hadjipavlou-Litina D. Coumarin derivatives: an updated patent review (2015-2016). Expert Opin Ther Pat 2017; 27(11): 1201-26.
[http://dx.doi.org/10.1080/13543776.2017.1360284] [PMID: 28756713]
[87]
Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol 2014; 5: 614.
[http://dx.doi.org/10.3389/fimmu.2014.00614] [PMID: 25506346]
[88]
Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal 2014; 26(2): 192-7.
[http://dx.doi.org/10.1016/j.cellsig.2013.11.004] [PMID: 24219909]
[89]
Wang B, Zheng X, Liu J, et al. Osthole inhibits pancreatic cancer progression by directly exerting negative effects on cancer cells and attenuating tumor-infiltrating M2 macrophages. J Pharmacol Sci 2018; 137(3): 290-8.
[http://dx.doi.org/10.1016/j.jphs.2018.07.007] [PMID: 30098910]
[90]
Yakushiji E, Sugimura Y, Sekuzu I, Morika Wa I, Okunuki K. Preparation of crystalline cytochrome-553 from Porphyra tenera. Nature 1960; 185: 105-6.
[http://dx.doi.org/10.1038/185105a0] [PMID: 13846359]
[91]
Choi JW, Kwon MJ, Kim IH, Kim YM, Lee MK, Nam TJ. Pyropia yezoensis glycoprotein promotes the M1 to M2 macrophage phenotypic switch via the STAT3 and STAT6 transcription factors. Int J Mol Med 2016; 38(2): 666-74.
[http://dx.doi.org/10.3892/ijmm.2016.2656] [PMID: 27353313]
[92]
Ho YS, So KF, Chang RC. Anti-aging herbal medicine--how and why can they be used in aging-associated neurodegenerative diseases? Ageing Res Rev 2010; 9(3): 354-62.
[http://dx.doi.org/10.1016/j.arr.2009.10.001] [PMID: 19833234]
[93]
Zhang YK, Wang J, Liu L, Chang RC, So KF, Ju G. The effect of Lycium barbarum on spinal cord injury, particularly its relationship with M1 and M2 macrophage in rats. BMC Complement Altern Med 2013; 13: 67.
[http://dx.doi.org/10.1186/1472-6882-13-67] [PMID: 23517687]
[94]
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25(12): 677-86.
[http://dx.doi.org/10.1016/j.it.2004.09.015] [PMID: 15530839]
[95]
Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008; 13: 453-61.
[http://dx.doi.org/10.2741/2692] [PMID: 17981560]
[96]
Lee EH, Kim HJ, Song YS, et al. Constituents of the stems and fruits of Opuntia ficus-indica var. saboten. Arch Pharm Res 2003; 26(12): 1018-23.
[http://dx.doi.org/10.1007/BF02994752] [PMID: 14723334]
[97]
Salehi E, Emam-Djomeh Z, Askari G, Fathi M. Opuntia ficus indica fruit gum: Extraction, characterization, antioxidant activity and functional properties. Carbohydr Polym 2019; 206: 565-72.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.035] [PMID: 30553358]
[98]
Kang JW, Shin JK, Koh EJ, Ryu H, Kim HJ, Lee SM. Opuntia ficus-indica seed attenuates hepatic steatosis and promotes M2 macrophage polarization in high-fat diet-fed mice. Nutr Res 2016; 36(4): 369-79.
[http://dx.doi.org/10.1016/j.nutres.2015.12.007] [PMID: 27001282]
[99]
Li X, Sipple J, Pang Q, Du W. Salidroside stimulates DNA repair enzyme Parp-1 activity in mouse HSC maintenance. Blood 2012; 119(18): 4162-73.
[http://dx.doi.org/10.1182/blood-2011-10-387332] [PMID: 22427203]
[100]
Liu X, Wen S, Yan F, et al. Salidroside provides neuroprotection by modulating microglial polarization after cerebral ischemia. J Neuroinflammation 2018; 15(1): 39.
[http://dx.doi.org/10.1186/s12974-018-1081-0] [PMID: 29426336]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy