Review Article

急性髓系白血病治疗中的免疫脂质体:可能的靶点和障碍综述

卷 26, 期 28, 2019

页: [5278 - 5292] 页: 15

弟呕挨: 10.2174/0929867326666190517114450

open access plus

摘要

急性髓细胞性白血病(AML)是造血干细胞(HSC)的肿瘤转化,复发性疾病是治疗中的主要挑战。尽管医学领域取得了技术进步,并且我们对AML的发病机理有了更深入的了解,但自1973年以来,“ 7 + 3”阿糖胞苷和柔红霉素的初始治疗仍基本保持不变。AML是一种老年人疾病,其发病率增加。患者组不允许充分使用治疗,耐药性复发很普遍。纳米载体是一种药物输送系统,可用于将药物输送到骨髓并靶向白血病干细胞(LSC),与免费药物替代品相比,副作用较小。纳米载体也可用于促进药物的运输,否则由于毒性和疗效差而无法在临床上使用。脂质体是可以用作专用药物递送系统的一种纳米载体,其也可以在表面具有活性配体以便与靶细胞或组织上的抗原相互作用。除了使用小分子外,还可以将抗体附着于脂质体表面,从而产生所谓的免疫脂质体。通过使用免疫脂质体作为药物递送系统,可以最小化化疗药物对健康器官造成的毒性副作用,同时将药物引向剩余的AML母细胞和干细胞。本文旨在探讨在AML治疗中使用免疫脂质体作为药物载体的可能性。重点将放在AML细胞,白血病干细胞以及与AML治疗相关的骨髓成分上的可能靶分子上。此外,将讨论免疫脂质体用于AML治疗必须满足的一些条件和预防措施。

关键词: 急性髓系白血病、脂质体、抗体、免疫脂质体、骨髓、制药、生产。

[1]
Estey, E.; Döhner, H. Acute myeloid leukaemia. Lancet, 2006, 368(9550), 1894-1907.
[http://dx.doi.org/10.1016/S0140-6736(06)69780-8] [PMID: 17126723]
[2]
Howlader, N.; Krapcho, M.; Miller, D.; Bishop, K.; Altekruse, S.F.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z. SEER cancer statistics reveiw, 1975-2013; National Cancer Institute, 2016.
[3]
Forthun, R.B.; Hinrichs, C.; Dowling, T.H.; Bruserud, Ø.; Selheim, F. The Past, Present and Future Subclassification of Patients with Acute Myeloid Leukemia. Curr. Pharm. Biotechnol., 2016, 17(1), 6-19.
[http://dx.doi.org/10.2174/1389201016666150907113653] [PMID: 26343130]
[4]
Kadia, T.M.; Ravandi, F.; O’Brien, S.; Cortes, J.; Kantarjian, H.M. Progress in acute myeloid leukemia. Clin. Lymphoma Myeloma Leuk., 2015, 15(3), 139-151.
[http://dx.doi.org/10.1016/j.clml.2014.08.006] [PMID: 25441110]
[5]
Stein, E.M.; Tallman, M.S. Emerging therapeutic drugs for AML. Blood, 2016, 127(1), 71-78.
[http://dx.doi.org/10.1182/blood-2015-07-604538] [PMID: 26660428]
[6]
Burnett, A.; Wetzler, M.; Löwenberg, B. Therapeutic advances in acute myeloid leukemia. J. Clin. Oncol., 2011, 29(5), 487-494.
[http://dx.doi.org/10.1200/JCO.2010.30.1820] [PMID: 21220605]
[7]
Motyckova, G.; Stone, R.M. Treatment of elderly acute myeloid leukemia patients. Curr. Treat. Options Oncol., 2011, 12(4), 341-353.
[http://dx.doi.org/10.1007/s11864-011-0162-4] [PMID: 21901552]
[8]
Lehrnbecher, T.; Sung, L. Anti-infective prophylaxis in pediatric patients with acute myeloid leukemia. Expert Rev. Hematol., 2014, 7(6), 819-830.
[http://dx.doi.org/10.1586/17474086.2014.965140] [PMID: 25359519]
[9]
Ross, K.; Gillespie-Twardy, A.L.; Agha, M.; Raptis, A.; Hou, J.Z.; Farah, R.; Redner, R.L.; Im, A.; Duggal, S.; Ding, F.; Lin, Y.; Boyiadzis, M. Intensive chemotherapy in patients aged 70 years or older newly diagnosed with acute myeloid leukemia. Oncol. Res., 2015, 22(2), 85-92.
[http://dx.doi.org/10.3727/096504014X14146137738547] [PMID: 25706395]
[10]
Lichtman, M.A. A historical perspective on the development of the cytarabine (7days) and daunorubicin (3days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7+3. Blood Cells Mol. Dis., 2013, 50(2), 119-130.
[http://dx.doi.org/10.1016/j.bcmd.2012.10.005] [PMID: 23154039]
[11]
Levis, M. Midostaurin approved for FLT3-mutated AML. Blood, 2017, 129(26), 3403-3406.
[http://dx.doi.org/10.1182/blood-2017-05-782292] [PMID: 28546144]
[12]
Schlenk, R.F.; Kayser, S. Midostaurin: A multiple tyrosine kinases inhibitor in acute myeloid leukemia and systemic mastocytosis. Recent Results Cancer Res., 2018, 212, 199-214.
[http://dx.doi.org/10.1007/978-3-319-91439-8_10] [PMID: 30069632]
[13]
Ferrara, F.; Schiffer, C.A. Acute myeloid leukaemia in adults. Lancet, 2013, 381(9865), 484-495.
[http://dx.doi.org/10.1016/S0140-6736(12)61727-9] [PMID: 23399072]
[14]
Bieker, R.; Lerchenmüller, C.; Wehmeyer, J.; Serve, H.L.; Mesters, R.M.; Büchner, T.; Berdel, W.E. Phase I study of liposomal daunorubicin in relapsed and refractory acute myeloid leukemia. Oncol. Rep., 2003, 10(4), 915-920.
[http://dx.doi.org/10.3892/or.10.4.915] [PMID: 12792745]
[15]
Russo, D.; Piccaluga, P.P.; Michieli, M.; Michelutti, T.; Visani, G.; Gugliotta, L.; Bonini, A.; Pierri, I.; Gobbi, M.; Tiribelli, M.; Fanin, R.; Piccolrovazzi, S.; Baccarani, M. Liposomal daunorubicin (DaunoXome) for treatment of poor-risk acute leukemia. Ann. Hematol., 2002, 81(8), 462-466.
[http://dx.doi.org/10.1007/s00277-002-0509-9] [PMID: 12224004]
[16]
Krauss, A.C.; Gao, X.; Li, L.; Manning, M.L.; Patel, P.; Fu, W.; Janoria, K.G.; Gieser, G.; Bateman, D.A.; Przepiorka, D.; Shen, Y.L.; Shord, S.S.; Sheth, C.M.; Banerjee, A.; Liu, J.; Goldberg, K.B.; Farrell, A.T.; Blumenthal, G.M.; Pazdur, R. FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin. Cancer Res., 2019, 25(9), 2685-2690.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2990] [PMID: 30541745]
[17]
Sauvage, F.; Barratt, G.; Herfindal, L.; Vergnaud-Gauduchon, J. The use of nanocarriers in acute myeloid leukaemia therapy: challenges and current status. Curr. Pharm. Biotechnol., 2016, 17(1), 30-41.
[http://dx.doi.org/10.2174/1389201016666150817095045] [PMID: 26278525]
[18]
Basha, R.; Sabnis, N.; Heym, K.; Bowman, W.P.; Lacko, A.G. Targeted nanoparticles for pediatric leukemia therapy. Front. Oncol., 2014, 4, 101.
[http://dx.doi.org/10.3389/fonc.2014.00101] [PMID: 24860784]
[19]
Potocnic, J. Commision recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU) Official Journal of the European Union. The European. Union, 2011, 696. EU
[20]
Wiernik, P.H.; Schwartz, E.L.; Strauman, J.J.; Dutcher, J.P.; Lipton, R.B.; Paietta, E. Phase I clinical and pharmacokinetic study of taxol. Cancer Res., 1987, 47(9), 2486-2493.
[PMID: 2882837]
[21]
Weiss, R.B.; Donehower, R.C.; Wiernik, P.H.; Ohnuma, T.; Gralla, R.J.; Trump, D.L.; Baker, J.R., Jr; Van Echo, D.A.; Von Hoff, D.D.; Leyland-Jones, B. Hypersensitivity reactions from taxol. J. Clin. Oncol., 1990, 8(7), 1263-1268.
[http://dx.doi.org/10.1200/JCO.1990.8.7.1263] [PMID: 1972736]
[22]
Gradishar, W.J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O’Shaughnessy, J. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol., 2005, 23(31), 7794-7803.
[http://dx.doi.org/10.1200/JCO.2005.04.937] [PMID: 16172456]
[23]
Hennenfent, K.L.; Govindan, R. Novel formulations of taxanes: a review. Old wine in a new bottle? Ann. Oncol., 2006, 17(5), 735-749.
[http://dx.doi.org/10.1093/annonc/mdj100] [PMID: 16364960]
[24]
Feng, T.; Wei, Y.; Lee, R.J.; Zhao, L. Liposomal curcumin and its application in cancer. Int. J. Nanomedicine, 2017, 12, 6027-6044.
[http://dx.doi.org/10.2147/IJN.S132434] [PMID: 28860764]
[25]
Schiborr, C.; Eckert, G.P.; Rimbach, G.; Frank, J. A validated method for the quantification of curcumin in plasma and brain tissue by fast narrow-bore high-performance liquid chromatography with fluorescence detection. Anal. Bioanal. Chem., 2010, 397(5), 1917-1925.
[http://dx.doi.org/10.1007/s00216-010-3719-3] [PMID: 20419505]
[26]
Pan, M.H.; Huang, T.M.; Lin, J.K. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab. Dispos., 1999, 27(4), 486-494.
[PMID: 10101144]
[27]
Ireson, C.; Orr, S.; Jones, D.J.; Verschoyle, R.; Lim, C.K.; Luo, J.L.; Howells, L.; Plummer, S.; Jukes, R.; Williams, M.; Steward, W.P.; Gescher, A. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res., 2001, 61(3), 1058-1064.
[PMID: 11221833]
[28]
Narayanan, N.K.; Nargi, D.; Randolph, C.; Narayanan, B.A. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int. J. Cancer, 2009, 125(1), 1-8.
[http://dx.doi.org/10.1002/ijc.24336] [PMID: 19326431]
[29]
Storka, A.; Vcelar, B.; Klickovic, U.; Gouya, G.; Weisshaar, S.; Aschauer, S.; Bolger, G.; Helson, L.; Wolzt, M. Safety, tolerability and pharmacokinetics of liposomal curcumin in healthy humans. Int. J. Clin. Pharmacol. Ther., 2015, 53(1), 54-65.
[http://dx.doi.org/10.5414/CP202076] [PMID: 25500488]
[30]
Safra, T.; Muggia, F.; Jeffers, S.; Tsao-Wei, D.D.; Groshen, S.; Lyass, O.; Henderson, R.; Berry, G.; Gabizon, A. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann. Oncol., 2000, 11(8), 1029-1033.
[http://dx.doi.org/10.1023/A:1008365716693] [PMID: 11038041]
[31]
O’Brien, M.E.; Wigler, N.; Inbar, M.; Rosso, R.; Grischke, E.; Santoro, A.; Catane, R.; Kieback, D.G.; Tomczak, P.; Ackland, S.P.; Orlandi, F.; Mellars, L.; Alland, L.; Tendler, C. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol., 2004, 15(3), 440-449.
[http://dx.doi.org/10.1093/annonc/mdh097] [PMID: 14998846]
[32]
Gabizon, A.A.; Barenholz, Y.; Bialer, M. Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs. Pharm. Res., 1993, 10(5), 703-708.
[http://dx.doi.org/10.1023/A:1018907715905] [PMID: 8321835]
[33]
Lyass, O.; Uziely, B.; Ben-Yosef, R.; Tzemach, D.; Heshing, N.I.; Lotem, M.; Brufman, G.; Gabizon, A. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer, 2000, 89(5), 1037-1047.
[http://dx.doi.org/10.1002/1097-0142(20000901)89:5<1037:AID-CNCR13>3.0.CO;2-Z] [PMID: 10964334]
[34]
Shafei, A.; El-Bakly, W.; Sobhy, A.; Wagdy, O.; Reda, A.; Aboelenin, O.; Marzouk, A.; El Habak, K.; Mostafa, R.; Ali, M.A.; Ellithy, M. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed. Pharmacother., 2017, 95, 1209-1218.
[http://dx.doi.org/10.1016/j.biopha.2017.09.059] [PMID: 28931213]
[35]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[36]
Ojha, T.; Pathak, V.; Shi, Y.; Hennink, W.E.; Moonen, C.T.W.; Storm, G.; Kiessling, F.; Lammers, T. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Adv. Drug Deliv. Rev., 2017, 119, 44-60.
[http://dx.doi.org/10.1016/j.addr.2017.07.007] [PMID: 28697952]
[37]
Villaverde, G.; Baeza, A. Targeting strategies for improving the efficacy of nanomedicine in oncology. Beilstein J. Nanotechnol., 2019, 10, 168-181.
[http://dx.doi.org/10.3762/bjnano.10.16] [PMID: 30746311]
[38]
Mamot, C.; Ritschard, R.; Wicki, A.; Stehle, G.; Dieterle, T.; Bubendorf, L.; Hilker, C.; Deuster, S.; Herrmann, R.; Rochlitz, C. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol., 2012, 13(12), 1234-1241.
[http://dx.doi.org/10.1016/S1470-2045(12)70476-X] [PMID: 23153506]
[39]
Smith, B.R.; Cheng, Z.; De, A.; Rosenberg, J.; Gambhir, S.S. Dynamic visualization of RGD-quantum dot binding to tumor neovasculature and extravasation in multiple living mouse models using intravital microscopy. Small, 2010, 6(20), 2222-2229.
[http://dx.doi.org/10.1002/smll.201001022] [PMID: 20862677]
[40]
Mizejewski, G.J. Role of integrins in cancer: survey of expression patterns. Proc. Soc. Exp. Biol. Med., 1999, 222(2), 124-138.
[http://dx.doi.org/10.1046/j.1525-1373.1999.d01-122.x] [PMID: 10564536]
[41]
Myhren, L.; Nilssen, I.M.; Nicolas, V.; Døskeland, S.O.; Barratt, G.; Herfindal, L. Efficacy of multi-functional liposomes containing daunorubicin and emetine for treatment of acute myeloid leukaemia. Eur. J. Pharm. Biopharm., 2014, 88(1), 186-193.
[http://dx.doi.org/10.1016/j.ejpb.2014.04.002] [PMID: 24747809]
[42]
Zhao, X.; Li, H.; Lee, R.J. Targeted drug delivery via folate receptors. Expert Opin. Drug Deliv., 2008, 5(3), 309-319.
[http://dx.doi.org/10.1517/17425247.5.3.309] [PMID: 18318652]
[43]
Sapra, P.; Shor, B. Monoclonal antibody-based therapies in cancer: advances and challenges. Pharmacol. Ther., 2013, 138(3), 452-469.
[http://dx.doi.org/10.1016/j.pharmthera.2013.03.004] [PMID: 23507041]
[44]
Tsuchikama, K.; An, Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell, 2018, 9(1), 33-46.
[http://dx.doi.org/10.1007/s13238-016-0323-0] [PMID: 27743348]
[45]
Koshkaryev, A.; Sawant, R.; Deshpande, M.; Torchilin, V. Immunoconjugates and long circulating systems: origins, current state of the art and future directions. Adv. Drug Deliv. Rev., 2013, 65(1), 24-35.
[http://dx.doi.org/10.1016/j.addr.2012.08.009] [PMID: 22964425]
[46]
Sawant, R.R.; Torchilin, V.P. Challenges in development of targeted liposomal therapeutics. AAPS J., 2012, 14(2), 303-315.
[http://dx.doi.org/10.1208/s12248-012-9330-0] [PMID: 22415612]
[47]
Cuesta-Mateos, C.; Alcaraz-Serna, A.; Somovilla-Crespo, B.; Muñoz-Calleja, C. Monoclonal antibody therapies for hematological malignancies: not just lineage-specific targets. Front. Immunol., 2018, 8, 1936.
[http://dx.doi.org/10.3389/fimmu.2017.01936] [PMID: 29387053]
[48]
Schürch, C.M. Therapeutic antibodies for myeloid neoplasms-current developments and future directions. Front. Oncol., 2018, 8, 152.
[http://dx.doi.org/10.3389/fonc.2018.00152] [PMID: 29868474]
[49]
Cheever, M.A.; Allison, J.P.; Ferris, A.S.; Finn, O.J.; Hastings, B.M.; Hecht, T.T.; Mellman, I.; Prindiville, S.A.; Viner, J.L.; Weiner, L.M.; Matrisian, L.M. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin. Cancer Res., 2009, 15(17), 5323-5337.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0737] [PMID: 19723653]
[50]
Anguille, S.; Van Tendeloo, V.F.; Berneman, Z.N. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia, 2012, 26(10), 2186-2196.
[http://dx.doi.org/10.1038/leu.2012.145] [PMID: 22652755]
[51]
Scholl, S.; Salzmann, S.; Kaufmann, A.M.; Höffken, K. Flt3-ITD mutations can generate leukaemia specific neoepitopes: potential role for immunotherapeutic approaches. Leuk. Lymphoma, 2006, 47(2), 307-312.
[http://dx.doi.org/10.1080/10428190500301306] [PMID: 16321862]
[52]
Snauwaert, S.; Vanhee, S.; Goetgeluk, G.; Verstichel, G.; Van Caeneghem, Y.; Velghe, I.; Philippé, J.; Berneman, Z.N.; Plum, J.; Taghon, T.; Leclercq, G.; Thielemans, K.; Kerre, T.; Vandekerckhove, B. RHAMM/HMMR (CD168) is not an ideal target antigen for immunotherapy of acute myeloid leukemia. Haematologica, 2012, 97(10), 1539-1547.
[http://dx.doi.org/10.3324/haematol.2012.065581] [PMID: 22532518]
[53]
Jin, L.; Hope, K.J.; Zhai, Q.; Smadja-Joffe, F.; Dick, J.E. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat. Med., 2006, 12(10), 1167-1174.
[http://dx.doi.org/10.1038/nm1483] [PMID: 16998484]
[54]
Buckley, S.A.; Walter, R.B. Antigen-specific immunotherapies for acute myeloid leukemia. Hematology (Am. Soc. Hematol. Educ. Program), 2015, 2015, 584-595.
[http://dx.doi.org/10.1182/asheducation-2015.1.584] [PMID: 26637776]
[55]
Gorczyca, W.; Sun, Z.Y.; Cronin, W.; Li, X.; Mau, S.; Tugulea, S. Immunophenotypic pattern of myeloid populations by flow cytometry analysis. Methods Cell Biol., 2011, 103, 221-266.
[http://dx.doi.org/10.1016/B978-0-12-385493-3.00010-3] [PMID: 21722806]
[56]
Wurz, G.T.; Kao, C.J.; DeGregorio, M.W. Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential. Ther. Adv. Med. Oncol., 2016, 8(1), 4.
[57]
Zaidi, S.K.; Frietze, S.E.; Gordon, J.A.; Heath, J.L.; Messier, T.; Hong, D.; Boyd, J.R.; Kang, M.; Imbalzano, A.N.; Lian, J.B.; Stein, J.L.; Stein, G.S. Bivalent Epigenetic Control of Oncofetal Gene Expression in Cancer. Mol. Cell. Biol., 2017, 37(23), 37.
[http://dx.doi.org/10.1128/MCB.00352-17] [PMID: 28923849]
[58]
Gordeeva, O. Cancer-testis antigens: Unique cancer stem cell biomarkers and targets for cancer therapy. Semin. Cancer Biol., 2018, 53, 75-89.
[http://dx.doi.org/10.1016/j.semcancer.2018.08.006] [PMID: 30171980]
[59]
Ding, K.; Wang, X.M.; Fu, R.; Ruan, E.B.; Liu, H.; Shao, Z.H. PRAME gene expression in acute leukemia and its clinical significance. Cancer Biol. Med., 2012, 9(1), 73-76.
[PMID: 23691459]
[60]
Goswami, M.; Hourigan, C.S. Novel antigen targets for immunotherapy of acute myeloid leukemia. Curr. Drug Targets, 2017, 18(3), 296-303.
[http://dx.doi.org/10.2174/1389450116666150223120005] [PMID: 25706110]
[61]
Kumar, B.; Garcia, M.; Weng, L.; Jung, X.; Murakami, J.L.; Hu, X.; McDonald, T.; Lin, A.; Kumar, A.R.; DiGiusto, D.L.; Stein, A.S.; Pullarkat, V.A.; Hui, S.K.; Carlesso, N.; Kuo, Y.H.; Bhatia, R.; Marcucci, G.; Chen, C.C. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia, 2018, 32(3), 575-587.
[http://dx.doi.org/10.1038/leu.2017.259] [PMID: 28816238]
[62]
Bakker, E.; Qattan, M.; Mutti, L.; Demonacos, C.; Krstic-Demonacos, M. The role of microenvironment and immunity in drug response in leukemia. Biochim. Biophys. Acta, 2016, 1863(3), 414-426.
[http://dx.doi.org/10.1016/j.bbamcr.2015.08.003] [PMID: 26255027]
[63]
Saito, Y.; Uchida, N.; Tanaka, S.; Suzuki, N.; Tomizawa-Murasawa, M.; Sone, A.; Najima, Y.; Takagi, S.; Aoki, Y.; Wake, A.; Taniguchi, S.; Shultz, L.D.; Ishikawa, F. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat. Biotechnol., 2010, 28(3), 275-280.
[http://dx.doi.org/10.1038/nbt.1607] [PMID: 20160717]
[64]
Konopleva, M.Y.; Jordan, C.T. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J. Clin. Oncol., 2011, 29(5), 591-599.
[http://dx.doi.org/10.1200/JCO.2010.31.0904] [PMID: 21220598]
[65]
Hui, L.; Chen, Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett., 2015, 368(1), 7-13.
[http://dx.doi.org/10.1016/j.canlet.2015.07.039] [PMID: 26276713]
[66]
Konopleva, M.; Tabe, Y.; Zeng, Z.; Andreeff, M. Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches. Drug Resist. Updat., 2009, 12(4-5), 103-113.
[http://dx.doi.org/10.1016/j.drup.2009.06.001] [PMID: 19632887]
[67]
Aggarwal, R.; Lu, J.; Pompili, V.J.; Das, H. Hematopoietic stem cells: transcriptional regulation, ex vivo expansion and clinical application. Curr. Mol. Med., 2012, 12(1), 34-49.
[http://dx.doi.org/10.2174/156652412798376125] [PMID: 22082480]
[68]
Pollyea, D.A.; Gutman, J.A.; Gore, L.; Smith, C.A.; Jordan, C.T. Targeting acute myeloid leukemia stem cells: a review and principles for the development of clinical trials. Haematologica, 2014, 99(8), 1277-1284.
[http://dx.doi.org/10.3324/haematol.2013.085209] [PMID: 25082785]
[69]
Colmone, A.; Sipkins, D.A. Beyond angiogenesis: the role of endothelium in the bone marrow vascular niche. Transl. Res., 2008, 151(1), 1-9.
[http://dx.doi.org/10.1016/j.trsl.2007.09.003] [PMID: 18061122]
[70]
Hanekamp, D.; Cloos, J.; Schuurhuis, G.J. Leukemic stem cells: identification and clinical application. Int. J. Hematol., 2017, 105(5), 549-557.
[http://dx.doi.org/10.1007/s12185-017-2221-5] [PMID: 28357569]
[71]
Wang, Y.; Liu, F.; Wang, Q.; Xiang, H.; Jin, H.; Li, H.; Mao, S. A novel immunoliposome mediated by CD123 antibody targeting to acute myeloid leukemia cells. Int. J. Pharm., 2017, 529(1-2), 531-542.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.003] [PMID: 28583331]
[72]
Wu, H.; Wang, M.; Dai, B.; Zhang, Y.; Yang, Y.; Li, Q.; Duan, M.; Zhang, X.; Wang, X.; Li, A.; Zhang, L. Novel CD123-aptamer-originated targeted drug trains for selectively delivering cytotoxic agent to tumor cells in acute myeloid leukemia theranostics. Drug Deliv., 2017, 24(1), 1216-1229.
[http://dx.doi.org/10.1080/10717544.2017.1367976] [PMID: 28845698]
[73]
Knapp, D.J.; Hammond, C.A.; Aghaeepour, N.; Miller, P.H.; Pellacani, D.; Beer, P.A.; Sachs, K.; Qiao, W.; Wang, W.; Humphries, R.K.; Sauvageau, G.; Zandstra, P.W.; Bendall, S.C.; Nolan, G.P.; Hansen, C.; Eaves, C.J. Distinct signaling programs control human hematopoietic stem cell survival and proliferation. Blood, 2017, 129(3), 307-318.
[http://dx.doi.org/10.1182/blood-2016-09-740654] [PMID: 27827829]
[74]
Favreau, A.J.; Vary, C.P.; Brooks, P.C.; Sathyanarayana, P. Cryptic collagen IV promotes cell migration and adhesion in myeloid leukemia. Cancer Med., 2014, 3(2), 265-272.
[http://dx.doi.org/10.1002/cam4.203] [PMID: 24519883]
[75]
Le, Y.; Fraineau, S.; Chandran, P.; Sabloff, M.; Brand, M.; Lavoie, J.R.; Gagne, R.; Rosu-Myles, M.; Yauk, C.L.; Richardson, R.B.; Allan, D.S. Adipogenic mesenchymal stromal cells from bone marrow and their hematopoietic supportive role: towards understanding the permissive marrow microenvironment in acute myeloid leukemia. Stem Cell Rev., 2016, 12(2), 235-244.
[http://dx.doi.org/10.1007/s12015-015-9639-z] [PMID: 26649729]
[76]
Reikvam, H.; Brenner, A.K.; Hagen, K.M.; Liseth, K.; Skrede, S.; Hatfield, K.J.; Bruserud, Ø. The cytokine-mediated crosstalk between primary human acute myeloid cells and mesenchymal stem cells alters the local cytokine network and the global gene expression profile of the mesenchymal cells. Stem Cell Res. (Amst.), 2015, 15(3), 530-541.
[http://dx.doi.org/10.1016/j.scr.2015.09.008] [PMID: 26468600]
[77]
Battula, V.L.; Chen, Y. Cabreira, Mda.G.; Ruvolo, V.; Wang, Z.; Ma, W.; Konoplev, S.; Shpall, E.; Lyons, K.; Strunk, D.; Bueso-Ramos, C.; Davis, R.E.; Konopleva, M.; Andreeff, M. Connective tissue growth factor regulates adipocyte differentiation of mesenchymal stromal cells and facilitates leukemia bone marrow engraftment. Blood, 2013, 122(3), 357-366.
[http://dx.doi.org/10.1182/blood-2012-06-437988] [PMID: 23741006]
[78]
Griffith, J.F.; Yeung, D.K.; Ma, H.T.; Leung, J.C.; Kwok, T.C.; Leung, P.C. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J. Magn. Reson. Imaging, 2012, 36(1), 225-230.
[http://dx.doi.org/10.1002/jmri.23619] [PMID: 22337076]
[79]
Korn, C.; Méndez-Ferrer, S. Myeloid malignancies and the microenvironment. Blood, 2017, 129(7), 811-822.
[http://dx.doi.org/10.1182/blood-2016-09-670224] [PMID: 28064238]
[80]
Yamamoto, H.; Takada, T.; Yamanashi, Y.; Ogura, M.; Masuo, Y.; Harada-Shiba, M.; Suzuki, H. VLDL/LDL acts as a drug carrier and regulates the transport and metabolism of drugs in the body. Sci. Rep., 2017, 7(1), 633.
[http://dx.doi.org/10.1038/s41598-017-00685-9] [PMID: 28377633]
[81]
Sobansky, M.R.; Hage, D.S. Analysis of drug interactions with lipoproteins by high-performance affinity chromatography. Adv. Med. Biol., 2012, 53, 199-216.
[PMID: 25392741]
[82]
Wasan, K.M.; Brocks, D.R.; Lee, S.D.; Sachs-Barrable, K.; Thornton, S.J. Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery. Nat. Rev. Drug Discov., 2008, 7(1), 84-99.
[http://dx.doi.org/10.1038/nrd2353] [PMID: 18079757]
[83]
Shi, G.; Li, J.; Yan, X.; Jin, K.; Li, W.; Liu, X.; Zhao, J.; Shang, W.; Zhang, R. Low-density lipoprotein-decorated and Adriamycin-loaded silica nanoparticles for tumor-targeted chemotherapy of colorectal cancer. Adv. Clin. Exp. Med., 2018.
[http://dx.doi.org/10.17219/acem/79561] [PMID: 30070081]
[84]
Ma, X.; Song, Q.; Gao, X. Reconstituted high-density lipoproteins: novel biomimetic nanocarriers for drug delivery. Acta Pharm. Sin. B, 2018, 8(1), 51-63.
[http://dx.doi.org/10.1016/j.apsb.2017.11.006] [PMID: 29872622]
[85]
Yan, M.; Jurasz, P. The role of platelets in the tumor microenvironment: From solid tumors to leukemia. Biochim. Biophys. Acta, 2016, 1863(3), 392-400.
[http://dx.doi.org/10.1016/j.bbamcr.2015.07.008] [PMID: 26193075]
[86]
Weidenaar, A.C.; ter Elst, A.; Koopmans-Klein, G.; Rosati, S.; den Dunnen, W.F.; Meeuwsen-de Boer, T.; Kamps, W.A.; Vellenga, E.; de Bont, E.S. High acute myeloid leukemia derived VEGFA levels are associated with a specific vascular morphology in the leukemic bone marrow. Cell Oncol. (Dordr.), 2011, 34(4), 289-296.
[http://dx.doi.org/10.1007/s13402-011-0017-9] [PMID: 21468688]
[87]
Barcellos-de-Souza, P.; Gori, V.; Bambi, F.; Chiarugi, P. Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochim. Biophys. Acta, 2013, 1836(2), 321-335.
[PMID: 24183942]
[88]
Trujillo, A.; McGee, C.; Cogle, C.R. Angiogenesis in acute myeloid leukemia and opportunities for novel therapies. J. Oncol., 2012, 2012128608
[http://dx.doi.org/10.1155/2012/128608] [PMID: 21904549]
[89]
Pizzo, R.J.; Azadniv, M.; Guo, N.; Acklin, J.; Lacagnina, K.; Coppage, M.; Liesveld, J.L. Phenotypic, genotypic, and functional characterization of normal and acute myeloid leukemia-derived marrow endothelial cells. Exp. Hematol., 2016, 44(5), 378-389.
[http://dx.doi.org/10.1016/j.exphem.2016.01.008] [PMID: 26851308]
[90]
Reikvam, H.; Hatfield, K.J.; Fredly, H.; Nepstad, I.; Mosevoll, K.A.; Bruserud, Ø. The angioregulatory cytokine network in human acute myeloid leukemia - from leukemogenesis via remission induction to stem cell transplantation. Eur. Cytokine Netw., 2012, 23(4), 140-153.
[PMID: 23328436]
[91]
Cogle, C.R.; Goldman, D.C.; Madlambayan, G.J.; Leon, R.P.; Masri, A.A.; Clark, H.A.; Asbaghi, S.A.; Tyner, J.W.; Dunlap, J.; Fan, G.; Kovacsovics, T.; Liu, Q.; Meacham, A.; Hamlin, K.L.; Hromas, R.A.; Scott, E.W.; Fleming, W.H. Functional integration of acute myeloid leukemia into the vascular niche. Leukemia, 2014, 28(10), 1978-1987.
[http://dx.doi.org/10.1038/leu.2014.109] [PMID: 24637335]
[92]
Cogle, C.R.; Bosse, R.C.; Brewer, T.; Migdady, Y.; Shirzad, R.; Kampen, K.R.; Saki, N. Acute myeloid leukemia in the vascular niche. Cancer Lett., 2016, 380(2), 552-560.
[http://dx.doi.org/10.1016/j.canlet.2015.05.007] [PMID: 25963886]
[93]
Setyawati, M.I.; Tay, C.Y.; Docter, D.; Stauber, R.H.; Leong, D.T. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem. Soc. Rev., 2015, 44(22), 8174-8199.
[http://dx.doi.org/10.1039/C5CS00499C] [PMID: 26239875]
[94]
Shibata, S. Ultrastructure of capillary walls in human brain tumors. Acta Neuropathol., 1989, 78(6), 561-571.
[http://dx.doi.org/10.1007/BF00691283] [PMID: 2554636]
[95]
Schlageter, K.E.; Molnar, P.; Lapin, G.D.; Groothuis, D.R. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc. Res., 1999, 58(3), 312-328.
[http://dx.doi.org/10.1006/mvre.1999.2188] [PMID: 10527772]
[96]
Feng, D.; Nagy, J.A.; Dvorak, A.M.; Dvorak, H.F. Different pathways of macromolecule extravasation from hyperpermeable tumor vessels. Microvasc. Res., 2000, 59(1), 24-37.
[http://dx.doi.org/10.1006/mvre.1999.2207] [PMID: 10625568]
[97]
Awasthi, V.D.; Garcia, D.; Goins, B.A.; Phillips, W.T. Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits. Int. J. Pharm., 2003, 253(1-2), 121-132.
[http://dx.doi.org/10.1016/S0378-5173(02)00703-2] [PMID: 12593943]
[98]
Kumar, B.; Chen, C.C. Acute myeloid leukemia remodels endosteal vascular niche into a leukemic niche. Stem Cell Investig., 2018, 5, 34.
[http://dx.doi.org/10.21037/sci.2018.09.05] [PMID: 30498745]
[99]
Duarte, D.; Hawkins, E.D.; Akinduro, O.; Ang, H.; De Filippo, K.; Kong, I.Y.; Haltalli, M.; Ruivo, N.; Straszkowski, L.; Vervoort, S.J.; McLean, C.; Weber, T.S.; Khorshed, R.; Pirillo, C.; Wei, A.; Ramasamy, S.K.; Kusumbe, A.P.; Duffy, K.; Adams, R.H.; Purton, L.E.; Carlin, L.M.; Lo Celso, C. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell, 2018, 22, 64-77.
[100]
Zhang, J.; Ye, J.; Ma, D.; Liu, N.; Wu, H.; Yu, S.; Sun, X.; Tse, W.; Ji, C. Cross-talk between leukemic and endothelial cells promotes angiogenesis by VEGF activation of the Notch/Dll4 pathway. Carcinogenesis, 2013, 34(3), 667-677.
[http://dx.doi.org/10.1093/carcin/bgs386] [PMID: 23239744]
[101]
Medinger, M.; Passweg, J. Role of tumour angiogenesis in haematological malignancies. Swiss Med. Wkly., 2014, 144w14050
[http://dx.doi.org/10.4414/smw.2014.14050] [PMID: 25375891]
[102]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[http://dx.doi.org/10.1016/j.addr.2013.09.019] [PMID: 24120656]
[103]
Alphandéry, E.; Grand-Dewyse, P.; Lefèvre, R.; Mandawala, C.; Durand-Dubief, M. Cancer therapy using nanoformulated substances: scientific, regulatory and financial aspects. Expert Rev. Anticancer Ther., 2015, 15(10), 1233-1255.
[http://dx.doi.org/10.1586/14737140.2015.1086647] [PMID: 26402250]
[104]
Eloy, J.O.; Petrilli, R.; Trevizan, L.N.F.; Chorilli, M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf. B Biointerfaces, 2017, 159, 454-467.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.085] [PMID: 28837895]
[105]
Allen, T.M.; Sapra, P.; Moase, E.; Moreira, J.; Iden, D. Adventures in targeting. J. Liposome Res., 2002, 12(1-2), 5-12.
[http://dx.doi.org/10.1081/LPR-120004771] [PMID: 12604033]
[106]
Maruyama, K.; Takahashi, N.; Tagawa, T.; Nagaike, K.; Iwatsuru, M. Immunoliposomes bearing polyethyleneglycol-coupled Fab’ fragment show prolonged circulation time and high extravasation into targeted solid tumors in vivo. FEBS Lett., 1997, 413(1), 177-180.
[http://dx.doi.org/10.1016/S0014-5793(97)00905-8] [PMID: 9287139]
[107]
Sugano, M.; Egilmez, N.K.; Yokota, S.J.; Chen, F.A.; Harding, J.; Huang, S.K.; Bankert, R.B. Antibody targeting of doxorubicin-loaded liposomes suppresses the growth and metastatic spread of established human lung tumor xenografts in severe combined immunodeficient mice. Cancer Res., 2000, 60(24), 6942-6949.
[PMID: 11156394]
[108]
Brignole, C.; Marimpietri, D.; Gambini, C.; Allen, T.M.; Ponzoni, M.; Pastorino, F. Development of Fab’ fragments of anti-GD(2) immunoliposomes entrapping doxorubicin for experimental therapy of human neuroblastoma. Cancer Lett., 2003, 197(1-2), 199-204.
[http://dx.doi.org/10.1016/S0304-3835(03)00099-5] [PMID: 12880982]
[109]
Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal drug delivery systems and anticancer drugs. Molecules, 2018, 23(4), 23.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[110]
Zeng, Z.; Konopleva, M.; Andreeff, M. Single-cell mass cytometry of acute myeloid leukemia and leukemia stem/progenitor cells. Methods Mol. Biol., 2017, 1633, 75-86.
[http://dx.doi.org/10.1007/978-1-4939-7142-8_5] [PMID: 28735481]
[111]
Ferrell, P.B., Jr; Diggins, K.E.; Polikowsky, H.G.; Mohan, S.R.; Seegmiller, A.C.; Irish, J.M. High-dimensional analysis of acute myeloid leukemia reveals phenotypic changes in persistent cells during induction therapy. PLoS One, 2016, 11(4)e0153207
[http://dx.doi.org/10.1371/journal.pone.0153207] [PMID: 27074138]
[112]
Hamburg, M.A.; Collins, F.S. The path to personalized medicine. N. Engl. J. Med., 2010, 363(4), 301-304.
[http://dx.doi.org/10.1056/NEJMp1006304] [PMID: 20551152]
[113]
Schellekens, H.; Aldosari, M.; Talsma, H.; Mastrobattista, E. Erratum: Making individualized drugs a reality. Nat. Biotechnol., 2017, 35(8), 797.
[http://dx.doi.org/10.1038/nbt0817-797c] [PMID: 28787402]
[114]
Schellekens, H.; Aldosari, M.; Talsma, H.; Mastrobattista, E. Making individualized drugs a reality. Nat. Biotechnol., 2017, 35(6), 507-513.
[http://dx.doi.org/10.1038/nbt.3888] [PMID: 28581491]
[115]
Rowe, J.M. Important milestones in acute leukemia in 2013. Best Pract. Res. Clin. Haematol., 2013, 26(3), 241-244.
[http://dx.doi.org/10.1016/j.beha.2013.10.002] [PMID: 24309524]
[116]
Liu, F.; Wang, C.; Gao, Y.; Li, X.; Tian, F.; Zhang, Y.; Fu, M.; Li, P.; Wang, Y.; Wang, F. Current transport systems and clinical applications for small interfering RNA (siRNA) drugs. Mol. Diagn. Ther., 2018, 22(5), 551-569.
[http://dx.doi.org/10.1007/s40291-018-0338-8] [PMID: 29926308]
[117]
Vhora, I.; Patil, S.; Amrutiya, J.; Misra, A. Liposomes and Lipid Envelope-Type Systems for Systemic siRNA Delivery. Curr. Pharm. Des., 2015, 21(31), 4541-4555.
[http://dx.doi.org/10.2174/138161282131151013185850] [PMID: 26486141]

© 2024 Bentham Science Publishers | Privacy Policy