[3]
Katsuno, K.; Burrows, J.N.; Duncan, K.; Hooft van Huijsduijnen, R.; Kaneko, T.; Kita, K.; Mowbray, C.E.; Schmatz, D.; Warner, P.; Slingsby, B.T. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov., 2015, 14(11), 751-758. [http://dx.doi.org/10.1038/nrd4683]. [PMID: 26435527].
[4]
Avandano, C. A brief updated report on the battle against Malaria. Anales de la Real Academia Nacional de Farmacia, 2015, 81, 145-157.
[5]
Kindt, T.; Morse, S.; Gotschlich, E.; Lyons, K. Structure-based strategies for drug design and discovery. Nature, 1991, 352, 581.
[6]
Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., 2015, 38(9), 1686-1701. [http://dx.doi.org/10.1007/s12272-015-0640-5]. [PMID: 26208641].
[7]
Benfenati, E.; Gini, G.; Hoffmann, S.; Luttik, R. Comparing in vivo, in vitro and in silico methods and integrated strategies for chemical assessment: problems and prospects. Altern. Lab. Anim., 2010, 38(2), 153-166. [http://dx.doi.org/10.1177/026119291003800201]. [PMID: 20507186].
[8]
Golbamaki, A.; Benfenati, E. In Silico Methods for Carcinogenicity Assessment. Methods Mol. Biol., 2016, 1425, 107-119. [http://dx.doi.org/10.1007/978-1-4939-3609-0_6].
[9]
Mombelli, E.; Raitano, G.; Benfenati, E. In Silico Prediction of Chemically Induced Mutagenicity: How to Use QSAR Models and Interpret Their Results. Methods Mol. Biol., 2016, 87-105.
[10]
Ojha, P.K.; Roy, K. Exploring QSAR, pharmacophore mapping and docking studies and virtual library generation for cycloguanil derivatives as PfDHFR-TS inhibitors. Med. Chem., 2011, 7(3), 173-199. [http://dx.doi.org/10.2174/157340611795564295]. [PMID: 21486210].
[11]
Prasanth Kumar, S.; Jasrai, Y.T.; Pandya, H.A.; Rawal, R.M. Pharmacophore-similarity-based QSAR (PS-QSAR) for group-specific biological activity predictions. J. Biomol. Struct. Dyn., 2015, 33(1), 56-69. [http://dx.doi.org/10.1080/07391102.2013.849618]. [PMID: 24266725].
[12]
Saghaie, L.; Sakhi, H.; Sabzyan, H.; Shahlaei, M.; Shamshirian, D. Stepwise MLR and PCR QSAR study of the pharmaceutical activities of antimalarial 3-hydroxypyridinone agents using B3LYP/6-311++ G** descriptors. Med. Chem. Res., 2013, 22(4), 1679-1688. [http://dx.doi.org/10.1007/s00044-012-0152-5].
[13]
Sahu, N.K.; Sharma, M.; Mourya, V.; Kohli, D.V. Qsar study of some substituted 4-quinolinyl and 9-acridinyl hydrazones as antimalarial agents. Acta Pol. Pharm., 2012, 69(6), 1153-1165. [PMID: 23285677].
[14]
Verma, S.S.; Prabhakar, Y. Topological and physicochemical characteristics of 1, 2, 3, 4-tetrahydroacridin-9 (10H)-ones and their antimalarial profiles: A composite insight to the structure-activity relationsect. Curr. Computeraided Drug Des., 2013, 9(3), 317-335. [http://dx.doi.org/10.2174/15734099113099990017].
[15]
Qidwai, T. QSAR modeling, docking and ADMET studies for exploration of potential anti-malarial compounds against Plasmodium falciparum. In Silico Pharmacol., 2016, 5(1), 6. [http://dx.doi.org/10.1007/s40203-017-0026-0]. [PMID: 28726171].
[16]
Ojha, P.K.; Roy, K. The current status of antimalarial drug research with special reference to application of QSAR models. Comb. Chem. High Throughput Screen., 2015, 18(2), 91-128. [http://dx.doi.org/10.2174/1386207318666141229125527]. [PMID: 25543681].
[17]
Gupta, M.K. CP-MLR/PLS-directed QSAR studies on the antimalarial activity and cytotoxicity of substituted 4-aminoquinolines. Med. Chem. Res., 2013, 22(7), 3497-3509. [http://dx.doi.org/10.1007/s00044-012-0344-z].
[18]
Iman, M.; Davood, A.; Khamesipour, A. Computational study of quinolone derivatives to improve their therapeutic index as anti-malaria agents: QSAR and QSTR. Iranian journal of pharmaceutical research. Iran. J. Pharm. Res., 2015, 14(3), 775-784. [PMID: 26330866].
[19]
Qidwai, T.; Yadav, D.K.; Khan, F.; Dhawan, S.; Bhakuni, R.S. QSAR, docking and ADMET studies of artemisinin derivatives for antimalarial activity targeting plasmepsin II, a hemoglobin-degrading enzyme from P. falciparum. Curr. Pharm. Des., 2012, 18(37), 6133-6154. [http://dx.doi.org/10.2174/138161212803582397]. [PMID: 22670592].
[20]
Abbasitabar, F.; Zare-Shahabadi, V. Development predictive QSAR models for artemisinin analogues by various feature selection methods: a comparative study. SAR QSAR Environ. Res., 2012, 23(1-2), 1-15. [http://dx.doi.org/10.1080/1062936X.2011.623316]. [PMID: 22040327].
[21]
Sharma, M.C.; Sharma, S.; Sharma, P.; Kumar, A. Pharmacophore and QSAR modeling of some structurally diverse azaaurones derivatives as anti-malarial activity. Med. Chem. Res., 2014, 23(1), 181-198. [http://dx.doi.org/10.1007/s00044-013-0609-1].
[22]
Adhikari, N.; Halder, A.K.; Mondal, C.; Jha, T. Ligand based validated comparative chemometric modeling and pharmacophore mapping of aurone derivatives as antimalarial agents. Curr Comput Aided Drug Des, 2013, 9(3), 417-432. [http://dx.doi.org/10.2174/15734099113099990014]. [PMID: 24010937].
[23]
Batagin-Neto, A.; Lavarda, F.C. The correlation between electronic structure and antimalarial activity of alkoxylated and hydroxylated chalcones. Med. Chem. Res., 2014, 23(2), 580-586. [http://dx.doi.org/10.1007/s00044-013-0667-4].
[24]
Sahu, N.K.; Bari, S.B.; Kohli, D. Molecular modeling studies of some substituted chalcone derivatives as cysteine protease inhibitors. Med. Chem. Res., 2012, 21(11), 3835-3847. [http://dx.doi.org/10.1007/s00044-011-9900-1].
[25]
Ojha, P.K.; Roy, K. First report on exploring structural requirements of 1,2,3,4- tetrahydroacridin-9(10H)-one analogs as antimalarials using multiple QSAR approaches: descriptor-based QSAR, CoMFA-CoMSIA 3DQSAR, HQSAR and G-QSAR approaches. Comb. Chem. High Throughput Screen., 2013, 16(1), 7-21. [http://dx.doi.org/10.2174/1386207311316010003]. [PMID: 23127758].
[26]
Polikar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag., 2006, 6(3), 21-45. [http://dx.doi.org/10.1109/MCAS.2006.1688199].
[27]
Zhang, L.; Fourches, D.; Sedykh, A.; Zhu, H.; Golbraikh, A.; Ekins, S.; Clark, J.; Connelly, M.C.; Sigal, M.; Hodges, D.; Guiguemde, A.; Guy, R.K.; Tropsha, A. Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. J. Chem. Inf. Model., 2013, 53(2), 475-492. [http://dx.doi.org/10.1021/ci300421n]. [PMID: 23252936].
[28]
Pérez-Castillo, Y.; Cruz-Monteagudo, M.; Lazar, C.; Taminau, J.; Froeyen, M.; Cabrera-Pérez, M.Á.; Nowé, A. Toward the computer-aided discovery of FabH inhibitors. Do predictive QSAR models ensure high quality virtual screening performance? Mol. Divers., 2014, 18(3), 637-654. [http://dx.doi.org/10.1007/s11030-014-9513-y]. [PMID: 24671521].
[29]
Bonet, I.; Franco-Montero, P.; Rivero, V.; Teijeira, M.; Borges, F.; Uriarte, E.; Morales Helguera, A. Classifier ensemble based on feature selection and diversity measures for predicting the affinity of A(2B) adenosine receptor antagonists. J. Chem. Inf. Model., 2013, 53(12), 3140-3155. [http://dx.doi.org/10.1021/ci300516w]. [PMID: 24289249].
[30]
Cheng, F.; Yu, Y.; Shen, J.; Yang, L.; Li, W.; Liu, G.; Lee, P.W.; Tang, Y. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. J. Chem. Inf. Model., 2011, 51(5), 996-1011. [http://dx.doi.org/10.1021/ci200028n]. [PMID: 21491913].
[31]
Cortes-Ciriano, I.; Murrell, D.S.; van Westen, G.J.; Bender, A.; Malliavin, T.E. Prediction of the potency of mammalian cyclooxygenase inhibitors with ensemble proteochemometric modeling. J. Cheminform., 2015, 7(1), 1. [http://dx.doi.org/10.1186/s13321-014-0049-z]. [PMID: 25705261].
[32]
Marrero-Ponce, Y.; Siverio-Mota, D.; Gálvez-Llompart, M.; Recio, M.C.; Giner, R.M.; García-Domènech, R.; Torrens, F.; Arán, V.J.; Cordero-Maldonado, M.L.; Esguera, C.V.; de Witte, P.A.; Crawford, A.D. Discovery of novel anti-inflammatory drug-like compounds by aligning in silico and in vivo screening: the nitroindazolinone chemotype. Eur. J. Med. Chem., 2011, 46(12), 5736-5753. [http://dx.doi.org/10.1016/j.ejmech.2011.07.053]. [PMID: 22000935].
[33]
Perez-Castillo, Y.; Helguera, A.M.; Cordeiro, M.N.D.S.; Tejera, E. Paz-Y-Miño, C.; Sánchez-Rodríguez, A.; Borges, F.; Cruz-Monteagudo, M. Fusing docking scoring functions improves the virtual screening performance for discovering Parkinsons disease dual target ligands. Curr. Neuropharmacol., 2017, 15(8), 1107-1116. [http://dx.doi.org/10.2174/1570159X15666170109143757]. [PMID: 28067172].
[34]
Helguera, A.; Perez-Castillo, Y. Ligand-based virtual screening using tailored ensembles: A prioritization tool for dual a2a adenosine receptor antagonists/monoamine oxidase B inhibitors. Curr. Pharm. Des., 2016, 22(21), 3082-3096.
[35]
Plouffe, D.; Brinker, A.; McNamara, C.; Henson, K.; Kato, N.; Kuhen, K.; Nagle, A.; Adrián, F.; Matzen, J.T.; Anderson, P.; Nam, T.G.; Gray, N.S.; Chatterjee, A.; Janes, J.; Yan, S.F.; Trager, R.; Caldwell, J.S.; Schultz, P.G.; Zhou, Y.; Winzeler, E.A. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9059-9064. [http://dx.doi.org/10.1073/pnas.0802982105]. [PMID: 18579783].
[37]
Trust, B.V. On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research Fourches, Denis; Muratov, Eugene; Tropsha. J. Chem. Inf. Model., 2010, 50(7), 1189-1204. [http://dx.doi.org/10.1021/ci100176x]. [PMID: 20572635].
[38]
Cruz-Monteagudo, M.; Medina-Franco, J.L.; Perera-Sardiña, Y.; Borges, F.; Tejera, E.; Paz-Y-Miño, C.; Pérez-Castillo, Y.; Sánchez-Rodríguez, A.; Contreras-Posada, Z.; Cordeiro, M.N. Probing the hypothesis of SAR continuity restoration by the removal of activity cliffs generators in QSAR. Curr. Pharm. Des., 2016, 22(33), 5043-5056. [http://dx.doi.org/10.2174/1381612822666160509124337]. [PMID: 27157417].
[39]
Golbraikh, A.; Shen, M.; Xiao, Z.; Xiao, Y-D.; Lee, K-H.; Tropsha, A. Rational selection of training and test sets for the development of validated QSAR models. J. Comput. Aided Mol. Des., 2003, 17(2-4), 241-253. [http://dx.doi.org/10.1023/A:1025386326946]. [PMID: 13677490].
[40]
MathWorks I. MATLAB : the language of technical computing : computation, visualization, programming : installation guide for UNIX version 5: Natwick : Math Works Inc., 1996.
[41]
Varnek, A.; Fourches, D.; Hoonakker, F.; Solov’ev, V.P. Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures. J. Comput. Aided Mol. Des., 2005, 19(9-10), 693-703. [http://dx.doi.org/10.1007/s10822-005-9008-0]. [PMID: 16292611].
[42]
Varnek, A.; Fourches, D.; Horvath, D.; Klimchuk, O.; Gaudin, C.; Vayer, P. ISIDA-Platform for virtual screening based on fragment and pharmacophoric descriptors. Curr. Computeraided Drug Des., 2008, 4(3), 191. [http://dx.doi.org/10.2174/157340908785747465].
[43]
Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27(8), 1226-1238. [http://dx.doi.org/10.1109/TPAMI.2005.159]. [PMID: 16119262].
[44]
Kuncheva, L.I. Combining pattern classifiers: methods and algorithms; John Wiley & Sons, 2004. [http://dx.doi.org/10.1002/0471660264]
[45]
Pérez-Castillo, Y.; Lazar, C.; Taminau, J.; Froeyen, M.; Cabrera-Pérez, M.Á.; Nowé, A.G.A. (M)E-QSAR: a novel, fully automatic genetic-algorithm-(meta)-ensembles approach for binary classification in ligand-based drug design. J. Chem. Inf. Model., 2012, 52(9), 2366-2386. [http://dx.doi.org/10.1021/ci300146h]. [PMID: 22856471].
[46]
Suykens, J.A.; Van Gestel, T.; De Brabanter, J. Least squares support vector machines; World Scientific, 2002. [http://dx.doi.org/10.1142/5089]
[47]
Akaike, H. Information theory and an extension of the maximum likelihood principle. In: 2nd International Symposium on Information Theory Pebrov, B.; Csaki, F. Ed.; Akadémiai Kiadò: Budapest, Hungary; , 1973, pp. 267-281.
[48]
Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem., 2012, 55(14), 6582-6594. [http://dx.doi.org/10.1021/jm300687e]. [PMID: 22716043].
[49]
Perez-Castillo, Y.; Sánchez-Rodríguez, A.; Tejera, E.; Cruz-Monteagudo, M.; Borges, F.; Cordeiro, M.N.D.S.; Le-Thi-Thu, H.; Pham-The, H. A desirability-based multi objective approach for the virtual screening discovery of broad-spectrum anti-gastric cancer agents. PLoS One, 2018, 13(2)e0192176 [http://dx.doi.org/10.1371/journal.pone.0192176]. [PMID: 29420638].
[50]
Truchon, J.F.; Bayly, C.I. Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J. Chem. Inf. Model., 2007, 47(2), 488-508. [http://dx.doi.org/10.1021/ci600426e]. [PMID: 17288412].
[51]
Cruz-Monteagudo, M.; Medina-Franco, J.L.; Pérez-Castillo, Y.; Nicolotti, O.; Cordeiro, M.N.D.; Borges, F. Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde? Drug Discov. Today, 2014, 19(8), 1069-1080. [http://dx.doi.org/10.1016/j.drudis.2014.02.003]. [PMID: 24560935].