[1]
Vignais PM, Colbeau A. Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 2004; 6(2): 159-88. [PMID: 15119826].
[2]
Schut GJ, Zadvornyy O, Wu CH, Peters JW, Boyd ES, Adams MW. The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor. Biochim Biophys Acta 2016; 1857(7): 958-70. [http://dx.doi.org/10.1016/j.bbabio.2016.01.010]. [PMID: 26808919].
[3]
Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015; 5: 12. [http://dx.doi.org/10.1186/s13618-015-0035-1]. [PMID: 26483953].
[4]
Shirahata S, Kabayama S, Nakano M, et al. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem Biophys Res Commun 1997; 234(1): 269-74. [http://dx.doi.org/10.1006/bbrc.1997.6622]. [PMID: 9169001].
[5]
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007; 13(6): 688-94. [http://dx.doi.org/10.1038/nm1577]. [PMID: 17486089].
[6]
Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol Ther 2014; 144(1): 1-11. [http://dx.doi.org/10.1016/j.pharmthera.2014.04.006]. [PMID: 24769081].
[7]
Yoritaka A, Ohtsuka C, Maeda T, et al. Randomized, double-blind, multicenter trial of hydrogen water for Parkinson’s disease. Mov Disord 2018; 33(9): 1505-7. [http://dx.doi.org/10.1002/mds.27472]. [PMID: 30207619].
[8]
Yoritaka A, Takanashi M, Hirayama M, Nakahara T, Ohta S, Hattori N. Pilot study of H2 therapy in Parkinson’s disease: a randomized double-blind placebo-controlled trial. Mov Disord 2013; 28(6): 836-9. [http://dx.doi.org/10.1002/mds.25375]. [PMID: 23400965].
[9]
Sakai T, Sato B, Hara K, et al. Consumption of water containing over 3.5 mg of dissolved hydrogen could improve vascular endothelial function. Vasc Health Risk Manag 2014; 10: 591-7. [PMID: 25378931].
[10]
Ishibashi T. Molecular hydrogen: new antioxidant and anti-inflammatory therapy for rheumatoid arthritis and related diseases. Curr Pharm Des 2013; 19(35): 6375-81. [http://dx.doi.org/10.2174/13816128113199990507]. [PMID: 23859555].
[11]
Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (・OH/・OH-) in aqueous solution. J Phys Chem Ref Data 1988; 17: 513-886. [http://dx.doi.org/10.1063/1.555805].
[12]
Filippin LI, Vercelino R, Marroni NP, Xavier RM. Redox signalling and the inflammatory response in rheumatoid arthritis. Clin Exp Immunol 2008; 152(3): 415-22. [http://dx.doi.org/10.1111/j.1365-2249.2008.03634.x]. [PMID: 18422737].
[13]
Jones KG, Cooper WJ, Mezykk SP. Bimolecular rate constant determination for the reaction of hydroxyl radicals with domoic and kainic acid in aqueous solution. Environ Sci Technol 2009; 43(17): 6764-8. [http://dx.doi.org/10.1021/es901128c]. [PMID: 19764247].
[14]
Kamimura N, Nishimaki K, Ohsawa I, Ohta S. Molecular hydrogen improves obesity and diabetes by inducing hepatic FGF21 and stimulating energy metabolism in db/db mice. Obesity (Silver Spring) 2011; 19(7): 1396-403. [http://dx.doi.org/10.1038/oby.2011.6]. [PMID: 21293445].
[15]
Ishibashi T, Sato B, Rikitake M, et al. Consumption of water containing a high concentration of molecular hydrogen reduces oxidative stress and disease activity in patients with rheumatoid arthritis: an open-label pilot study. Med Gas Res 2012; 2(1): 27. [http://dx.doi.org/10.1186/2045-9912-2-27]. [PMID: 23031079].
[16]
Feagin JE. The 6-kb element of Plasmodium falciparum encodes mitochondrial cytochrome genes. Mol Biochem Parasitol 1992; 52(1): 145-8. [http://dx.doi.org/10.1016/0166-6851(92)90046-M]. [PMID: 1320735].
[17]
Moser CC, Farid TA, Chobot SE, Dutton PL. Electron tunneling chains of mitochondria. Biochim Biophys Acta 2006; 1757(9-10): 1096-109. [http://dx.doi.org/10.1016/j.bbabio.2006.04.015]. [PMID: 16780790].
[18]
Murphy E, Steenbergen C. Preconditioning: the mitochondrial connection. Annu Rev Physiol 2007; 69: 51-67. [http://dx.doi.org/10.1146/annurev.physiol.69.031905.163645]. [PMID: 17007587].
[19]
Marreiros BC, Batista AP, Duarte AM, Pereira MM. A missing link between complex I and group 4 membrane-bound [NiFe] hydrogenases. Biochim Biophys Acta 2013; 1827(2): 198-209. [http://dx.doi.org/10.1016/j.bbabio.2012.09.012]. [PMID: 23000657].
[20]
Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J 1972; 128(3): 617-30. [http://dx.doi.org/10.1042/bj1280617]. [PMID: 4404507].
[21]
Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res 2014; 114(3): 524-37. [http://dx.doi.org/10.1161/CIRCRESAHA.114.300559]. [PMID: 24481843].
[22]
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49(11): 1603-16. [http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006]. [PMID: 20840865].
[23]
Parey K, Brandt U, Xie H, et al. Cryo-EM structure of respiratory complex I at work. eLife 2018; 7: e39213.
[24]
Hirst J, Roessler MM. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I. Biochim Biophys Acta 2016; 1857(7): 872-83. [http://dx.doi.org/10.1016/j.bbabio.2015.12.009]. [PMID: 26721206].
[25]
Ohnishi T, Ohnishi ST, Salerno JC. Five decades of research on mitochondrial NADH-quinone oxidoreductase (complex I). Biol Chem 2018; 399(11): 1249-64. [http://dx.doi.org/10.1515/hsz-2018-0164]. [PMID: 30243012].
[26]
Song Y, Buettner GR. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radic Biol Med 2010; 49(6): 919-62. [http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.009]. [PMID: 20493944].
[27]
Dröse S, Brandt U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem 2008; 283(31): 21649-54. [http://dx.doi.org/10.1074/jbc.M803236200]. [PMID: 18522938].
[28]
Sarewicz M, Borek A, Daldal F, Froncisz W, Osyczka A. Demonstration of short-lived complexes of cytochrome c with cytochrome bc1 by EPR spectroscopy: implications for the mechanism of interprotein electron transfer. J Biol Chem 2008; 283(36): 24826-36. [http://dx.doi.org/10.1074/jbc.M802174200]. [PMID: 18617515].
[29]
Mitchell P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol 1976; 62(2): 327-67. [http://dx.doi.org/10.1016/0022-5193(76)90124-7]. [PMID: 186667].
[30]
Ohnishi T, Ohnishi ST, Shinzawa-Itoh K, Yoshikawa S, Weber RT. EPR detection of two protein-associated ubiquinone components (SQ(Nf) and SQ(Ns)) in the membrane in situ and in proteoliposomes of isolated bovine heart complex I. Biochim Biophys Acta 2012; 1817(10): 1803-9. [http://dx.doi.org/10.1016/j.bbabio.2012.03.032]. [PMID: 22503829].
[31]
Breuer ME, Koopman WJ, Koene S, et al. The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases. Neurobiol Dis 2013; 51: 27-34. [http://dx.doi.org/10.1016/j.nbd.2012.03.007]. [PMID: 22426394].
[32]
Holper L, Ben-Shachar D, Mann JJ. Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacology 2018; 2018: 1. [PMID: 29855563].
[33]
Letts JA, Sazanov LA. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol 2017; 24(10): 800-8. [http://dx.doi.org/10.1038/nsmb.3460]. [PMID: 28981073].
[34]
Brandt U. A two-state stabilization-change mechanism for proton-pumping complex I. Biochim Biophys Acta 2011; 1807(10): 1364-9. [http://dx.doi.org/10.1016/j.bbabio.2011.04.006]. [PMID: 21565159].
[35]
Ingledew WJ, Ohnishi T. An analysis of some thermodynamic properties of iron-sulphur centres in site I of mitochondria. Biochem J 1980; 186(1): 111-7. [http://dx.doi.org/10.1042/bj1860111]. [PMID: 6245637].
[36]
Baradaran R, Berrisford JM, Minhas GS, Sazanov LA. Crystal structure of the entire respiratory complex I. Nature 2013; 494(7438): 443-8. [http://dx.doi.org/10.1038/nature11871]. [PMID: 23417064].
[37]
Zickermann V, Wirth C, Nasiri H, et al. Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 2015; 347(6217): 44-9. [http://dx.doi.org/10.1126/science.1259859]. [PMID: 25554780].
[38]
Fiedorczuk K, Letts JA, Degliesposti G, Kaszuba K, Skehel M, Sazanov LA. Atomic structure of the entire mammalian mitochondrial complex I. Nature 2016; 538(7625): 406-10. [http://dx.doi.org/10.1038/nature19794]. [PMID: 27595392].
[39]
Blaza JN, Vinothkumar KR, Hirst J. Structure of the deactive state of mammalian respiratory complex I. Structure 2018; 26(2): 312-319.e3. [http://dx.doi.org/10.1016/j.str.2017.12.014]. [PMID: 29395787].
[40]
Zhu J, Vinothkumar KR, Hirst J. Structure of mammalian respiratory complex I. Nature 2016; 536(7616): 354-8. [http://dx.doi.org/10.1038/nature19095]. [PMID: 27509854].
[41]
Chouchani ET, Methner C, Nadtochiy SM, et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 2013; 19(6): 753-9. [http://dx.doi.org/10.1038/nm.3212]. [PMID: 23708290].
[42]
Yano T, Dunham WR, Ohnishi T. Characterization of the delta muH+-sensitive ubisemiquinone species (SQ(Nf)) and the interaction with cluster N2: new insight into the energy-coupled electron transfer in complex I. Biochemistry 2005; 44(5): 1744-54. [http://dx.doi.org/10.1021/bi048132i]. [PMID: 15683258].
[43]
Efremov RG, Sazanov LA. The coupling mechanism of respiratory complex I - a structural and evolutionary perspective. Biochim Biophys Acta 2012; 1817(10): 1785-95. [http://dx.doi.org/10.1016/j.bbabio.2012.02.015]. [PMID: 22386882].
[44]
Stephan DW, Erker G. Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem Int Ed Engl 2010; 49(1): 46-76. [http://dx.doi.org/10.1002/anie.200903708]. [PMID: 20025001].
[45]
Berrisford JM, Sazanov LA. Structural basis for the mechanism of respiratory complex I. J Biol Chem 2009; 284(43): 29773-83. [http://dx.doi.org/10.1074/jbc.M109.032144]. [PMID: 19635800].
[46]
Evans RM, Brooke EJ, Wehlin SA, et al. Mechanism of hydrogen activation by [NiFe] hydrogenases. Nat Chem Biol 2016; 12(1): 46-50. [http://dx.doi.org/10.1038/nchembio.1976]. [PMID: 26619250].
[47]
Welch GC, San Juan RR, Masuda JD, Stephan DW. Reversible, metal-free hydrogen activation. Science 2006; 314(5802): 1124-6. [http://dx.doi.org/10.1126/science.1134230]. [PMID: 17110572].
[48]
Medda R, Padiglia A, Pedersen JZ, Floris G. Evidence for alpha-proton abstraction and carbanion formation involving a functional histidine residue in lentil seedling amine oxidase. Biochem Biophys Res Commun 1993; 196(3): 1349-55. [http://dx.doi.org/10.1006/bbrc.1993.2401]. [PMID: 8250890].
[49]
Hernández-Ortega A, Lucas F, Ferreira P, Medina M, Guallar V, Martínez AT. Role of active site histidines in the two half-reactions of the aryl-alcohol oxidase catalytic cycle. Biochemistry 2012; 51(33): 6595-608. [http://dx.doi.org/10.1021/bi300505z]. [PMID: 22834786].
[50]
Carr SB, Evans RM, Brooke EJ, et al. Hydrogen activation by [NiFe]-hydrogenases. Biochem Soc Trans 2016; 44(3): 863-8. [http://dx.doi.org/10.1042/BST20160031]. [PMID: 27284053].
[51]
Sazanov LA, Hinchliffe P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 2006; 311(5766): 1430-6. [http://dx.doi.org/10.1126/science.1123809]. [PMID: 16469879].
[52]
Zwicker K, Galkin A, Dröse S, Grgic L, Kerscher S, Brandt U. The Redox-Bohr group associated with iron-sulfur cluster N2 of complex I. J Biol Chem 2006; 281(32): 23013-7. [http://dx.doi.org/10.1074/jbc.M603442200]. [PMID: 16760472].
[53]
Tocilescu MA, Zickermann V, Zwicker K, Brandt U. Quinone binding and reduction by respiratory complex I. Biochim Biophys Acta 2010; 1797(12): 1883-90. [http://dx.doi.org/10.1016/j.bbabio.2010.05.009]. [PMID: 20493164].
[54]
Kashani-Poor N, Zwicker K, Kerscher S, Brandt U. A central functional role for the 49-kDa subunit within the catalytic core of mitochondrial complex I. J Biol Chem 2001; 276(26): 24082-7. [http://dx.doi.org/10.1074/jbc.M102296200]. [PMID: 11342550].
[55]
Fiedorczuk K, Sazanov LA. Fiedorczuk., K, Sazanov LA. Mammalian mitochondrial complex I structure and disease-causing mutations. Trends Cell Biol 2018; 28(10): 835-67. [http://dx.doi.org/10.1016/j.tcb.2018.06.006]. [PMID: 30055843].
[56]
Stuehr DJ, Kwon NS, Nathan CF, Griffith OW, Feldman PL, Wiseman J. N omega-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. J Biol Chem 1991; 266(10): 6259-63. [PMID: 1706713].
[57]
Mitchell P. The protonmotive Q cycle: a general formulation. FEBS Lett 1975; 59(2): 137-9. [http://dx.doi.org/10.1016/0014-5793(75)80359-0]. [PMID: 1227927].
[58]
Crofts AR, Holland JT, Victoria D, et al. The Q-cycle reviewed: How well does a monomeric mechanism of the bc(1) complex account for the function of a dimeric complex? Biochim Biophys Acta 2008; 1777(7-8): 1001-19. [http://dx.doi.org/10.1016/j.bbabio.2008.04.037]. [PMID: 18501698].
[59]
Wikström MK, Berden JA. Oxidoreduction of cytochrome b in the presence of antimycin. Biochim Biophys Acta 1972; 283(3): 403-20. [http://dx.doi.org/10.1016/0005-2728(72)90258-7]. [PMID: 4346389].
[60]
Lapointe J, Stepanyan Z, Bigras E, Hekimi S. Reversal of the mitochondrial phenotype and slow development of oxidative biomarkers of aging in long-lived Mclk1+/- mice. J Biol Chem 2009; 284(30): 20364-74. [http://dx.doi.org/10.1074/jbc.M109.006569]. [PMID: 19478076].
[61]
Wang Y, Hekimi S. Understanding Ubiquinone. Trends Cell Biol 2016; 26(5): 367-78. [http://dx.doi.org/10.1016/j.tcb.2015.12.007]. [PMID: 26827090].
[62]
Wang Y, Oxer D, Hekimi S. Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis. Nat Commun 2015; 6: 6393. [http://dx.doi.org/10.1038/ncomms7393]. [PMID: 25744659].
[63]
Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA. Respiratory active mitochondrial supercomplexes. Mol Cell 2008; 32(4): 529-39. [http://dx.doi.org/10.1016/j.molcel.2008.10.021]. [PMID: 19026783].
[64]
Genova ML, Lenaz G. Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 2014; 1837(4): 427-43. [http://dx.doi.org/10.1016/j.bbabio.2013.11.002]. [PMID: 24246637].
[65]
Althoff T, Mills DJ, Popot JL, Kühlbrandt W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 2011; 30(22): 4652-64. [http://dx.doi.org/10.1038/emboj.2011.324]. [PMID: 21909073].
[66]
Blaza JN, Serreli R, Jones AJ, Mohammed K, Hirst J. Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc Natl Acad Sci USA 2014; 111(44): 15735-40. [http://dx.doi.org/10.1073/pnas.1413855111]. [PMID: 25331896].
[67]
Dröse S, Zwicker K, Brandt U. Full recovery of the NADH:ubiquinone activity of complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica by the addition of phospholipids. Biochim Biophys Acta 2002; 1556(1): 65-72. [http://dx.doi.org/10.1016/S0005-2728(02)00307-9]. [PMID: 12351219].
[68]
Ono H, Nishijima Y, Adachi N, et al. A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level. Med Gas Res 2012; 2(1): 21. [http://dx.doi.org/10.1186/2045-9912-2-21]. [PMID: 22916706].
[69]
Nakashima-Kamimura N, Mori T, Ohsawa I, Asoh S, Ohta S. Molecular hydrogen alleviates nephrotoxicity induced by an anti-cancer drug cisplatin without compromising anti-tumor activity in mice. Cancer Chemother Pharmacol 2009; 64(4): 753-61. [http://dx.doi.org/10.1007/s00280-008-0924-2]. [PMID: 19148645].
[70]
Albracht SP. Nickel hydrogenases: in search of the active site. Biochim Biophys Acta 1994; 1188(3): 167-204. [http://dx.doi.org/10.1016/0005-2728(94)90036-1]. [PMID: 7803444].
[71]
Pershad HR, Duff JL, Heering HA, Duin EC, Albracht SP, Armstrong FA. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Biochemistry 1999; 38(28): 8992-9. [http://dx.doi.org/10.1021/bi990108v]. [PMID: 10413472].
[72]
Ostojic SM. Does H2 alter mitochondrial bioenergetics via GHS-R1a activation? Theranostics 2017; 7(5): 1330-2. [http://dx.doi.org/10.7150/thno.18745]. [PMID: 28435468].