Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Neuropeptides in Alzheimer’s Disease: An Update

Author(s): Carla Petrella, Maria Grazia Di Certo, Christian Barbato, Francesca Gabanella, Massimo Ralli, Antonio Greco, Roberta Possenti and Cinzia Severini*

Volume 16, Issue 6, 2019

Page: [544 - 558] Pages: 15

DOI: 10.2174/1567205016666190503152555

Price: $65

Abstract

Neuropeptides are small proteins broadly expressed throughout the central nervous system, which act as neurotransmitters, neuromodulators and neuroregulators. Growing evidence has demonstrated the involvement of many neuropeptides in both neurophysiological functions and neuropathological conditions, among which is Alzheimer’s disease (AD). The role exerted by neuropeptides in AD is endorsed by the evidence that they are mainly neuroprotective and widely distributed in brain areas responsible for learning and memory processes. Confirming this point, it has been demonstrated that numerous neuropeptide-containing neurons are pathologically altered in brain areas of both AD patients and AD animal models. Furthermore, the levels of various neuropeptides have been found altered in both Cerebrospinal Fluid (CSF) and blood of AD patients, getting insights into their potential role in the pathophysiology of AD and offering the possibility to identify novel additional biomarkers for this pathology. We summarized the available information about brain distribution, neuroprotective and cognitive functions of some neuropeptides involved in AD. The main focus of the current review was directed towards the description of clinical data reporting alterations in neuropeptides content in both AD patients and AD pre-clinical animal models. In particular, we explored the involvement in the AD of Thyrotropin-Releasing Hormone (TRH), Cocaine- and Amphetamine-Regulated Transcript (CART), Cholecystokinin (CCK), bradykinin and chromogranin/secretogranin family, discussing their potential role as a biomarker or therapeutic target, leaving the dissertation of other neuropeptides to previous reviews.

Keywords: Alzheimer' disease, neuropeptides, TRH, CCK, bradykinin, CART, chromogranin/secretogranin family.

[1]
Pakaski M, Kalman J. Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease. Neurochem Int 53(5): 103-11. (2008)
[2]
Sierra-Fonseca JA, Gosselink KL. Tauopathy and neurodegeneration: a role for stress. Neurobiol Stress 9: 105-12. (2018)
[3]
Zhao LN, Lu L, Chew LY, Mu Y. Alzheimer’s disease--a panorama glimpse. Int J Mol Sci 15(7): 12631-50. (2014)
[4]
Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054): 184-5. (1992)
[5]
Ono K. Alzheimer’s disease as oligomeropathy. Neurochem Int 119: 57-70. (2018)
[6]
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer's disease: past, present and future Neuropharmacology 76(Pt A: ): 27-50. (2014)
[7]
Cummings J, Aisen PS, DuBois B, Frolich L, Jack CR Jr, Jones RW, et al. Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res Ther 8: 39. (2016)
[8]
Dos Santos Picanco LC, Ozela PF, de Fatima de Brito Brito M, Pinheiro AA, Padilha EC, Braga FS, et al. Alzheimer’s Disease: a review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Curr Med Chem 25(26): 3141-59. (2018)
[9]
Sharma A, Pachauri V, Flora SJS. Advances in multi-functional ligands and the need for metal-related pharmacology for the management of Alzheimer disease. Front Pharmacol 9: 1247. (2018)
[10]
Seppala TT, Nerg O, Koivisto AM, Rummukainen J, Puli L, Zetterberg H, et al. CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology 78(20): 1568-75. (2012)
[11]
Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 284(6): 643-63. (2018)
[12]
O’Bryant SE, Edwards M, Johnson L, Hall J, Villarreal AE, Britton GB, et al. A blood screening test for Alzheimer’s disease. Alzheimers Dement (Amst) 3: 83-90. (2016)
[13]
Yu S, Liu YP, Liu HL, Li J, Xiang Y, Liu YH, et al. Serum protein-based profiles as novel biomarkers for the diagnosis of Alzheimer’s disease. Mol Neurobiol 55(5): 3999-4008. (2018)
[14]
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 35(3): 464-519. (2015)
[15]
Hallberg M, Nyberg F. Neuropeptide conversion to bioactive fragments--an important pathway in neuromodulation. Curr Protein Pept Sci 4(1): 31-44. (2003)
[16]
Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Diaz-Cabiale Z, Rivera A, Ferraro L, et al. Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks. Front Physiol 3: 136. (2012)
[17]
Nyberg F, Hallberg M. Peptide conversion--a potential pathway modulating G-protein signaling. Curr Drug Targets 8(1): 147-54. (2007)
[18]
Van Dam D, Van Dijck A, Janssen L, De Deyn PP. Neuropeptides in Alzheimer’s disease: from pathophysiological mechanisms to therapeutic opportunities. Curr Alzheimer Res 10(5): 449-68. (2013)
[19]
Severini C, Petrella C, Calissano P. Substance P and Alzheimer’s disease: emerging novel roles. Curr Alzheimer Res 13(9): 964-72. (2016)
[20]
Chen XY, Du YF, Chen L. Neuropeptides exert neuroprotective effects in Alzheimer’s disease. Front Mol Neurosci 11: 493. (2019)
[21]
Slats D, Claassen JA, Verbeek MM, Overeem S. Reciprocal interactions between sleep, circadian rhythms and Alzheimer’s disease: focus on the role of hypocretin and melatonin. Ageing Res Rev 12(1): 188-200. (2013)
[22]
Ma K, McLaurin J. Alpha-melanocyte stimulating hormone as a potential therapy for Alzheimer’s disease. Curr Alzheimer Res 14(1): 18-29. (2017)
[23]
Riederer P, Korczyn AD, Ali SS, Bajenaru O, Choi MS, Chopp M, et al. The diabetic brain and cognition. J Neural Transm (Vienna) 124(11): 1431-54. (2017)
[24]
Lee EH, Seo SR. Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases. BMB Rep 47(7): 369-75. (2014)
[25]
Singh Y, Gupta G, Shrivastava B, Dahiya R, Tiwari J, Ashwathanarayana M, et al. Calcitonin gene-related peptide (CGRP): a novel target for Alzheimer’s disease. CNS Neurosci Ther 23(6): 457-61. (2017)
[26]
Ng RC, Chan KH. Potential neuroprotective effects of adiponectin in Alzheimer’s disease. Int J Mol Sci 18(3) (2017)
[27]
Fernandez AP, Masa JS, Guedan MA, Futch HS, Martinez-Murillo R. Adrenomedullin expression in Alzheimer’s drain. Curr Alzheimer Res 13(4): 428-38. (2016)
[28]
Joseph-Bravo P, Jaimes-Hoy L, Charli JL. Regulation of TRH neurons and energy homeostasis-related signals under stress. J Endocrinol 227(3): X1. (2015)
[29]
Hrabovszky E, Liposits Z. Novel aspects of glutamatergic signalling in the neuroendocrine system. J Neuroendocrinol 20(6): 743-51. (2008)
[30]
Jackson IM, Reichlin S. Thyrotropin-releasing hormone (TRH): distribution in hypothalamic and extrahypothalamic brain tissues of mammalian and submammalian chordates. Endocrinology 95(3): 854-62. (1974)
[31]
Pekary AE. Is Ps4 (prepro-TRH [160-169]) more than an enhancer for thyrotropin-releasing hormone? Thyroid 8(10): 963-8. (1998)
[32]
Gershengorn MC, Osman R. Molecular and cellular biology of thyrotropin-releasing hormone receptors. Physiol Rev 76(1): 175-91. (1996)
[33]
Heuer H, Schafer MK, O’Donnell D, Walker P, Bauer K. Expression of thyrotropin-releasing hormone receptor 2 (TRH-R2) in the central nervous system of rats. J Comp Neurol 428(2): 319-36. (2000)
[34]
Albert M, Jenike M, Nixon R, Nobel K. Thyrotropin response to thyrotropin-releasing hormone in patients with dementia of the Alzheimer type. Biol Psychiatry 33(4): 267-71. (1993)
[35]
Gomez JM, Aguilar M, Soler J. Growth hormone and thyrotropin hormone secretion in Alzheimer’s disease. J Nutr Health Aging 4(4): 229-32. (2000)
[36]
Yong-Hong L, Xiao-Dong P, Chang-Quan H, Bo Y, Qing-Xiu L. Hypothalamic-pituitary-thyroid axis in patients with Alzheimer disease (AD). J Investig Med 61(3): 578-81. (2013)
[37]
Luo L, Yano N, Mao Q, Jackson IM, Stopa EG. Thyrotropin releasing hormone (TRH) in the hippocampus of Alzheimer patients. J Alzheimers Dis 4(2): 97-103. (2002)
[38]
Biggins JA, Perry EK, McDermott JR, Smith AI, Perry RH, Edwardson JA. Post mortem levels of thyrotropin-releasing hormone and neurotensin in the amygdala in Alzheimer’s disease, schizophrenia and depression. J Neurol Sci 58(1): 117-22. (1983)
[39]
Bouras C, de St Hilaire-Kafi S, Constantinidis J. Neuropeptides in Alzheimer’s disease: a review and morphological results. Prog Neuropsychopharmacol Biol Psychiatry 10(3-5): 271-86. (1986)
[40]
Nemeroff CB, Kizer JS, Reynolds GP, Bissette G. Neuropeptides in Alzheimer’s disease: a postmortem study. Regul Pept 25(1): 123-30. (1989)
[41]
Yates CM, Harmar AJ, Rosie R, Sheward J, de Levy GS, Simpson J, et al. Thyrotropin-releasing hormone, luteinizing hormone-releasing hormone and substance P immuno-reactivity in post-mortem brain from cases of Alzheimer-type dementia and Down’s syndrome. Brain Res 258(1): 45-52. (1983)
[42]
Koenig ML, Yourick DL, Meyerhoff JL. Thyrotropin-releasing hormone (TRH) attenuates glutamate-stimulated increases in calcium in primary neuronal cultures. Brain Res 730(1-2): 143-9. (1996)
[43]
Luo L, Stopa EG. Thyrotropin releasing hormone inhibits tau phosphorylation by dual signaling pathways in hippocampal neurons. J Alzheimers Dis 6(5): 527-36. (2004)
[44]
Mellow AM, Sunderland T, Cohen RM, Lawlor BA, Hill JL, Newhouse PA, et al. Acute effects of high-dose thyrotropin releasing hormone infusions in Alzheimer’s disease. Psychopharmacology (Berl) 98(3): 403-7. (1989)
[45]
Yarbrough GG, Pomara N. The therapeutic potential of thyrotropin releasing hormone (TRH) in Alzheimer’s disease (AD). Prog Neuropsychopharmacol Biol Psychiatry 9(3): 285-9. (1985)
[46]
Bennett GW, Ballard TM, Watson CD, Fone KC. Effect of neuropeptides on cognitive function. Exp Gerontol 32(4-5): 451-69. (1997)
[47]
Santucci AC, Perez S. Multiple injections of thyrotropin releasing hormone fail to reverse learning and memory deficits in rats with lesions of the nucleus basalis of meynert. Behav Brain Res 136(2): 433-8. (2002)
[48]
Rogge G, Jones D, Hubert GW, Lin Y, Kuhar MJ. CART peptides: regulators of body weight, reward and other functions. Nat Rev Neurosci 9(10): 747-58. (2008)
[49]
Spiess J, Rivier J, Rivier C, Vale W. Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proc Natl Acad Sci USA 78(10): 6517-21. (1981)
[50]
Zhang M, Han L, Xu Y. Roles of cocaine- and amphetamine-regulated transcript in the central nervous system. Clin Exp Pharmacol Physiol 39(6): 586-92. (2012)
[51]
Dominguez G. The CART gene: structure and regulation. Peptides 27(8): 1913-8. (2006)
[52]
Wu B, Hu S, Yang M, Pan H, Zhu S. CART peptide promotes the survival of hippocampal neurons by upregulating brain-derived neurotrophic factor. Biochem Biophys Res Commun 347(3): 656-61. (2006)
[53]
Sha D, Li L, Ye L, Liu R, Xu Y. Icariin inhibits neurotoxicity of beta-amyloid by upregulating cocaine-regulated and amphetamine-regulated transcripts. Neuroreport 20(17): 1564-7. (2009)
[54]
Upadhya MA, Nakhate KT, Kokare DM, Singru PS, Subhedar NK. Cocaine- and amphetamine-regulated transcript peptide increases spatial learning and memory in rats. Life Sci 88(7-8): 322-34. (2011)
[55]
Jin JL, Liou AK, Shi Y, Yin KL, Chen L, Li LL, et al. CART treatment improves memory and synaptic structure in APP/PS1 mice. Sci Rep 5: 10224. (2015)
[56]
Yin K, Jin J, Zhu X, Yu L, Wang S, Qian L, et al. CART modulates beta-amyloid metabolism-associated enzymes and attenuates memory deficits in APP/PS1 mice. Neurol Res 39(10): 885-94. (2017)
[57]
Jiao W, Wang Y, Kong L, Ou-Yang T, Meng Q, Fu Q, et al. CART peptide activates the Nrf2/HO-1 antioxidant pathway and protects hippocampal neurons in a rat model of Alzheimer’s disease. Biochem Biophys Res Commun 501(4): 1016-22. (2018)
[58]
Schultz K, Wiehager S, Nilsson K, Nielsen JE, Lindquist SG, Hjermind LE, et al. Reduced CSF CART in dementia with Lewy bodies. Neurosci Lett 453(2): 104-6. (2009)
[59]
Beinfeld MC. An introduction to neuronal cholecystokinin. Peptides 22(8): 1197-200. (2001)
[60]
Schiffmann SN, Teugels E, Halleux P, Menu R, Vanderhaeghen JJ. Cholecystokinin mRNA detection in rat spinal cord motoneurons but not in dorsal root ganglia neurons. Neurosci Lett 123(1): 123-6. (1991)
[61]
Hokfelt T, Lundberg JM, Schultzberg M, Johansson O, Skirboll L, Anggard A, et al. Cellular localization of peptides in neural structures. Proc R Soc Lond B Biol Sci 210(1178): 63-77. (1980)
[62]
Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19(11): 4544-58. (1999)
[63]
Kosaka T, Kosaka K, Tateishi K, Hamaoka Y, Yanaihara N, Wu JY, et al. GABAergic neurons containing CCK-8-like and/or VIP-like immunoreactivities in the rat hippocampus and dentate gyrus. J Comp Neurol 239(4): 420-30. (1985)
[64]
Somogyi P, Hodgson AJ, Smith AD, Nunzi MG, Gorio A, Wu JY. Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin-immunoreactive material. J Neurosci 4(10): 2590-603. (1984)
[65]
Williams JA, Sans MD, Tashiro M, Schafer C, Bragado MJ, Dabrowski A. Cholecystokinin activates a variety of intracellular signal transduction mechanisms in rodent pancreatic acinar cells. Pharmacol Toxicol 91(6): 297-303. (2002)
[66]
Lee SY, Soltesz I. Cholecystokinin: a multi-functional molecular switch of neuronal circuits. Dev Neurobiol 71(1): 83-91. (2011)
[67]
Flood JF, Smith GE, Morley JE. Modulation of memory processing by cholecystokinin: dependence on the vagus nerve. Science 236(4803): 832-4. (1987)
[68]
Kovacs GL, De Wied D. Peptidergic modulation of learning and memory processes. Pharmacol Rev 46(3): 269-91. (1994)
[69]
Sugaya K, Takahashi M, Kubota K. Cholecystokinin protects cholinergic neurons against basal forebrain lesion. Jpn J Pharmacol 59(1): 125-8. (1992)
[70]
Lofberg C, Harro J, Gottfries CG, Oreland L. Cholecystokinin peptides and receptor binding in Alzheimer’s disease. J Neural Transm (Vienna) 103(7): 851-60. (1996)
[71]
Perry RH, Dockray GJ, Dimaline R, Perry EK, Blessed G, Tomlinson BE. Neuropeptides in Alzheimer’s disease, depression and schizophrenia. A post mortem analysis of vasoactive intestinal peptide and cholecystokinin in cerebral cortex. J Neurol Sci 51(3): 465-72. (1981)
[72]
Struble RG, Powers RE, Casanova MF, Kitt CA, Brown EC, Price DL. Neuropeptidergic systems in plaques of Alzheimer’s disease. J Neuropathol Exp Neurol 46(5): 567-84. (1987)
[73]
Hokama M, Oka S, Leon J, Ninomiya T, Honda H, Sasaki K, et al. Altered expression of diabetes-related genes in Alzheimer’s disease brains: the Hisayama study. Cereb Cortex 24(9): 2476-88. (2014)
[74]
Lin H, Zhang T, Wu Y, Wang Y, Wang W, Wang Q. Related genes and potential biomarkers for early diagnosis of Alzheimer’s disease: a preliminary study based on DNA microarray. Am J Alzheimers Dis Other Demen 29(1): 90-5. (2014)
[75]
Diez M, Koistinaho J, Kahn K, Games D, Hokfelt T. Neuropeptides in hippocampus and cortex in transgenic mice overexpressing V717F beta-amyloid precursor protein--initial observations. Neuroscience 100(2): 259-86. (2000)
[76]
Diez M, Danner S, Frey P, Sommer B, Staufenbiel M, Wiederhold KH, et al. Neuropeptide alterations in the hippocampal formation and cortex of transgenic mice overexpressing beta-amyloid precursor protein (APP) with the Swedish double mutation (APP23). Neurobiol Dis 14(3): 579-94. (2003)
[77]
Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 44(1): 1-80. (1992)
[78]
Raidoo DM, Bhoola KD. Pathophysiology of the kallikrein-kinin system in mammalian nervous tissue. Pharmacol Ther 79(2): 105-27. (1998)
[79]
Regoli D, Barabe J. Pharmacology of bradykinin and related kinins. Pharmacol Rev 32(1): 1-46. (1980)
[80]
Regoli D, Nsa Allogho S, Rizzi A, Gobeil FJ. Bradykinin receptors and their antagonists. Eur J Pharmacol 348(1): 1-10. (1998)
[81]
Marceau F, Regoli D. Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov 3(10): 845-52. (2004)
[82]
Naffah-Mazzacoratti Mda G, Gouveia TL, Simoes PS, Perosa SR. What have we learned about the kallikrein-kinin and renin-angiotensin systems in neurological disorders? World J Biol Chem 5(2): 130-40. (2014)
[83]
Viel TA, Buck HS. Kallikrein-kinin system mediated inflammation in Alzheimer’s disease in vivo. Curr Alzheimer Res 8(1): 59-66. (2011)
[84]
Ladror US, Wang GT, Klein WL, Holzman TF, Krafft GA. Potential beta PP-processing proteinase activities from Alzheimer’s and control brain tissues. J Protein Chem 13(4): 357-66. (1994)
[85]
Aoyagi T, Wada T, Nagai M, Kojima F, Harada S, Takeuchi T, et al. Increased gamma-aminobutyrate aminotransferase activity in brain of patients with Alzheimer’s disease. Chem Pharm Bull (Tokyo) 38(6): 1748-9. (1990)
[86]
Diamandis EP, Scorilas A, Kishi T, Blennow K, Luo LY, Soosaipillai A, et al. Altered kallikrein 7 and 10 concentrations in cerebrospinal fluid of patients with Alzheimer’s disease and frontotemporal dementia. Clin Biochem 37(3): 230-7. (2004)
[87]
Diamandis EP, Yousef GM, Petraki C, Soosaipillai AR. Human kallikrein 6 as a biomarker of alzheimer’s disease. Clin Biochem 33(8): 663-7. (2000)
[88]
Bergamaschini L, Donarini C, Foddi C, Gobbo G, Parnetti L, Agostoni A. The region 1-11 of Alzheimer amyloid-beta is critical for activation of contact-kinin system. Neurobiol Aging 22(1): 63-9. (2001)
[89]
Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease--systematic review and meta-analysis. Neurobiol Aging 30(3): 337-52. (2009)
[90]
Iores-Marcal LM, Viel TA, Buck HS, Nunes VA, Gozzo AJ, Cruz-Silva I, et al. Bradykinin release and inactivation in brain of rats submitted to an experimental model of Alzheimer’s disease. Peptides 27(12): 3363-9. (2006)
[91]
Nitsch RM, Kim C, Growdon JH. Vasopressin and bradykinin regulate secretory processing of the amyloid protein precursor of Alzheimer’s disease. Neurochem Res 23(5): 807-14. (1998)
[92]
Marceau F, Bachvarov DR. Kinin receptors. Clin Rev Allergy Immunol 16(4): 385-401. (1998)
[93]
Huang HM, Lin TA, Sun GY, Gibson GE. Increased inositol 1,4,5-trisphosphate accumulation correlates with an up-regulation of bradykinin receptors in Alzheimer’s disease. J Neurochem 64(2): 761-6. (1995)
[94]
Jong YJ, Dalemar LR, Seehra K, Baenziger NL. Bradykinin receptor modulation in cellular models of aging and Alzheimer’s disease. Int Immunopharmacol 2(13-14): 1833-40. (2002)
[95]
Lacoste B, Tong XK, Lahjouji K, Couture R, Hamel E. Cognitive and cerebrovascular improvements following kinin B1 receptor blockade in Alzheimer’s disease mice. J Neuroinflammation 10: 57. (2013)
[96]
Asraf K, Torika N, Roasso E, Fleisher-Berkovich S. Differential effect of intranasally administrated kinin B1 and B2 receptor antagonists in Alzheimer’s disease mice. Biol Chem 397(4): 345-51. (2016)
[97]
Viel TA, Lima Caetano A, Nasello AG, Lancelotti CL, Nunes VA, Araujo MS, et al. Increases of kinin B1 and B2 receptors binding sites after brain infusion of amyloid-beta 1-40 peptide in rats. Neurobiol Aging 29(12): 1805-14. (2008)
[98]
Prediger RD, Medeiros R, Pandolfo P, Duarte FS, Passos GF, Pesquero JB, et al. Genetic deletion or antagonism of kinin B(1) and B(2) receptors improves cognitive deficits in a mouse model of Alzheimer’s disease. Neuroscience 151(3): 631-43. (2008)
[99]
Noda M, Kariura Y, Pannasch U, Nishikawa K, Wang L, Seike T, et al. Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. J Neurochem 101(2): 397-410. (2007)
[100]
Trujillo CA, Negraes PD, Schwindt TT, Lameu C, Carromeu C, Muotri AR, et al. Kinin-B2 receptor activity determines the differentiation fate of neural stem cells. J Biol Chem 287(53): 44046-61. (2012)
[101]
Noda M, Sasaki K, Ifuku M, Wada K. Multifunctional effects of bradykinin on glial cells in relation to potential anti-inflammatory effects. Neurochem Int 51(2-4): 185-91. (2007)
[102]
Amaral FA, Lemos MT, Dong KE, Bittencourt MF, Caetano AL, Pesquero JB, et al. Participation of kinin receptors on memory impairment after chronic infusion of human amyloid-beta 1-40 peptide in mice. Neuropeptides 44(2): 93-7. (2010)
[103]
Caetano AL, Dong-Creste KE, Amaral FA, Monteiro-Silva KC, Pesquero JB, Araujo MS, et al. Kinin B2 receptor can play a neuroprotective role in Alzheimer’s disease. Neuropeptides 53: 51-62. (2015)
[104]
Helle KB. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc 79(4): 769-94. (2004)
[105]
Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR. The extended granin family: structure, function, and biomedical implications. Endocr Rev 32(6): 755-97. (2011)
[106]
Willis M, Leitner I, Jellinger KA, Marksteiner J. Chromogranin peptides in brain diseases. J Neural Transm (Vienna) 118(5): 727-35. (2011)
[107]
Winkler H, Fischer-Colbrie R. The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49(3): 497-528. (1992)
[108]
Heneka MT, O’Banion MK, Terwel D, Kummer MP. Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm (Vienna) 117(8): 919-47. (2010)
[109]
Lechner T, Adlassnig C, Humpel C, Kaufmann WA, Maier H, Reinstadler-Kramer K, et al. Chromogranin peptides in Alzheimer’s disease. Exp Gerontol 39(1): 101-13. (2004)
[110]
Marksteiner J, Kaufmann WA, Gurka P, Humpel C. Synaptic proteins in Alzheimer’s disease. J Mol Neurosci 18(1-2): 53-63. (2002)
[111]
Rangon CM, Haik S, Faucheux BA, Metz-Boutigue MH, Fierville F, Fuchs JP, et al. Different chromogranin immunoreactivity between prion and a-beta amyloid plaque. Neuroreport 14(5): 755-8. (2003)
[112]
Brinkmalm G, Sjodin S, Simonsen AH, Hasselbalch SG, Zetterberg H, Brinkmalm A, et al. A Parallel Reaction Monitoring Mass Spectrometric Method for Analysis of Potential CSF Biomarkers for Alzheimer’s Disease. Proteomics Clin Appl 12(1) (2018)
[113]
Eder U, Leitner B, Kirchmair R, Pohl P, Jobst KA, Smith AD, et al. Levels and proteolytic processing of chromogranin A and B and secretogranin II in cerebrospinal fluid in neurological diseases. J Neural Transm (Vienna) 105(1): 39-51. (1998)
[114]
Jahn H, Wittke S, Zurbig P, Raedler TJ, Arlt S, Kellmann M, et al. Peptide fingerprinting of Alzheimer’s disease in cerebrospinal fluid: identification and prospective evaluation of new synaptic biomarkers. PLoS One 6(10)e26540 (2011)
[115]
Mattson MP. An ECSIT-centric view of Alzheimer’s disease. BioEssays 34(7): 526-7. (2012)
[116]
Paterson RW, Toombs J, Slattery CF, Schott JM, Zetterberg H. Biomarker modelling of early molecular changes in Alzheimer’s disease. Mol Diagn Ther 18(2): 213-27. (2014)
[117]
Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore P, Davis AE, et al. Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease. PLoS One 6(1)e16032 (2011)
[118]
Simonsen AH, McGuire J, Hansson O, Zetterberg H, Podust VN, Davies HA, et al. Novel panel of cerebrospinal fluid biomarkers for the prediction of progression to Alzheimer dementia in patients with mild cognitive impairment. Arch Neurol 64(3): 366-70. (2007)
[119]
Wildsmith KR, Schauer SP, Smith AM, Arnott D, Zhu Y, Haznedar J, et al. Identification of longitudinally dynamic biomarkers in Alzheimer’s disease cerebrospinal fluid by targeted proteomics. Mol Neurodegener 9: 22. (2014)
[120]
Koshimizu H, Cawley NX, Yergy AL, Loh YP. Role of pGlu-serpinin, a novel chromogranin A-derived peptide in inhibition of cell death. J Mol Neurosci 45(2): 294-303. (2011)
[121]
Willis M, Prokesch M, Hutter-Paier B, Windisch M, Stridsberg M, Mahata SK, et al. Chromogranin B and Secretogranin II in transgenic mice overexpressing human APP751 with the London (V717I) and Swedish (K670M/N671L) mutations and in Alzheimer patients. J Alzheimers Dis 13(2): 123-35. (2008)
[122]
Mattsson N, Insel P, Nosheny R, Zetterberg H, Trojanowski JQ, Shaw LM, et al. CSF protein biomarkers predicting longitudinal reduction of CSF beta-amyloid42 in cognitively healthy elders. Transl Psychiatry 3e293 (2013)
[123]
Mattsson N, Johansson P, Hansson O, Wallin A, Johansson JO, Andreasson U, et al. Converging pathways of chromogranin and amyloid metabolism in the brain. J Alzheimers Dis 20(4): 1039-49. (2010)
[124]
Mattsson N, Portelius E, Rolstad S, Gustavsson M, Andreasson U, Stridsberg M, et al. Longitudinal cerebrospinal fluid biomarkers over four years in mild cognitive impairment. J Alzheimers Dis 30(4): 767-78. (2012)
[125]
Fischer-Colbrie R, Laslop A, Kirchmair R. Secretogranin II: molecular properties, regulation of biosynthesis and processing to the neuropeptide secretoneurin. Prog Neurobiol 46(1): 49-70. (1995)
[126]
Kaufmann WA, Barnas U, Humpel C, Nowakowski K, DeCol C, Gurka P, et al. Synaptic loss reflected by secretoneurin-like immunoreactivity in the human hippocampus in Alzheimer’s disease. Eur J Neurosci 10(3): 1084-94. (1998)
[127]
Spellman DS, Wildsmith KR, Honigberg LA, Tuefferd M, Baker D, Raghavan N, et al. Development and evaluation of a multiplexed mass spectrometry based assay for measuring candidate peptide biomarkers in Alzheimer’s Disease Neuroimaging Initiative (ADNI) CSF. Proteomics Clin Appl 9(7-8): 715-31. (2015)
[128]
Shyu WC, Lin SZ, Chiang MF, Chen DC, Su CY, Wang HJ, et al. Secretoneurin promotes neuroprotection and neuronal plasticity via the Jak2/Stat3 pathway in murine models of stroke. J Clin Invest 118(1): 133-48. (2008)
[129]
Hosaka M, Watanabe T. Secretogranin III: a bridge between core hormone aggregates and the secretory granule membrane. Endocr J 57(4): 275-86. (2010)
[130]
Holthuis JC, Jansen EJ, Martens GJ. Secretogranin III is a sulfated protein undergoing proteolytic processing in the regulated secretory pathway. J Biol Chem 271(30): 17755-60. (1996)
[131]
Pla V, Paco S, Ghezali G, Ciria V, Pozas E, Ferrer I, et al. Secretory sorting receptors carboxypeptidase E and secretogranin III in amyloid beta-associated neural degeneration in Alzheimer’s disease. Brain Pathol 23(3): 274-84. (2013)
[132]
Mbikay M, Seidah NG, Chretien M. Neuroendocrine secretory protein 7B2: structure, expression and functions. Biochem J 357(Pt 2): 329-42. (2001)
[133]
Winsky-Sommerer R, Grouselle D, Rougeot C, Laurent V, David JP, Delacourte A, et al. The proprotein convertase PC2 is involved in the maturation of prosomatostatin to somatostatin-14 but not in the somatostatin deficit in Alzheimer’s disease. Neuroscience 122(2): 437-47. (2003)
[134]
Iguchi H, Chan JS, Seidah NG, Chretien M. Evidence for a novel pituitary protein (7B2) in human brain, cerebrospinal fluid and plasma: brain concentrations in controls and patients with Alzheimer’s disease. Peptides 8(4): 593-8. (1987)
[135]
Yakovleva T, Marinova Z, Kuzmin A, Seidah NG, Haroutunian V, Terenius L, et al. Dysregulation of dynorphins in Alzheimer disease. Neurobiol Aging 28(11): 1700-8. (2007)
[136]
Helwig M, Hoshino A, Berridge C, Lee SN, Lorenzen N, Otzen DE, et al. The neuroendocrine protein 7B2 suppresses the aggregation of neurodegenerative disease-related proteins. J Biol Chem 288(2): 1114-24. (2013)
[137]
Lee SN, Prodhomme E, Lindberg I. Prohormone convertase 1 (PC1) processing and sorting: effect of PC1 propeptide and proSAAS. J Endocrinol 182(2): 353-64. (2004)
[138]
Wada M, Ren CH, Koyama S, Arawaka S, Kawakatsu S, Kimura H, et al. A human granin-like neuroendocrine peptide precursor (proSAAS) immunoreactivity in tau inclusions of Alzheimer’s disease and parkinsonism-dementia complex on Guam. Neurosci Lett 356(1): 49-52. (2004)
[139]
Hoshino A, Helwig M, Rezaei S, Berridge C, Eriksen JL, Lindberg I. A novel function for proSAAS as an amyloid anti-aggregant in Alzheimer’s disease. J Neurochem 128(3): 419-30. (2014)
[140]
Carrette O, Demalte I, Scherl A, Yalkinoglu O, Corthals G, Burkhard P, et al. A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics 3(8): 1486-94. (2003)
[141]
Duits FH, Brinkmalm G, Teunissen CE, Brinkmalm A, Scheltens P, Van der Flier WM, et al. Synaptic proteins in CSF as potential novel biomarkers for prognosis in prodromal Alzheimer’s disease. Alzheimers Res Ther 10(1): 5. (2018)
[142]
Hendrickson RC, Lee AY, Song Q, Liaw A, Wiener M, Paweletz CP, et al. High Resolution Discovery Proteomics Reveals Candidate Disease Progression Markers of Alzheimer’s Disease in Human Cerebrospinal Fluid. PLoS One 10(8)e0135365 (2015)
[143]
Cocco C, D’Amato F, Noli B, Ledda A, Brancia C, Bongioanni P, et al. Distribution of VGF peptides in the human cortex and their selective changes in Parkinson’s and Alzheimer’s diseases. J Anat 217(6): 683-93. (2010)
[144]
Busse S, Steiner J, Glorius S, Dobrowolny H, Greiner-Bohl S, Mawrin C, et al. VGF expression by T lymphocytes in patients with Alzheimer’s disease. Oncotarget 6(17): 14843-51. (2015)
[145]
Bozdagi O, Rich E, Tronel S, Sadahiro M, Patterson K, Shapiro ML, et al. The neurotrophin-inducible gene Vgf regulates hippocampal function and behavior through a brain-derived neurotrophic factor-dependent mechanism. J Neurosci 28(39): 9857-69. (2008)
[146]
Li C, Li M, Yu H, Shen X, Wang J, Sun X, et al. Neuropeptide VGF C-Terminal Peptide TLQP-62 alleviates lipopolysaccharide-induced memory deficits and anxiety-like and depression-like behaviors in mice: the role of BDNF/TrkB signaling. ACS Chem Neurosci 8(9): 2005-18. (2017)
[147]
Lin WJ, Jiang C, Sadahiro M, Bozdagi O, Vulchanova L, Alberini CM, et al. VGF and Its C-terminal peptide TLQP-62 regulate memory formation in hippocampus via a Bdnf-Trkb-dependent mechanism. J Neurosci 35(28): 10343-56. (2015)
[148]
Jiang C, Lin WJ, Sadahiro M, Labonte B, Menard C, Pfau ML, et al. VGF function in depression and antidepressant efficacy. Mol Psychiatry 23(7): 1632-42. (2018)
[149]
Lin P, Wang C, Xu B, Gao S, Guo J, Zhao X, et al. The VGF-derived peptide TLQP62 produces antidepressant-like effects in mice via the BDNF/TrkB/CREB signaling pathway. Pharmacol Biochem Behav 120: 140-8. (2014)
[150]
Thakker-Varia S, Krol JJ, Nettleton J, Bilimoria PM, Bangasser DA, Shors TJ, et al. The neuropeptide VGF produces antidepressant-like behavioral effects and enhances proliferation in the hippocampus. J Neurosci 27(45): 12156-67. (2007)
[151]
Lv D, Chen Y, Shen M, Liu X, Zhang Y, Xu J, et al. Mechanisms underlying the rapid-acting antidepressant-like effects of neuropeptide VGF (non-acronymic) C-terminal peptide TLQP-62. Neuropharmacology 143: 317-26. (2018)
[152]
Severini C, Ciotti MT, Biondini L, Quaresima S, Rinaldi AM, Levi A, et al. TLQP-21, a neuroendocrine VGF-derived peptide, prevents cerebellar granule cells death induced by serum and potassium deprivation. J Neurochem 104(2): 534-44. (2008)
[153]
Cero C, Vostrikov VV, Verardi R, Severini C, Gopinath T, Braun PD, et al. The TLQP-21 peptide activates the G-protein-coupled receptor C3aR1 via a folding-upon-binding mechanism. Structure 22(12): 1744-53. (2014)
[154]
Hannedouche S, Beck V, Leighton-Davies J, Beibel M, Roma G, Oakeley EJ, et al. Identification of the C3a receptor (C3AR1) as the target of the VGF-derived peptide TLQP-21 in rodent cells. J Biol Chem 288(38): 27434-43. (2013)
[155]
Litvinchuk A, Wan YW, Swartzlander DB, Chen F, Cole A, Propson NE, et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer's disease Neuron 100(6): 1337-53 e5.. (2018)
[156]
Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J Neurosci 36(2): 577-89. (2016)
[157]
Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ, Quigg RJ, et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci USA 99(16): 10837-42. (2002)
[158]
Nilsson ED, Melander O, Elmstahl S, Lethagen E, Minthon L, Pihlsgard M, et al. Copeptin, a Marker of Vasopressin, Predicts Vascular Dementia but not Alzheimer’s Disease. J Alzheimers Dis 52(3): 1047-53. (2016)
[159]
Raskind MA, Peskind ER, Lampe TH, Risse SC, Taborsky GJ Jr, Dorsa D. Cerebrospinal fluid vasopressin, oxytocin, somatostatin, and beta-endorphin in Alzheimer’s disease. Arch Gen Psychiatry 43(4): 382-8. (1986)
[160]
Adori C, Gluck L, Barde S, Yoshitake T, Kovacs GG, Mulder J, et al. Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer’s disease. Acta Neuropathol 129(4): 541-63. (2015)
[161]
Gahete MD, Rubio A, Duran-Prado M, Avila J, Luque RM, Castano JP. Expression of Somatostatin, cortistatin, and their receptors, as well as dopamine receptors, but not of neprilysin, are reduced in the temporal lobe of Alzheimer’s disease patients. J Alzheimers Dis 20(2): 465-75. (2010)
[162]
Poirel O, Mella S, Videau C, Ramet L, Davoli MA, Herzog E, et al. Moderate decline in select synaptic markers in the prefrontal cortex (BA9) of patients with Alzheimer’s disease at various cognitive stages. Sci Rep 8(1): 938. (2018)
[163]
Solarski M, Wang H, Wille H, Schmitt-Ulms G. Somatostatin in Alzheimer’s disease: A new Role for an Old Player. Prion 12(1): 1-8. (2018)
[164]
Proto C, Romualdi D, Cento RM, Spada RS, Di Mento G, Ferri R, et al. Plasma levels of neuropeptides in Alzheimer’s disease. Gynecol Endocrinol 22(4): 213-8. (2006)
[165]
Suemaru S, Hashimoto K, Ogasa T, Hirasawa R, Makino S, Ota Z, et al. Cerebrospinal fluid and plasma corticotropin-releasing hormone in senile dementia. Life Sci 48(19): 1871-9. (1991)
[166]
Suemaru S, Hashimoto K, Suemaru K, Maeba Y, Matsushita N, Ota Z. Hyperkinesia, plasma corticotropin releasing hormone and ACTH in senile dementia. Neuroreport 2(6): 337-40. (1991)
[167]
Beart PM. Synaptic signalling and its interface with neuropathologies: snapshots from the past, present and future. J Neurochem 139(Suppl. 2): 76-90. (2016)
[168]
Counts SE, Perez SE, Ginsberg SD, Mufson EJ. Neuroprotective role for galanin in Alzheimer’s disease. Exp (Suppl. 102)143-62. (2010)
[169]
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hokfelt T, et al. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 67(1): 118-75. (2015)
[170]
Fang P, Yu M, Wan D, Zhang L, Han L, Shen Z, et al. Regulatory effects of galanin system on development of several age-related chronic diseases. Exp Gerontol 95: 88-97. (2017)
[171]
Johansson P, Almqvist EG, Wallin A, Johansson JO, Andreasson U, Blennow K, et al. Cerebrospinal fluid substance P concentrations are elevated in patients with Alzheimer’s disease. Neurosci Lett 609: 58-62. (2015)
[172]
Kehoe PG, Hibbs E, Palmer LE, Miners JS. Angiotensin-III is Increased in Alzheimer’s Disease in Association with Amyloid-beta and Tau Pathology. J Alzheimers Dis 58(1): 203-14. (2017)
[173]
Kehoe PG, Wong S, Al Mulhim N, Palmer LE, Miners JS. Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-beta and tau pathology. Alzheimers Res Ther 8(1): 50. (2016)
[174]
Rygiel K. Can angiotensin-converting enzyme inhibitors impact cognitive decline in early stages of Alzheimer’s disease? An overview of research evidence in the elderly patient population. J Postgrad Med 62(4): 242-8. (2016)
[175]
Savaskan E, Hock C, Olivieri G, Bruttel S, Rosenberg C, Hulette C, et al. Cortical alterations of angiotensin converting enzyme, angiotensin II and AT1 receptor in Alzheimer’s dementia. Neurobiol Aging 22(4): 541-6. (2001)
[176]
Jiang T, Tan L, Gao Q, Lu H, Zhu XC, Zhou JS, et al. Plasma Angiotensin-(1-7) is a Potential Biomarker for Alzheimer’s Disease. Curr Neurovasc Res 13(2): 96-9. (2016)
[177]
Fronczek R, van Geest S, Frolich M, Overeem S, Roelandse FW, Lammers GJ, et al. Hypocretin (orexin) loss in Alzheimer’s disease. Neurobiol Aging 33(8): 1642-50. (2012)
[178]
Kasanuki K, Iseki E, Kondo D, Fujishiro H, Minegishi M, Sato K, et al. Neuropathological investigation of hypocretin expression in brains of dementia with Lewy bodies. Neurosci Lett 569: 68-73. (2014)
[179]
Deuschle M, Schilling C, Leweke FM, Enning F, Pollmacher T, Esselmann H, et al. Hypocretin in cerebrospinal fluid is positively correlated with Tau and pTau. Neurosci Lett 561: 41-5. (2014)
[180]
Arai H, Moroji T, Kosaka K, Iizuka R. Extrahypophyseal distribution of alpha-melanocyte stimulating hormone (alpha-MSH)-like immunoreactivity in postmortem brains from normal subjects and Alzheimer-type dementia patients. Brain Res 377(2): 305-10. (1986)
[181]
Rainero I, May C, Kaye JA, Friedland RP, Rapoport SI. CSF alpha-MSH in dementia of the Alzheimer type. Neurology 38(8): 1281-4. (1988)
[182]
Bernstein HG, Ansorge S, Riederer P, Reiser M, Frolich L, Bogerts B. Insulin-degrading enzyme in the Alzheimer’s disease brain: prominent localization in neurons and senile plaques. Neurosci Lett 263(2-3): 161-4. (1999)
[183]
Connor B, Beilharz EJ, Williams C, Synek B, Gluckman PD, Faull RL, et al. Insulin-like growth factor-I (IGF-I) immunoreactivity in the Alzheimer’s disease temporal cortex and hippocampus. Brain Res Mol Brain Res 49(1-2): 283-90. (1997)
[184]
Jafferali S, Dumont Y, Sotty F, Robitaille Y, Quirion R, Kar S. Insulin-like growth factor-I and its receptor in the frontal cortex, hippocampus, and cerebellum of normal human and alzheimer disease brains. Synapse 38(4): 450-9. (2000)
[185]
Frolich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm (Vienna) 105(4-5): 423-38. (1998)
[186]
Han P, Caselli RJ, Baxter L, Serrano G, Yin J, Beach TG, et al. Association of pituitary adenylate cyclase-activating polypeptide with cognitive decline in mild cognitive impairment due to Alzheimer disease. JAMA Neurol 72(3): 333-9. (2015)
[187]
Han P, Liang W, Baxter LC, Yin J, Tang Z, Beach TG, et al. Pituitary adenylate cyclase-activating polypeptide is reduced in Alzheimer disease. Neurology 82(19): 1724-8. (2014)
[188]
Girgis SI, Yates CM, Fink G, MacIntyre I. Calcitonin gene-related peptide and calcitonin immunoreactivity in brain and spinal cord in Alzheimer-type dementia. J Neurol Sci 99(1): 69-74. (1990)
[189]
Ferrero H, Larrayoz IM, Martisova E, Solas M, Howlett DR, Francis PT, et al. Increased levels of brain adrenomedullin in the neuropathology of Alzheimer’s disease. Mol Neurobiol 55(6): 5177-83. (2018)
[190]
Ewers M, Mielke MM, Hampel H. Blood-based biomarkers of microvascular pathology in Alzheimer’s disease. Exp Gerontol 45(1): 75-9. (2010)
[191]
Raskind MA, Peskind ER, Lampe TH, Risse SC, Taborsky GJ Jr, Dorsa D. Cerebrospinal fluid vasopressin, oxytocin, somatostatin, and beta-endorphin in Alzheimer’s disease. Arch Gen Psychiatry 43(4): 382-8. (1986)
[192]
Mazurek MF, Growdon JH, Beal MF, Martin JB. CSF vasopressin concentration is reduced in Alzheimer’s disease. Neurology 36(8): 1133-7. (1986)
[193]
North WG, Harbaugh R, Reeder T. An evaluation of human neurophysin production in Alzheimer’s disease: preliminary observations. Neurobiol Aging 13(2): 261-5. (1992)
[194]
Jolkkonen J, Helkala EL, Kutvonen R, Lehtinen M, Riekkinen PJ. Vasopressin levels in CSF of Alzheimer patients: correlations with monoamine metabolites and neuropsychological test performance. Psychoneuroendocrinology 14(1-2): 89-95. (1989)
[195]
Tsuji M, Takahashi S, Akazawa S. CSF Vasopressin and cyclic nucleotide concentrations in senile dementia. Psychoneuroendocrinology 6(2): 171-6. (1981)
[196]
Raskind MA, Peskind ER, Lampe TH, Risse SC, Taborsky GJ Jr, Dorsa D. Cerebrospinal fluid vasopressin, oxytocin, somatostatin, and beta-endorphin in Alzheimer’s disease. Arch Gen Psychiatry 43(4): 382-8. (1986)
[197]
Alom J, Mahy JN, Brandi N, Tolosa E. Cerebrospinal fluid taurine in Alzheimer’s disease. Ann Neurol 30(5): 735. (1991)
[198]
Minthon L, Edvinsson L, Gustafson L. Correlation between clinical characteristics and cerebrospinal fluid neuropeptide Y levels in dementia of the Alzheimer type and frontotemporal dementia. Alzheimer Dis Assoc Disord 10(4): 197-203. (1996)
[199]
Atack JR, Beal MF, May C, et al. Cerebrospinal fluid somatostatin and neuropeptide Y. Concentrations in aging and in dementia of the Alzheimer type with and without extrapyramidal signs. Arch Neurol 45(3): 269-74. (1988)
[200]
Heilig M, Sjögren M, Blennow K, Ekman R, Wallin A. Cerebrospinal fluid neuropeptides in Alzheimer’s disease and vascular dementia. Biol Psychiatry 38(4): 210-6. (1995)
[201]
Tato RE, Frank A, Hernanz A. Tau protein concentrations in cerebrospinal fluid of patients with dementia of the Alzheimer type. J Neurol Neurosurg Psychiatry 59(3): 280-3. (1995)
[202]
May C, Rapoport SI, Tomai TP, Chrousos GP, Gold PW. Cerebrospinal fluid concentrations of corticotropin-releasing hormone (CRH) and corticotropin (ACTH) are reduced in patients with Alzheimer’s disease. Neurology 37(3): 535-8. (1987)
[203]
Suemaru S, Suemaru K, Kawai K, et al. Cerebrospinal fluid corticotropin-releasing hormone in neurodegenerative diseases: reduction in spinocerebellar degeneration. Life Sci 57(24): 2231-5. (1995)
[204]
Sunderland T, Berrettini WH, Molchan SE, et al. Reduced cerebrospinal fluid dynorphin A1-8 in Alzheimer’s disease. Biol Psychiatry 30(1): 81-7. (1991)
[205]
Yasuda M1 Maeda K, Kakigi T, Minamitani N, Kawaguchi T, Tanaka C. Low cerebrospinal fluid concentrations of peptide histidine valine and somatostatin-28 in Alzheimer’s disease: altered processing of prepro-vasoactive intestinal peptide and prepro-somatostatin. Neuropeptides 29(6): 325-30. (1995)
[206]
Cramer H, Schaudt D, Rissler K, Strubel D, Warter JM, Kuntzmann F. Somatostatin-like immunoreactivity and substance-P-like immunoreactivity in the CSF of patients with senile dementia of Alzheimer type, multi-infarct syndrome and communicating hydrocephalus. J Neurol 232(6): 346-51. (1985)
[207]
Rösler N, Wichart I, Jellinger KA. Ex vivo lumbar and post mortem ventricular cerebrospinal fluid substance P-immunoreactivity in Alzheimer’s disease patients. Neurosci Lett 299(1-2): 117-20. (2001)
[208]
Rainero I, May C, Kaye JA, Friedland RP, Rapoport SI. CSF alpha-MSH in dementia of the Alzheimer type. Neurology 38(8): 1281-4. (1988)
[209]
Une K, Takei YA, Tomita N, Asamura T, Ohrui T, Furukawa K, et al. Adiponectin in plasma and cerebrospinal fluid in MCI and Alzheimer’s disease. Eur J Neurol 18: 1006-9. (2011)
[210]
Himbergen TMV, Alexa SB, Ai M, Seshadri S, Otokozawa S, Au R, et al. Biomarkers for insulin resistance and inflammation and the risk for all-cause dementia and alzheimer disease results from the framingham heart study. Arch Neurol 69: 564-600. (2012)
[211]
Wennberg AMV, Gustafson D, Hagen CE, Roberts RO, Knopman D, Jack C, et al. Serum adiponectin levels, neuroimaging, and cognition in the mayo clinic study of aging. J Alzheimers Dis 53: 573-81. (2016)
[212]
Waragai M, Adame A, Trinh I, Sekiyama K, Takamatsu Y, Une K, et al. Possible involvement of adiponectin, the anti-diabetes molecule, in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 52: 1453-9. (2016)
[213]
Teixeira AL, Diniz BS, Campos AC, Miranda AS, Rocha NP, Talib LL, et al. Decreased levels of circulating adiponectin in mild cognitive impairment and Alzheimer’s disease. Neuromol Med 15: 115-21. (2013)
[214]
Dukic L, Simundic AM, Martinic-Popovic I, Kackov S, Diamandis A, Begcevic I, et al. The role of human kallikrein 6, clusterin and adiponectin as potential blood biomarkers of dementia. Clin Biochem 49: 213-8. (2016)

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy