[1]
D. Wu and D.W. Sun, (2013). “Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review — part ii: applications.” Innov. Food Sci.
Emerg. Technol., Vol. 19, No.1, pp. 1-14, 2013,
[2]
F.Y. Bu and J.Z. Han (2007). “Application of nondestructive testing technology in food quality testing.” Sci. Technol. Food Indust.
Vol. 28, No.7, pp. 221-224, 2007,
[3]
Y. Ying, X. Rao, and J. Ma “Research on non-destructive testing
method of machine vision for citrus maturity.” J. Agricult.
Eng., Vol. 20, No. 2, pp. 144-147, 2004,
[4]
X. Niu, Y. Zhou, and L. Shao “Quantitative model of strawberry
solid acid ratio and titratable acid near-infrared spectroscopy based
on LS-SVM.” J. Agricult. Eng., Vol. 29, No. 25, pp. 270-274,
2013,
[5]
Y. Wei. Acoustic detection system for detecting sugar content and
hollowness of watermelon based on acoustic characteristics. Doctoral dissertation, Zhejiang University, Zheijang, China, 2012,
[6]
A. Baiano, C. Terracone, G. Peri, and R. Romaniello, “Application
of hyperspectral imaging for prediction of physico-chemical and
sensory characteristics of table grapes.” Comput. Electron. Agricult., Vol. 87, pp. 142-151, 2012,
[7]
A. M. Fernandes, P. Oliveira, J. P. Moura, A. A. Oliveira, F. Virgílio, M. J. Correia, and P. Melo-Pinto, “Determination of anthocyanin concentration in whole grape skins using hyperspectral imaging and adaptive boosting neural networks.” J. Food Eng., Vol.
105, No. 2, pp. 216-226, 2011,
[8]
X. Dai, and H. G. Müller. “Principal component analysis for functional data on riemannian manifolds and spheres.” Ann. Statist., Vol. 46, No. 6, pp. 3334-3361, 2017,
[9]
X. Liu, Q. Sun, B. Liu, B. Huang and F. Min, “Hyperspectral image classification based on convolutional neural network and dimension reduction.” 2017 Chinese Automation Congress (CAC),
2018, pp. 1686-1690,
[10]
M. Kamruzzaman, D. Barbin, G. Elmasry, D. W. Sun, and P. Allen.
“Potential of hyperspectral imaging and pattern recognition for categorization and authentication of red meat.” Innov. Food Sci. and
Emerg. Technol., Vol. 16, pp. 316-325, 2012,
[11]
P. Rajkumar, N. Wang, G. Eimasry, G.S.V. Raghavan and Y.
Gariepy “Studies on banana fruit quality and maturity stages using
hyperspectral imaging.” J. Food Eng., Vol. 108, No. 1, pp. 194-
200, 2012,
[12]
N. Maftoonazad, Y. Karimi, H.S. Ramaswamy, and S.O. Prasher,
“Artificial neural network modeling of hyperspectral radiometric data
for quality changes associated with avocados during storage.” J. Food
Process. Preserv., Vol. 35, No. 4, pp. 432-446, 2011,
[13]
V.R. Messias, J.C. Estrella, R. Ehlers, M.J. Santana, R.C. Santana
and S. Reiff-Marganiec. (2016). “Combining time series prediction
models using genetic algorithm to autoscaling web applications
hosted in the cloud infrastructure.” Neural Comput. Appl., Vol. 27,
No.8, pp. 2383-2406, 2016,
[14]
H. Ma, R. Wang, C. Cai, and D. Wang “Rapid identification of
apple varieties based on hyperspectral imaging.” Transact. Chin.
Soc. Agricult. Mach.,Vol. 48, No. 4, pp.305-312, 2017,
[15]
P. Singh, P. Gupta, and K. Jyoti. “TASM: Technocrat ARIMA and
SVR model for workload prediction of web applications in
cloud.” Cluster Computing, Vol. 22, pp. 619-633, 2018,
[16]
M. J. C. S. Reis, R. Morais, E. Peres, C. Pereira, O. Contente, and
S. Soares, A. Valente, J. Baptista, P.J.S. Ferreira, and J.B. Cruz
“Automatic detection of bunches of grapes in natural environment
from color images.” J. Appl. Logic, Vol. 10, No.4, pp. 285-290,
2012,
[17]
N. Maftoonazad, Y. Karimi, H. S. Ramaswamy and S. O. Prasher
“Artificial neural network modeling of hyperspectral radiometric
data for quality changes associated with avocados during storage.” J. Food Process. Preserv., Vol. 35, No.4, pp. 432-446, 2011,
[18]
F. Wang, Z. Dong, Z. Wu, and K. Fang, (2017). “Optimization of
maize planting density and fertilizer application rate based on bp
neural network.” Transac. Chinese Soc. Agricult. Eng., Vol. 33,
No. 6, pp.92-99,
[19]
M. J. C. S. Reis, R. Morais, E. Peres, C. Pereira, O. Contente, S.
Soares, A. Valente, J. Baptista, P.J.S. Ferreira, and J.B. Cruz, “Automatic detection of bunches of grapes in natural environment from
color images.” J. Appl. Logic, Vol. 10, No. 4, pp. 285-290, 2012,
[20]
Z. Xuan, C. Min-Xi, and X. Feng-Ping, “Origin used in comparison
the methods of eliminating the excrescent data.” Exp. Sci. Technol.,
Vol. 10, No.1, pp. 74-77, 2012,
[21]
X. Zhong. Maintenance Methods of quality detection model for
different varieties of pork based on hyperspectral imaging technology. PhD thesis, Huazhong Agricultural University: Wuhan, China, 2014,
[22]
J. Fangfang, Z. Liming, R. Tianbao, L.I. Mengzhu, Y. Yandong,
and L. Guoshun. “Hyperspectral inversion to estimate plastid pigment contents in tobacco leaves based on bp neural network.” Tobacco Sci. Technol., Vol. 49, No.5, pp.16-22, 2016,