Review Article

G蛋白偶联受体诱导的急性髓细胞白血病信号转导的概述。

卷 26, 期 28, 2019

页: [5293 - 5316] 页: 24

弟呕挨: 10.2174/0929867326666190429153247

价格: $65

摘要

背景:急性髓细胞性白血病(AML)是一种遗传异质性疾病,其特征是骨髓中的前体髓系谱系细胞不受控制地增殖。 AML的特征还在于患者由于复发而长期生存结果较差。为了了解AML的生物学异质性,已经进行了许多努力,因此开发新疗法的挑战是巨大的。 G蛋白偶联受体(GPCRs)是跨膜蛋白的大型药物靶向家族,并且异常的GPCR表达和GPCR介导的信号传导与AML的白血病发生有关。这篇综述旨在鉴定GPCR信号传导的分子参与者,重点是造血系统,该系统参与AML以帮助开发新的药物靶标和治疗策略。 方法:我们对书目数据库进行了详尽而结构化的搜索,以研究GPCR,GPCR信号和AML中的表达为重点。 结果与结论:许多科学报告被发现具有令人信服的证据,证明异常的GPCR表达和扰动的GPCR介导的信号传导参与了AML的发展。对AML中GPCR的综合分析为预后,疾病监测和治疗指导提供了潜在的临床生物标志物。它还将有助于提供标记面板以进行AML监视。我们得出的结论是,GPCR介导的信号传导有助于AML的白血病发生,并假定基于质谱的主要AML细胞的蛋白质谱分析将加快AML潜在GPCR相关生物标记物的发现。

关键词: 白血病,AML,G蛋白,GPCR,细胞信号,临床生物标志物。

[1]
Noone, A.M.H.N.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; Chen, H.S.; Feuer, E.J.; Cronin, K.A. Leukemia. SEER Cancer Statistics Review, Available from: https://seer.cancer.gov/csr/1975_2015/ (Accessed September 2018)
[2]
Löwenberg, B.; Downing, J.R.; Burnett, A. Acute myeloid leukemia. N. Engl. J. Med., 1999, 341(14), 1051-1062.
[http://dx.doi.org/10.1056/NEJM199909303411407] [PMID: 10502596]
[3]
Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016, 127(20), 2391-2405.
[http://dx.doi.org/10.1182/blood-2016-03-643544] [PMID: 27069254]
[4]
Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; Levine, R.L.; Lo-Coco, F.; Naoe, T.; Niederwieser, D.; Ossenkoppele, G.J.; Sanz, M.; Sierra, J.; Tallman, M.S.; Tien, H.F.; Wei, A.H.; Löwenberg, B.; Bloomfield, C.D. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood, 2017, 129(4), 424-447.
[http://dx.doi.org/10.1182/blood-2016-08-733196] [PMID: 27895058]
[5]
Acharya, U.H.; Halpern, A.B.; Wu, Q.V.; Voutsinas, J.M.; Walter, R.B.; Yun, S.; Kanaan, M.; Estey, E.H. Impact of region of diagnosis, ethnicity, age, and gender on survival in acute myeloid leukemia (AML). J. Drug Assess., 2018, 7(1), 51-53.
[http://dx.doi.org/10.1080/21556660.2018.1492925] [PMID: 30034924]
[6]
Estey, E.H. Acute myeloid leukemia: 2014 update on risk-stratification and management. Am. J. Hematol., 2014, 89(11), 1063-1081.
[http://dx.doi.org/10.1002/ajh.23834] [PMID: 25318680]
[7]
Eppert, K.; Takenaka, K.; Lechman, E.R.; Waldron, L.; Nilsson, B.; van Galen, P.; Metzeler, K.H.; Poeppl, A.; Ling, V.; Beyene, J.; Canty, A.J.; Danska, J.S.; Bohlander, S.K.; Buske, C.; Minden, M.D.; Golub, T.R.; Jurisica, I.; Ebert, B.L.; Dick, J.E. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat. Med., 2011, 17(9), 1086-1093.
[http://dx.doi.org/10.1038/nm.2415] [PMID: 21873988]
[8]
Zhang, L.; Shi, G. Gq-coupled receptors in autoimmunity. J. Immunol. Res., 2016, 20163969023
[http://dx.doi.org/10.1155/2016/3969023] [PMID: 26885533]
[9]
Olsnes, A.M.; Hatfield, K.J.; Bruserud, Ø. The chemokine system and its contribution to leukemogenesis and treatment responsiveness in patients with acute myeloid leukemia. J. BUON, 2009, 14(Suppl. 1), S131-S140.
[PMID: 19785055]
[10]
Pierce, K.L.; Premont, R.T.; Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol., 2002, 3(9), 639-650.
[http://dx.doi.org/10.1038/nrm908] [PMID: 12209124]
[11]
Hepler, J.R.; Gilman, A.G. G proteins. Trends Biochem. Sci., 1992, 17(10), 383-387.
[http://dx.doi.org/10.1016/0968-0004(92)90005-T] [PMID: 1455506]
[12]
Kobilka, B.K. G protein coupled receptor structure and activation. Biochim. Biophys. Acta, 2007, 1768(4), 794-807.
[http://dx.doi.org/10.1016/j.bbamem.2006.10.021] [PMID: 17188232]
[13]
Alqinyah, M.; Hooks, S.B. Regulating the regulators: Epigenetic, transcriptional, and post-translational regulation of RGS proteins. Cell. Signal., 2018, 42, 77-87.
[http://dx.doi.org/10.1016/j.cellsig.2017.10.007] [PMID: 29042285]
[14]
Magalhaes, A.C.; Dunn, H.; Ferguson, S.S. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br. J. Pharmacol., 2012, 165(6), 1717-1736.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01552.x] [PMID: 21699508]
[15]
Wilden, U. Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. Biochemistry, 1995, 34(4), 1446-1454.
[http://dx.doi.org/10.1021/bi00004a040] [PMID: 7827093]
[16]
Chaturvedi, M.; Schilling, J.; Beautrait, A.; Bouvier, M.; Benovic, J.L.; Shukla, A.K. Emerging paradigm of intracellular targeting of G protein-coupled receptors. Trends Biochem. Sci., 2018, 43(7), 533-546.
[http://dx.doi.org/10.1016/j.tibs.2018.04.003] [PMID: 29735399]
[17]
DeWire, S.M.; Ahn, S.; Lefkowitz, R.J.; Shenoy, S.K. Beta-arrestins and cell signaling. Annu. Rev. Physiol., 2007, 69, 483-510.
[http://dx.doi.org/10.1146/annurev.physiol.69.022405.154749] [PMID: 17305471]
[18]
Wootten, D.; Christopoulos, A.; Marti-Solano, M.; Babu, M.M.; Sexton, P.M. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol., 2018, 19(10), 638-653.
[http://dx.doi.org/10.1038/s41580-018-0049-3] [PMID: 30104700]
[19]
Rosenbaum, D.M.; Rasmussen, S.G.; Kobilka, B.K. The structure and function of G-protein-coupled receptors. Nature, 2009, 459(7245), 356-363.
[http://dx.doi.org/10.1038/nature08144] [PMID: 19458711]
[20]
Stevens, R.C.; Cherezov, V.; Katritch, V.; Abagyan, R.; Kuhn, P.; Rosen, H.; Wüthrich, K. The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nat. Rev. Drug Discov., 2013, 12(1), 25-34.
[http://dx.doi.org/10.1038/nrd3859] [PMID: 23237917]
[21]
Ye, L.; Van Eps, N.; Zimmer, M.; Ernst, O.P.; Prosser, R.S. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature, 2016, 533(7602), 265-268.
[http://dx.doi.org/10.1038/nature17668] [PMID: 27144352]
[22]
Ghosh, E.; Kumari, P.; Jaiman, D.; Shukla, A.K. Methodological advances: the unsung heroes of the GPCR structural revolution. Nat. Rev. Mol. Cell Biol., 2015, 16(2), 69-81.
[http://dx.doi.org/10.1038/nrm3933] [PMID: 25589408]
[23]
Keri, D.; Barth, P. Reprogramming G protein coupled receptor structure and function. Curr. Opin. Struct. Biol., 2018, 51, 187-194.
[http://dx.doi.org/10.1016/j.sbi.2018.07.008] [PMID: 30055347]
[24]
Sánchez-Fernández, G.; Cabezudo, S.; García-Hoz, C.; Benincá, C.; Aragay, A.M.; Mayor, F., Jr; Ribas, C. Gαq signalling: The new and the old. Cell. Signal., 2014, 26(5), 833-848.
[http://dx.doi.org/10.1016/j.cellsig.2014.01.010] [PMID: 24440667]
[25]
Flock, T.; Hauser, A.S.; Lund, N.; Gloriam, D.E.; Balaji, S.; Babu, M.M. Selectivity determinants of GPCR-G-protein binding. Nature, 2017, 545(7654), 317-322.
[http://dx.doi.org/10.1038/nature22070] [PMID: 28489817]
[26]
Milligan, G.; Kostenis, E. Heterotrimeric G-proteins: A short history. Br. J. Pharmacol., 2006, 147(Suppl. 1), S46-S55.
[http://dx.doi.org/10.1038/sj.bjp.0706405] [PMID: 16402120]
[27]
Strathmann, M.P.; Simon, M.I. G alpha 12 and G alpha 13 subunits define a fourth class of G protein alpha subunits. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5582-5586.
[http://dx.doi.org/10.1073/pnas.88.13.5582] [PMID: 1905812]
[28]
Wilkie, T.M.; Scherle, P.A.; Strathmann, M.P.; Slepak, V.Z.; Simon, M.I. Characterization of G-protein alpha subunits in the Gq class: expression in murine tissues and in stromal and hematopoietic cell lines. Proc. Natl. Acad. Sci. USA, 1991, 88(22), 10049-10053.
[http://dx.doi.org/10.1073/pnas.88.22.10049] [PMID: 1946421]
[29]
Li, L.; Zhang, X. Differential inhibition of the TRPM8 ion channel by Gαq and Gα 11. Channels (Austin), 2013, 7(2), 115-118.
[http://dx.doi.org/10.4161/chan.23466] [PMID: 23334401]
[30]
Orth, J.H.; Preuss, I.; Fester, I.; Schlosser, A.; Wilson, B.A.; Aktories, K. Pasteurella multocida toxin activation of heterotrimeric G proteins by deamidation. Proc. Natl. Acad. Sci. USA, 2009, 106(17), 7179-7184.
[http://dx.doi.org/10.1073/pnas.0900160106] [PMID: 19369209]
[31]
Johnson, G.J.; Leis, L.A.; Dunlop, P.C. Specificity of G alpha q and G alpha 11 gene expression in platelets and erythrocytes. Expressions of cellular differentiation and species differences. Biochem. J., 1996, 318(Pt 3), 1023-1031.
[http://dx.doi.org/10.1042/bj3181023] [PMID: 8836152]
[32]
Kleppisch, T.; Voigt, V.; Allmann, R.; Offermanns, S.G. (alpha)q-deficient mice lack metabotropic glutamate receptor-dependent long-term depression but show normal long-term potentiation in the hippocampal CA1 region. J. Neurosci., 2001, 21(14), 4943-4948.
[http://dx.doi.org/10.1523/JNEUROSCI.21-14-04943.2001] [PMID: 11438569]
[33]
Benincá, C.; Planagumà, J.; de Freitas Shuck, A.; Acín-Perez, R.; Muñoz, J.P.; de Almeida, M.M.; Brown, J.H.; Murphy, A.N.; Zorzano, A.; Enríquez, J.A.; Aragay, A.M. A new non-canonical pathway of Gα(q) protein regulating mitochondrial dynamics and bioenergetics. Cell. Signal., 2014, 26(5), 1135-1146.
[http://dx.doi.org/10.1016/j.cellsig.2014.01.009] [PMID: 24444709]
[34]
Wettschureck, N.; Offermanns, S. Mammalian G proteins and their cell type specific functions. Physiol. Rev., 2005, 85(4), 1159-1204.
[http://dx.doi.org/10.1152/physrev.00003.2005] [PMID: 16183910]
[35]
Giannone, F.; Malpeli, G.; Lisi, V.; Grasso, S.; Shukla, P.; Ramarli, D.; Sartoris, S.; Monsurró, V.; Krampera, M.; Amato, E.; Tridente, G.; Colombatti, M.; Parenti, M.; Innamorati, G. The puzzling uniqueness of the heterotrimeric G15 protein and its potential beyond hematopoiesis. J. Mol. Endocrinol., 2010, 44(5), 259-269.
[http://dx.doi.org/10.1677/JME-09-0134] [PMID: 20150327]
[36]
Amatruda, T.T., III; Steele, D.A.; Slepak, V.Z.; Simon, M.I. G alpha 16, a G protein alpha subunit specifically expressed in hematopoietic cells. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5587-5591.
[http://dx.doi.org/10.1073/pnas.88.13.5587] [PMID: 1905813]
[37]
Offermanns, S.; Simon, M.I. G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. J. Biol. Chem., 1995, 270(25), 15175-15180.
[http://dx.doi.org/10.1074/jbc.270.25.15175] [PMID: 7797501]
[38]
Su, Y.; Ho, M.K.C.; Wong, Y.H. A hematopoietic perspective on the promiscuity and specificity of Galpha16 signaling. Neurosignals, 2009, 17(1), 71-81.
[http://dx.doi.org/10.1159/000186691] [PMID: 19212141]
[39]
Aragay, A.M.; Quick, M.W. Functional regulation of Galpha16 by protein kinase C. J. Biol. Chem., 1999, 274(8), 4807-4815.
[http://dx.doi.org/10.1074/jbc.274.8.4807] [PMID: 9988720]
[40]
Szekeres, P.G. Functional assays for identifying ligands at orphan G protein-coupled receptors. Receptors Channels, 2002, 8(5-6), 297-308.
[http://dx.doi.org/10.1080/10606820214642] [PMID: 12690957]
[41]
Touhara, K. Deorphanizing vertebrate olfactory receptors: recent advances in odorant-response assays. Neurochem. Int., 2007, 51(2-4), 132-139.
[http://dx.doi.org/10.1016/j.neuint.2007.05.020] [PMID: 17640771]
[42]
Berman, D.M.; Wilkie, T.M.; Gilman, A.G. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell, 1996, 86(3), 445-452.
[http://dx.doi.org/10.1016/S0092-8674(00)80117-8] [PMID: 8756726]
[43]
Tesmer, J.J.; Berman, D.M.; Gilman, A.G.; Sprang, S.R. Structure of RGS4 bound to AlF4--activated G(i alpha1): Stabilization of the transition state for GTP hydrolysis. Cell, 1997, 89(2), 251-261.
[http://dx.doi.org/10.1016/S0092-8674(00)80204-4] [PMID: 9108480]
[44]
Ross, E.M.; Wilkie, T.M. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem., 2000, 69, 795-827.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.795] [PMID: 10966476]
[45]
Kosloff, M.; Travis, A.M.; Bosch, D.E.; Siderovski, D.P.; Arshavsky, V.Y. Integrating energy calculations with functional assays to decipher the specificity of G protein-RGS protein interactions. Nat. Struct. Mol. Biol., 2011, 18(7), 846-853.
[http://dx.doi.org/10.1038/nsmb.2068] [PMID: 21685921]
[46]
Gerber, K.J.; Squires, K.E.; Hepler, J.R. Roles for regulator of G protein signaling proteins in synaptic signaling and plasticity. Mol. Pharmacol., 2016, 89(2), 273-286.
[http://dx.doi.org/10.1124/mol.115.102210] [PMID: 26655302]
[47]
Stewart, A.; Fisher, R.A. Introduction: G protein-coupled receptors and RGS proteins. Prog. Mol. Biol. Transl. Sci., 2015, 133, 1-11.
[http://dx.doi.org/10.1016/bs.pmbts.2015.03.002] [PMID: 26123299]
[48]
Squires, K.E.; Montañez-Miranda, C.; Pandya, R.R.; Torres, M.P.; Hepler, J.R. Genetic analysis of rare human variants of regulators of g protein signaling proteins and their role in human physiology and disease. Pharmacol. Rev., 2018, 70(3), 446-474.
[http://dx.doi.org/10.1124/pr.117.015354] [PMID: 29871944]
[49]
Aragay, A.M.; Ruiz-Gómez, A.; Penela, P.; Sarnago, S.; Elorza, A.; Jiménez-Sainz, M.C.; Mayor, F., Jr G protein-coupled receptor kinase 2 (GRK2): mechanisms of regulation and physiological functions. FEBS Lett., 1998, 430(1-2), 37-40.
[http://dx.doi.org/10.1016/S0014-5793(98)00495-5] [PMID: 9678590]
[50]
Penela, P.; Murga, C.; Ribas, C.; Lafarga, V.; Mayor, F., Jr The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physiopathological targets. Br. J. Pharmacol., 2010, 160(4), 821-832.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00727.x] [PMID: 20590581]
[51]
Penela, P.; Ribas, C.; Mayor, F., Jr Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell. Signal., 2003, 15(11), 973-981.
[http://dx.doi.org/10.1016/S0898-6568(03)00099-8] [PMID: 14499340]
[52]
Moore, C.A.; Milano, S.K.; Benovic, J.L. Regulation of receptor trafficking by GRKs and arrestins. Annu. Rev. Physiol., 2007, 69, 451-482.
[http://dx.doi.org/10.1146/annurev.physiol.69.022405.154712] [PMID: 17037978]
[53]
Ferguson, S.S. Phosphorylation-independent attenuation of GPCR signaling. Trends Pharmacol. Sci., 2007, 28(4), 173-179.
[http://dx.doi.org/10.1016/j.tips.2007.02.008] [PMID: 17350109]
[54]
Ribas, C.; Penela, P.; Murga, C.; Salcedo, A.; García-Hoz, C.; Jurado-Pueyo, M.; Aymerich, I.; Mayor, F., Jr The G protein-coupled receptor kinase (GRK) interactome: Role of GRKs in GPCR regulation and signaling. Biochim. Biophys. Acta, 2007, 1768(4), 913-922.
[http://dx.doi.org/10.1016/j.bbamem.2006.09.019] [PMID: 17084806]
[55]
Premont, R.T.; Gainetdinov, R.R. Physiological roles of G protein-coupled receptor kinases and arrestins. Annu. Rev. Physiol., 2007, 69, 511-534.
[http://dx.doi.org/10.1146/annurev.physiol.69.022405.154731] [PMID: 17305472]
[56]
Reiter, E.; Lefkowitz, R.J. GRKs and beta-arrestins: Roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab., 2006, 17(4), 159-165.
[http://dx.doi.org/10.1016/j.tem.2006.03.008] [PMID: 16595179]
[57]
Gurevich, E.V.; Gurevich, V.V. Arrestins: Ubiquitous regulators of cellular signaling pathways. Genome Biol., 2006, 7(9), 236.
[http://dx.doi.org/10.1186/gb-2006-7-9-236] [PMID: 17020596]
[58]
Krupnick, J.G.; Gurevich, V.V.; Benovic, J.L. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. J. Biol. Chem., 1997, 272(29), 18125-18131.
[http://dx.doi.org/10.1074/jbc.272.29.18125] [PMID: 9218446]
[59]
Benovic, J.L.; Kühn, H.; Weyand, I.; Codina, J.; Caron, M.G.; Lefkowitz, R.J. Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: Potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc. Natl. Acad. Sci. USA, 1987, 84(24), 8879-8882.
[http://dx.doi.org/10.1073/pnas.84.24.8879] [PMID: 2827157]
[60]
Ferguson, S.S.; Downey, W.E., III; Colapietro, A.M.; Barak, L.S.; Ménard, L.; Caron, M.G. Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science, 1996, 271(5247), 363-366.
[http://dx.doi.org/10.1126/science.271.5247.363] [PMID: 8553074]
[61]
Goodman, O.B., Jr; Krupnick, J.G.; Santini, F.; Gurevich, V.V.; Penn, R.B.; Gagnon, A.W.; Keen, J.H.; Benovic, J.L. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature, 1996, 383(6599), 447-450.
[http://dx.doi.org/10.1038/383447a0] [PMID: 8837779]
[62]
Rajagopal, S.; Rajagopal, K.; Lefkowitz, R.J. Teaching old receptors new tricks: Biasing seven-transmembrane receptors. Nat. Rev. Drug Discov., 2010, 9(5), 373-386.
[http://dx.doi.org/10.1038/nrd3024] [PMID: 20431569]
[63]
Smith, J.S.; Lefkowitz, R.J.; Rajagopal, S. Biased signaling: From simple switches to allosteric microprocessors. Nat. Rev. Drug Discov., 2018, 17(4), 243-260.
[http://dx.doi.org/10.1038/nrd.2017.229] [PMID: 29302067]
[64]
Gurevich, V.V.; Gurevich, E.V.; Uversky, V.N. Arrestins: structural disorder creates rich functionality. Protein Cell, 2018, 9(12), 986-1003.
[http://dx.doi.org/10.1007/s13238-017-0501-8] [PMID: 29453740]
[65]
Scott, M.G.; Le Rouzic, E.; Périanin, A.; Pierotti, V.; Enslen, H.; Benichou, S.; Marullo, S.; Benmerah, A. Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J. Biol. Chem., 2002, 277(40), 37693-37701.
[http://dx.doi.org/10.1074/jbc.M207552200] [PMID: 12167659]
[66]
Song, X.; Raman, D.; Gurevich, E.V.; Vishnivetskiy, S.A.; Gurevich, V.V. Visual and both non-visual arrestins in their “inactive” conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. J. Biol. Chem., 2006, 281(30), 21491-21499.
[http://dx.doi.org/10.1074/jbc.M603659200] [PMID: 16737965]
[67]
Luttrell, L.M.; Ferguson, S.S.; Daaka, Y.; Miller, W.E.; Maudsley, S.; Della Rocca, G.J.; Lin, F.; Kawakatsu, H.; Owada, K.; Luttrell, D.K.; Caron, M.G.; Lefkowitz, R.J. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science, 1999, 283(5402), 655-661.
[http://dx.doi.org/10.1126/science.283.5402.655] [PMID: 9924018]
[68]
Kovacs, J.J.; Hara, M.R.; Davenport, C.L.; Kim, J.; Lefkowitz, R.J. Arrestin development: Emerging roles for beta-arrestins in developmental signaling pathways. Dev. Cell, 2009, 17(4), 443-458.
[http://dx.doi.org/10.1016/j.devcel.2009.09.011] [PMID: 19853559]
[69]
Schulte, G.; Schambony, A.; Bryja, V. beta-Arrestins - scaffolds and signalling elements essential for WNT/Frizzled signalling pathways? Br. J. Pharmacol., 2010, 159(5), 1051-1058.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00466.x] [PMID: 19888962]
[70]
Grundmann, M.; Merten, N.; Malfacini, D.; Inoue, A.; Preis, P.; Simon, K.; Rüttiger, N.; Ziegler, N.; Benkel, T.; Schmitt, N.K.; Ishida, S.; Müller, I.; Reher, R.; Kawakami, K.; Inoue, A.; Rick, U.; Kühl, T.; Imhof, D.; Aoki, J.; König, G.M.; Hoffmann, C.; Gomeza, J.; Wess, J.; Kostenis, E. Lack of beta-arrestin signaling in the absence of active G proteins. Nat. Commun., 2018, 9(1), 341.
[http://dx.doi.org/10.1038/s41467-017-02661-3] [PMID: 29362459]
[71]
O’Hayre, M.; Eichel, K.; Avino, S.; Zhao, X.; Steffen, D.J.; Feng, X.; Kawakami, K.; Aoki, J.; Messer, K.; Sunahara, R.; Inoue, A.; von Zastrow, M.; Gutkind, J.S. Genetic evidence that β-arrestins are dispensable for the initiation of β2-adrenergic receptor signaling to ERK. Sci. Signal., 2017, 10(484)eaal3395
[http://dx.doi.org/10.1126/scisignal.aal3395] [PMID: 28634209]
[72]
Gutkind, J.S.; Kostenis, E. Arrestins as rheostats of GPCR signalling. Nat. Rev. Mol. Cell Biol., 2018, 19(10), 615-616.
[http://dx.doi.org/10.1038/s41580-018-0041-y] [PMID: 30026541]
[73]
Peterson, Y.K.; Luttrell, L.M. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol. Rev., 2017, 69(3), 256-297.
[http://dx.doi.org/10.1124/pr.116.013367] [PMID: 28626043]
[74]
Nevius, E.; Gomes, A.C.; Pereira, J.P. Inflammatory cell migration in rheumatoid arthritis: A comprehensive review. Clin. Rev. Allergy Immunol., 2016, 51(1), 59-78.
[http://dx.doi.org/10.1007/s12016-015-8520-9] [PMID: 26511861]
[75]
Nie, Y.; Han, Y.C.; Zou, Y.R. CXCR4 is required for the quiescence of primitive hematopoietic cells. J. Exp. Med., 2008, 205(4), 777-783.
[http://dx.doi.org/10.1084/jem.20072513] [PMID: 18378795]
[76]
Sugiyama, T.; Kohara, H.; Noda, M.; Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 2006, 25(6), 977-988.
[http://dx.doi.org/10.1016/j.immuni.2006.10.016] [PMID: 17174120]
[77]
Lin, T.L.; Uy, G.L.; Wieduwilt, M.J.; Newell, L.F.; Stu-art, R.K.; Medeiros, B.C.; Schiller, G.J.; Rubenstein, E.; Stock, W.; Warlick, E.D.; Foster, M.; Bixby, D.L.; Podoltsev, N.A.; An, Q.; Faderl, S.; Louie, A.C.; Lancet, J.E. Subanalysis of Patients with Secondary Acute Myeloid Leukemia (sAML) with Refractory Anemia with Excess of Blasts in Transformation (RAEB-t) enrolled in a phase 3 study of CPX-351 versus conventional 7+3 cytarabine and daunorubicin. Blood, 2018, 24(3), S228-S229.
[78]
Petit, I.; Szyper-Kravitz, M.; Nagler, A.; Lahav, M.; Peled, A.; Habler, L.; Ponomaryov, T.; Taichman, R.S.; Arenzana-Seisdedos, F.; Fujii, N.; Sandbank, J.; Zipori, D.; Lapidot, T. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol., 2002, 3(7), 687-694.
[http://dx.doi.org/10.1038/ni813] [PMID: 12068293]
[79]
Walter, D.H.; Rochwalsky, U.; Reinhold, J.; Seeger, F.; Aicher, A.; Urbich, C.; Spyridopoulos, I.; Chun, J.; Brinkmann, V.; Keul, P.; Levkau, B.; Zeiher, A.M.; Dimmeler, S.; Haendeler, J. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler. Thromb. Vasc. Biol., 2007, 27(2), 275-282.
[http://dx.doi.org/10.1161/01.ATV.0000254669.12675.70] [PMID: 17158356]
[80]
Kimura, T.; Boehmler, A.M.; Seitz, G.; Kuçi, S.; Wiesner, T.; Brinkmann, V.; Kanz, L.; Möhle, R. The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood, 2004, 103(12), 4478-4486.
[http://dx.doi.org/10.1182/blood-2003-03-0875] [PMID: 14988150]
[81]
Seitz, G.; Boehmler, A.M.; Kanz, L.; Möhle, R. The role of sphingosine 1-phosphate receptors in the trafficking of hematopoietic progenitor cells. Ann. N. Y. Acad. Sci., 2005, 1044, 84-89.
[http://dx.doi.org/10.1196/annals.1349.011] [PMID: 15958700]
[82]
Whetton, A.D.; Lu, Y.; Pierce, A.; Carney, L.; Spooncer, E. Lysophospholipids synergistically promote primitive hematopoietic cell chemotaxis via a mechanism involving Vav 1. Blood, 2003, 102(8), 2798-2802.
[http://dx.doi.org/10.1182/blood-2002-12-3635] [PMID: 12829605]
[83]
Reca, R.; Mastellos, D.; Majka, M.; Marquez, L.; Ratajczak, J.; Franchini, S.; Glodek, A.; Honczarenko, M.; Spruce, L.A.; Janowska-Wieczorek, A.; Lambris, J.D.; Ratajczak, M.Z. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood, 2003, 101(10), 3784-3793.
[http://dx.doi.org/10.1182/blood-2002-10-3233] [PMID: 12511407]
[84]
Ratajczak, J.; Reca, R.; Kucia, M.; Majka, M.; Allendorf, D.J.; Baran, J.T.; Janowska-Wieczorek, A.; Wetsel, R.A.; Ross, G.D.; Ratajczak, M.Z. Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood, 2004, 103(6), 2071-2078.
[http://dx.doi.org/10.1182/blood-2003-06-2099] [PMID: 14604969]
[85]
Jiang, S.; Alberich-Jorda, M.; Zagozdzon, R.; Parmar, K.; Fu, Y.; Mauch, P.; Banu, N.; Makriyannis, A.; Tenen, D.G.; Avraham, S.; Groopman, J.E.; Avraham, H.K. Cannabinoid receptor 2 and its agonists mediate hematopoiesis and hematopoietic stem and progenitor cell mobilization. Blood, 2011, 117(3), 827-838.
[http://dx.doi.org/10.1182/blood-2010-01-265082] [PMID: 21063029]
[86]
Möhle, R.; Drost, A.C. G protein-coupled receptor crosstalk and signaling in hematopoietic stem and progenitor cells. Ann. N. Y. Acad. Sci., 2012, 1266, 63-67.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06559.x] [PMID: 22901257]
[87]
Bautz, F.; Denzlinger, C.; Kanz, L.; Möhle, R. Chemotaxis and transendothelial migration of CD34(+) hematopoietic progenitor cells induced by the inflammatory mediator leukotriene D4 are mediated by the 7-transmembrane receptor CysLT1. Blood, 2001, 97(11), 3433-3440.
[http://dx.doi.org/10.1182/blood.V97.11.3433] [PMID: 11369634]
[88]
Xue, X.; Cai, Z.; Seitz, G.; Kanz, L.; Weisel, K.C.; Möhle, R. Differential effects of G protein coupled receptors on hematopoietic progenitor cell growth depend on their signaling capacities. Ann. N. Y. Acad. Sci., 2007, 1106, 180-189.
[http://dx.doi.org/10.1196/annals.1392.014] [PMID: 17360805]
[89]
Lim, V.Y.; Zehentmeier, S.; Fistonich, C.; Pereira, J.P. Chapter Two - A chemoattractant-guided walk through lymphopoiesis: From hematopoietic stem cells to mature B lymphocytes.Advances in Immunology; Alt, F.W., Ed.; Academic Press, 2017, Vol. 134, pp. 47-88.
[90]
Peng, Y.M.; van de Garde, M.D.; Cheng, K.F.; Baars, P.A.; Remmerswaal, E.B.; van Lier, R.A.; Mackay, C.R.; Lin, H.H.; Hamann, J. Specific expression of GPR56 by human cytotoxic lymphocytes. J. Leukoc. Biol., 2011, 90(4), 735-740.
[http://dx.doi.org/10.1189/jlb.0211092] [PMID: 21724806]
[91]
Peters, M.J.; Joehanes, R.; Pilling, L.C.; Schurmann, C.; Conneely, K.N.; Powell, J.; Reinmaa, E.; Sutphin, G.L.; Zhernakova, A.; Schramm, K.; Wilson, Y.A.; Kobes, S.; Tukiainen, T.; Ramos, Y.F.; Göring, H.H.; Fornage, M.; Liu, Y.; Gharib, S.A.; Stranger, B.E.; De Jager, P.L.; Aviv, A.; Levy, D.; Murabito, J.M.; Munson, P.J.; Huan, T.; Hofman, A.; Uitterlinden, A.G.; Rivadeneira, F.; van Rooij, J.; Stolk, L.; Broer, L.; Verbiest, M.M.; Jhamai, M.; Arp, P.; Metspalu, A.; Tserel, L.; Milani, L.; Samani, N.J.; Peterson, P.; Kasela, S.; Codd, V.; Peters, A.; Ward-Caviness, C.K.; Herder, C.; Waldenberger, M.; Roden, M.; Singmann, P.; Zeilinger, S.; Illig, T.; Homuth, G.; Grabe, H.J.; Völzke, H.; Steil, L.; Kocher, T.; Murray, A.; Melzer, D.; Yaghootkar, H.; Bandinelli, S.; Moses, E.K.; Kent, J.W.; Curran, J.E.; Johnson, M.P.; Williams-Blangero, S.; Westra, H.J.; McRae, A.F.; Smith, J.A.; Kardia, S.L.; Hovatta, I.; Perola, M.; Ripatti, S.; Salomaa, V.; Henders, A.K.; Martin, N.G.; Smith, A.K.; Mehta, D.; Binder, E.B.; Nylocks, K.M.; Kennedy, E.M.; Klengel, T.; Ding, J.; Suchy-Dicey, A.M.; Enquobahrie, D.A.; Brody, J.; Rotter, J.I.; Chen, Y.D.; Houwing-Duistermaat, J.; Kloppenburg, M.; Slagboom, P.E.; Helmer, Q.; den Hollander, W.; Bean, S.; Raj, T.; Bakhshi, N.; Wang, Q.P.; Oyston, L.J.; Psaty, B.M.; Tracy, R.P.; Montgomery, G.W.; Turner, S.T.; Blangero, J.; Meulenbelt, I.; Ressler, K.J.; Yang, J.; Franke, L.; Kettunen, J.; Visscher, P.M.; Neely, G.G.; Korstanje, R.; Hanson, R.L.; Prokisch, H.; Ferrucci, L.; Esko, T.; Teumer, A.; van Meurs, J.B.; Johnson, A.D.; John-son, A.D. The transcriptional landscape of age in human peripheral blood. Nat. Commun., 2015, 6, 8570.
[http://dx.doi.org/10.1038/ncomms9570] [PMID: 26490707]
[92]
Arai, H.; Charo, I.F. Differential regulation of G-protein-mediated signaling by chemokine receptors. J. Biol. Chem., 1996, 271(36), 21814-21819.
[http://dx.doi.org/10.1074/jbc.271.36.21814] [PMID: 8702980]
[93]
Shi, G.; Partida-Sánchez, S.; Misra, R.S.; Tighe, M.; Borchers, M.T.; Lee, J.J.; Simon, M.I.; Lund, F.E. Identification of an alternative Galphaq-dependent chemokine receptor signal transduction pathway in dendritic cells and granulocytes. J. Exp. Med., 2007, 204(11), 2705-2718.
[http://dx.doi.org/10.1084/jem.20071267] [PMID: 17938235]
[94]
Tian, Y.; Lee, M.M.; Yung, L.Y.; Allen, R.A.; Slocombe, P.M.; Twomey, B.M.; Wong, Y.H. Differential involvement of Galpha16 in CC chemokine-induced stimulation of phospholipase Cbeta, ERK, and chemotaxis. Cell. Signal., 2008, 20(6), 1179-1189.
[http://dx.doi.org/10.1016/j.cellsig.2008.02.014] [PMID: 18406577]
[95]
Vatter, P.; Schuhholz, J.; Koenig, C.; Pfreimer, M.; Moepps, B. Ligand-dependent serum response factor activation by the human CC chemokine receptors CCR2a and CCR2b is mediated by G proteins of the Gq family. J. Leukoc. Biol., 2016, 99(6), 979-991.
[http://dx.doi.org/10.1189/jlb.2MA0815-386R] [PMID: 26823487]
[96]
Thelen, M.; Stein, J.V. How chemokines invite leukocytes to dance. Nat. Immunol., 2008, 9(9), 953-959.
[http://dx.doi.org/10.1038/ni.f.207] [PMID: 18711432]
[97]
Soede, R.D.; Wijnands, Y.M.; Kamp, M.; van der Valk, M.A.; Roos, E. Gi and Gq/11 proteins are involved in dissemination of myeloid leukemia cells to the liver and spleen, whereas bone marrow colonization involves Gq/11 but not Gi. Blood, 2000, 96(2), 691-698.
[PMID: 10887136]
[98]
Ngai, J.; Inngjerdingen, M.; Berge, T.; Taskén, K. Interplay between the heterotrimeric G-protein subunits Galphaq and Galphai2 sets the threshold for chemotaxis and TCR activation. BMC Immunol., 2009, 10, 27.
[http://dx.doi.org/10.1186/1471-2172-10-27] [PMID: 19426503]
[99]
Lippert, E.; Baltensperger, K.; Jacques, Y.; Hermouet, S.G. alpha16 protein expression is up- and down-regulated following T-cell activation: disruption of this regulation impairs activation-induced cell responses. FEBS Lett., 1997, 417(3), 292-296.
[http://dx.doi.org/10.1016/S0014-5793(97)01308-2] [PMID: 9409736]
[100]
Pfeilstöcker, M.; Karlic, H.; Salamon, J.; Mühlberger, H.; Pavlova, B.; Selim, U.; Strobl, H.; Pittermann, E.; Heinz, R. Monitoring of hematopoietic recovery after autologous stem cell transplantation by analysis of G alpha 16 mRNA and CD34 surface glycoprotein. Ann. Hematol., 1998, 76(3-4), 153-158.
[http://dx.doi.org/10.1007/s002770050380] [PMID: 9619733]
[101]
Pfeilstöcker, M.; Karlic, H.; Salamon, J.; Mühlberger, H.; Pavlova, B.; Strobl, H.; Pittermann, E.; Heinz, R. Hematopoietic recovery after IEV chemotherapy for malignant lymphoma followed by different cytokines can be monitored by analysis of Galpha 16 and CD34. Am. J. Hematol., 2000, 64(3), 156-160.
[http://dx.doi.org/10.1002/1096-8652(200007)64:3<156:AID-AJH3>3.0.CO;2-F] [PMID: 10861809]
[102]
Yang, M.; Sang, H.; Rahman, A.; Wu, D.; Malik, A.B.; Ye, R.D. G alpha 16 couples chemoattractant receptors to NF-kappa B activation. J. Immunol., 2001, 166(11), 6885-6892.
[http://dx.doi.org/10.4049/jimmunol.166.11.6885] [PMID: 11359849]
[103]
Tian, Y.; Lee, M.M.K.; Yung, L.Y.; Allen, R.A.; Slocombe, P.M.; Twomey, B.M.; Wong, Y.H. Differential involvement of Galpha16 in CC chemokine-induced stimulation of phospholipase Cbeta, ERK, and chemotaxis. Cell. Signal., 2008, 20(6), 1179-1189.
[http://dx.doi.org/10.1016/j.cellsig.2008.02.014] [PMID: 18406577]
[104]
Hsu, M.H.; Wang, M.; Browning, D.D.; Mukaida, N.; Ye, R.D. NF-kappaB activation is required for C5a-induced interleukin-8 gene expression in mononuclear cells. Blood, 1999, 93(10), 3241-3249.
[PMID: 10233875]
[105]
Lee, M.M.K.; Wong, Y.H. CCR1-mediated activation of Nuclear Factor-kappaB in THP-1 monocytic cells involves pertussis toxin-insensitive Galpha(14) and Galpha(16) signaling cascades. J. Leukoc. Biol., 2009, 86(6), 1319-1329.
[http://dx.doi.org/10.1189/jlb.0209052] [PMID: 19687291]
[106]
Davignon, I.; Catalina, M.D.; Smith, D.; Montgomery, J.; Swantek, J.; Croy, J.; Siegelman, M.; Wilkie, T.M. Normal hematopoiesis and inflammatory responses despite discrete signaling defects in Galpha15 knockout mice. Mol. Cell. Biol., 2000, 20(3), 797-804.
[http://dx.doi.org/10.1128/MCB.20.3.797-804.2000] [PMID: 10629036]
[107]
Louwette, S.; Van Geet, C.; Freson, K. Regulators of G protein signaling: Role in hematopoiesis, megakaryopoiesis and platelet function. J. Thromb. Haemost., 2012, 10(11), 2215-2222.
[http://dx.doi.org/10.1111/j.1538-7836.2012.04903.x] [PMID: 22908964]
[108]
Xie, Z.; Chan, E.C.; Druey, K.M. R4 Regulator of G Protein Signaling (RGS) proteins in inflammation and immunity. AAPS J., 2016, 18(2), 294-304.
[http://dx.doi.org/10.1208/s12248-015-9847-0] [PMID: 26597290]
[109]
Jules, J.; Yang, S.; Chen, W.; Li, Y.P. Role of regulators of G protein signaling proteins in bone physiology and pathophysiology. Prog. Mol. Biol. Transl. Sci., 2015, 133, 47-75.
[http://dx.doi.org/10.1016/bs.pmbts.2015.02.002] [PMID: 26123302]
[110]
Bowman, E.P.; Campbell, J.J.; Druey, K.M.; Scheschonka, A.; Kehrl, J.H.; Butcher, E.C. Regulation of chemotactic and proadhesive responses to chemoattractant receptors by RGS (regulator of G-protein signaling) family members. J. Biol. Chem., 1998, 273(43), 28040-28048.
[http://dx.doi.org/10.1074/jbc.273.43.28040] [PMID: 9774420]
[111]
Lippert, E.; Yowe, D.L.; Gonzalo, J.A.; Justice, J.P.; Webster, J.M.; Fedyk, E.R.; Hodge, M.; Miller, C.; Gutierrez-Ramos, J.C.; Borrego, F.; Keane-Myers, A.; Druey, K.M. Role of regulator of G protein signaling 16 in inflammation-induced T lymphocyte migration and activation. J. Immunol., 2003, 171(3), 1542-1555.
[http://dx.doi.org/10.4049/jimmunol.171.3.1542] [PMID: 12874248]
[112]
Moratz, C.; Kang, V.H.; Druey, K.M.; Shi, C.S.; Scheschonka, A.; Murphy, P.M.; Kozasa, T.; Kehrl, J.H. Regulator of G protein signaling 1 (RGS1) markedly impairs Gi alpha signaling responses of B lymphocytes. J. Immunol., 2000, 164(4), 1829-1838.
[http://dx.doi.org/10.4049/jimmunol.164.4.1829] [PMID: 10657631]
[113]
Reif, K.; Cyster, J.G. RGS molecule expression in murine B lymphocytes and ability to down-regulate chemotaxis to lymphoid chemokines. J. Immunol., 2000, 164(9), 4720-4729.
[http://dx.doi.org/10.4049/jimmunol.164.9.4720] [PMID: 10779778]
[114]
Shi, G.X.; Harrison, K.; Wilson, G.L.; Moratz, C.; Kehrl, J.H. RGS13 regulates germinal center B lymphocytes responsiveness to CXC chemokine ligand (CXCL)12 and CXCL13. J. Immunol., 2002, 169(5), 2507-2515.
[http://dx.doi.org/10.4049/jimmunol.169.5.2507] [PMID: 12193720]
[115]
Moratz, C.; Hayman, J.R.; Gu, H.; Kehrl, J.H. Abnormal B-cell responses to chemokines, disturbed plasma cell localization, and distorted immune tissue architecture in Rgs1-/- mice. Mol. Cell. Biol., 2004, 24(13), 5767-5775.
[http://dx.doi.org/10.1128/MCB.24.13.5767-5775.2004] [PMID: 15199133]
[116]
Oliveira-Dos-Santos, A.J.; Matsumoto, G.; Snow, B.E.; Bai, D.; Houston, F.P.; Whishaw, I.Q.; Mariathasan, S.; Sasaki, T.; Wakeham, A.; Ohashi, P.S.; Roder, J.C.; Barnes, C.A.; Siderovski, D.P.; Penninger, J.M. Regulation of T cell activation, anxiety, and male aggression by RGS2. Proc. Natl. Acad. Sci. USA, 2000, 97(22), 12272-12277.
[http://dx.doi.org/10.1073/pnas.220414397] [PMID: 11027316]
[117]
Heximer, S.P.; Knutsen, R.H.; Sun, X.; Kaltenbronn, K.M.; Rhee, M.H.; Peng, N.; Oliveira-dos-Santos, A.; Penninger, J.M.; Muslin, A.J.; Steinberg, T.H.; Wyss, J.M.; Mecham, R.P.; Blumer, K.J. Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J. Clin. Invest., 2003, 111(4), 445-452.
[http://dx.doi.org/10.1172/JCI15598] [PMID: 12588882]
[118]
Semplicini, A.; Lenzini, L.; Sartori, M.; Papparella, I.; Calò, L.A.; Pagnin, E.; Strapazzon, G.; Benna, C.; Costa, R.; Avogaro, A.; Ceolotto, G.; Pessina, A.C. Reduced expression of regulator of G-protein signaling 2 (RGS2) in hypertensive patients increases calcium mobilization and ERK1/2 phosphorylation induced by angiotensin II. J. Hypertens., 2006, 24(6), 1115-1124.
[http://dx.doi.org/10.1097/01.hjh.0000226202.80689.8f] [PMID: 16685212]
[119]
Yang, J.; Kamide, K.; Kokubo, Y.; Takiuchi, S.; Tanaka, C.; Banno, M.; Miwa, Y.; Yoshii, M.; Horio, T.; Okayama, A.; Tomoike, H.; Kawano, Y.; Miyata, T. Genetic variations of regulator of G-protein signaling 2 in hypertensive patients and in the general population. J. Hypertens., 2005, 23(8), 1497-1505.
[http://dx.doi.org/10.1097/01.hjh.0000174606.41651.ae] [PMID: 16003176]
[120]
Bansal, G.; Xie, Z.; Rao, S.; Nocka, K.H.; Druey, K.M. Suppression of immunoglobulin E-mediated allergic responses by regulator of G protein signaling 13. Nat. Immunol., 2008, 9(1), 73-80.
[http://dx.doi.org/10.1038/ni1533] [PMID: 18026105]
[121]
Estes, J.D.; Thacker, T.C.; Hampton, D.L.; Kell, S.A.; Keele, B.F.; Palenske, E.A.; Druey, K.M.; Burton, G.F. Follicular dendritic cell regulation of CXCR4-mediated germinal center CD4 T cell migration. J. Immunol., 2004, 173(10), 6169-6178.
[http://dx.doi.org/10.4049/jimmunol.173.10.6169] [PMID: 15528354]
[122]
Yowe, D.; Weich, N.; Prabhudas, M.; Poisson, L.; Errada, P.; Kapeller, R.; Yu, K.; Faron, L.; Shen, M.; Cleary, J.; Wilkie, T.M.; Gutierrez-Ramos, C.; Hodge, M.R. RGS18 is a myeloerythroid lineage-specific regulator of G-protein-signalling molecule highly expressed in megakaryocytes. Biochem. J., 2001, 359(Pt 1), 109-118.
[http://dx.doi.org/10.1042/bj3590109] [PMID: 11563974]
[123]
Aragay, A.M.; Mellado, M.; Frade, J.M.; Martin, A.M.; Jimenez-Sainz, M.C.; Martinez-A, C.; Mayor, F. Jr Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2. Proc. Natl. Acad. Sci. USA, 1998, 95(6), 2985-2990.
[http://dx.doi.org/10.1073/pnas.95.6.2985] [PMID: 9501202]
[124]
Vroon, A.; Heijnen, C.J.; Kavelaars, A. GRKs and arrestins: Regulators of migration and inflammation. J. Leukoc. Biol., 2006, 80(6), 1214-1221.
[http://dx.doi.org/10.1189/jlb.0606373] [PMID: 16943386]
[125]
Jiménez-Sainz, M.C.; Murga, C.; Kavelaars, A.; Jurado-Pueyo, M.; Krakstad, B.F.; Heijnen, C.J.; Mayor, F., Jr; Aragay, A.M. G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits. Mol. Biol. Cell, 2006, 17(1), 25-31.
[http://dx.doi.org/10.1091/mbc.e05-05-0399] [PMID: 16221891]
[126]
Vroon, A.; Heijnen, C.J.; Lombardi, M.S.; Cobelens, P.M.; Mayor, F., Jr; Caron, M.G.; Kavelaars, A. Reduced GRK2 level in T cells potentiates chemotaxis and signaling in response to CCL4. J. Leukoc. Biol., 2004, 75(5), 901-909.
[http://dx.doi.org/10.1189/jlb.0403136] [PMID: 14761932]
[127]
Penela, P.; Ribas, C.; Aymerich, I.; Eijkelkamp, N.; Barreiro, O.; Heijnen, C.J.; Kavelaars, A.; Sánchez-Madrid, F.; Mayor, F., Jr G protein-coupled receptor kinase 2 positively regulates epithelial cell migration. EMBO J., 2008, 27(8), 1206-1218.
[http://dx.doi.org/10.1038/emboj.2008.55] [PMID: 18369319]
[128]
Su, A.I.; Cooke, M.P.; Ching, K.A.; Hakak, Y.; Walker, J.R.; Wiltshire, T.; Orth, A.P.; Vega, R.G.; Sapinoso, L.M.; Moqrich, A.; Patapoutian, A.; Hampton, G.M.; Schultz, P.G.; Hogenesch, J.B. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci. USA, 2002, 99(7), 4465-4470.
[http://dx.doi.org/10.1073/pnas.012025199] [PMID: 11904358]
[129]
Wu, C.; Macleod, I.; Su, A.I. BioGPS and MyGene.info: organizing online, gene-centric information. Nucleic Acids Res., 2013, 41(Database issue), D561-D565.
[http://dx.doi.org/10.1093/nar/gks1114] [PMID: 23175613]
[130]
Tarrant, T.K.; Rampersad, R.R.; Esserman, D.; Rothlein, L.R.; Liu, P.; Premont, R.T.; Lefkowitz, R.J.; Lee, D.M.; Patel, D.D. Granulocyte chemotaxis and disease expression are differentially regulated by GRK subtype in an acute inflammatory arthritis model (K/BxN). Clin. Immunol., 2008, 129(1), 115-122.
[http://dx.doi.org/10.1016/j.clim.2008.06.008] [PMID: 18662895]
[131]
Eijkelkamp, N.; Heijnen, C.J.; Lucas, A.; Premont, R.T.; Elsenbruch, S.; Schedlowski, M.; Kavelaars, A. G protein-coupled receptor kinase 6 controls chronicity and severity of dextran sodium sulphate-induced colitis in mice. Gut, 2007, 56(6), 847-854.
[http://dx.doi.org/10.1136/gut.2006.107094] [PMID: 17229795]
[132]
Nakaya, M.; Tajima, M.; Kosako, H.; Nakaya, T.; Hashimoto, A.; Watari, K.; Nishihara, H.; Ohba, M.; Komiya, S.; Tani, N.; Nishida, M.; Taniguchi, H.; Sato, Y.; Matsumoto, M.; Tsuda, M.; Kuroda, M.; Inoue, K.; Kurose, H. GRK6 deficiency in mice causes autoimmune disease due to impaired apoptotic cell clearance. Nat. Commun., 2013, 4, 1532.
[http://dx.doi.org/10.1038/ncomms2540] [PMID: 23443560]
[133]
Chudziak, D.; Spohn, G.; Karpova, D.; Dauber, K.; Wiercinska, E.; Miettinen, J.A.; Papayannopoulou, T.; Bönig, H. Functional consequences of perturbed CXCL12 signal processing: analyses of immature hematopoiesis in GRK6-deficient mice. Stem Cells Dev., 2015, 24(6), 737-746.
[http://dx.doi.org/10.1089/scd.2014.0284] [PMID: 25316534]
[134]
Fong, A.M.; Premont, R.T.; Richardson, R.M.; Yu, Y.R.; Lefkowitz, R.J.; Patel, D.D. Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7478-7483.
[http://dx.doi.org/10.1073/pnas.112198299] [PMID: 12032308]
[135]
Arraes, S.M.; Freitas, M.S.; da Silva, S.V.; de Paula Neto, H.A.; Alves-Filho, J.C.; Auxiliadora Martins, M.; Basile-Filho, A.; Tavares-Murta, B.M.; Barja-Fidalgo, C.; Cunha, F.Q. Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood, 2006, 108(9), 2906-2913.
[http://dx.doi.org/10.1182/blood-2006-05-024638] [PMID: 16849637]
[136]
Chen, Z.; Gaudreau, R.; Le Gouill, C.; Rola-Pleszczynski, M.; Stanková, J. Agonist-induced internalization of leukotriene B(4) receptor 1 requires G-protein-coupled receptor kinase 2 but not arrestins. Mol. Pharmacol., 2004, 66(3), 377-386.
[http://dx.doi.org/10.1124/mol.66.3] [PMID: 15322228]
[137]
Loudon, R.P.; Perussia, B.; Benovic, J.L. Differentially regulated expression of the G-protein-coupled receptor kinases, betaARK and GRK6, during myelomonocytic cell development in vitro. Blood, 1996, 88(12), 4547-4557.
[PMID: 8977246]
[138]
Le, Q.; Yao, W.; Chen, Y.; Yan, B.; Liu, C.; Yuan, M.; Zhou, Y.; Ma, L. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis., 2016, 7(11)e2478
[http://dx.doi.org/10.1038/cddis.2016.377] [PMID: 27882944]
[139]
Jiang, D.; Xie, T.; Liang, J.; Noble, P.W. β-Arrestins in the immune system. Prog. Mol. Biol. Transl. Sci., 2013, 118, 359-393.
[http://dx.doi.org/10.1016/B978-0-12-394440-5.00014-0] [PMID: 23764061]
[140]
Cheung, R.; Malik, M.; Ravyn, V.; Tomkowicz, B.; Ptasznik, A.; Collman, R.G. An arrestin-dependent multi-kinase signaling complex mediates MIP-1beta/CCL4 signaling and chemotaxis of primary human macrophages. J. Leukoc. Biol., 2009, 86(4), 833-845.
[http://dx.doi.org/10.1189/jlb.0908551] [PMID: 19620252]
[141]
Barlic, J.; Andrews, J.D.; Kelvin, A.A.; Bosinger, S.E.; DeVries, M.E.; Xu, L.; Dobransky, T.; Feldman, R.D.; Ferguson, S.S.; Kelvin, D.J. Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat. Immunol., 2000, 1(3), 227-233.
[http://dx.doi.org/10.1038/79767] [PMID: 10973280]
[142]
Imamura, T.; Huang, J.; Dalle, S.; Ugi, S.; Usui, I.; Luttrell, L.M.; Miller, W.E.; Lefkowitz, R.J.; Olefsky, J.M. beta -Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J. Biol. Chem., 2001, 276(47), 43663-43667.
[http://dx.doi.org/10.1074/jbc.M105364200] [PMID: 11546805]
[143]
Basher, F.; Fan, H.; Zingarelli, B.; Borg, K.T.; Luttrell, L.M.; Tempel, G.E.; Halushka, P.V.; Cook, J.A. beta-Arrestin 2: A negative regulator of inflammatory responses in polymorphonuclear leukocytes. Int. J. Clin. Exp. Med., 2008, 1(1), 32-41.
[PMID: 19079685]
[144]
Witherow, D.S.; Garrison, T.R.; Miller, W.E.; Lefkowitz, R.J. beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proc. Natl. Acad. Sci. USA, 2004, 101(23), 8603-8607.
[http://dx.doi.org/10.1073/pnas.0402851101] [PMID: 15173580]
[145]
Yu, M.C.; Su, L.L.; Zou, L.; Liu, Y.; Wu, N.; Kong, L.; Zhuang, Z.H.; Sun, L.; Liu, H.P.; Hu, J.H.; Li, D.; Strominger, J.L.; Zang, J.W.; Pei, G.; Ge, B.X. An essential function for beta-arrestin 2 in the inhibitory signaling of natural killer cells. Nat. Immunol., 2008, 9(8), 898-907.
[http://dx.doi.org/10.1038/ni.1635] [PMID: 18604210]
[146]
Yue, R.; Kang, J.; Zhao, C.; Hu, W.; Tang, Y.; Liu, X.; Pei, G. Beta-arrestin1 regulates zebrafish hematopoiesis through binding to YY1 and relieving polycomb group repression. Cell, 2009, 139(3), 535-546.
[http://dx.doi.org/10.1016/j.cell.2009.08.038] [PMID: 19879840]
[147]
Sriram, K.; Insel, P.A.G. G protein-coupled receptors as targets for approved drugs: How many targets and how many drugs? Mol. Pharmacol., 2018, 93(4), 251-258.
[http://dx.doi.org/10.1124/mol.117.111062] [PMID: 29298813]
[148]
Arakaki, A.K.S.; Pan, W.A.; Trejo, J. GPCRs in cancer: Protease-activated receptors, endocytic adaptors and signaling. Int. J. Mol. Sci., 2018, 19(7)E1886
[http://dx.doi.org/10.3390/ijms19071886] [PMID: 29954076]
[149]
Bar-Shavit, R.; Maoz, M.; Kancharla, A.; Nag, J.K.; Agranovich, D.; Grisaru-Granovsky, S.; Uziely, B. G protein-coupled receptors in cancer. Int. J. Mol. Sci., 2016, 17(8)E1320
[http://dx.doi.org/10.3390/ijms17081320] [PMID: 27529230]
[150]
Lappano, R.; Maggiolini, M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat. Rev. Drug Discov., 2011, 10(1), 47-60.
[http://dx.doi.org/10.1038/nrd3320] [PMID: 21193867]
[151]
Liu, Y.; An, S.; Ward, R.; Yang, Y.; Guo, X.X.; Li, W.; Xu, T.R. G protein-coupled receptors as promising cancer targets. Cancer Lett., 2016, 376(2), 226-239.
[http://dx.doi.org/10.1016/j.canlet.2016.03.031] [PMID: 27000991]
[152]
O’Hayre, M.; Degese, M.S.; Gutkind, J.S. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr. Opin. Cell Biol., 2014, 27, 126-135.
[http://dx.doi.org/10.1016/j.ceb.2014.01.005] [PMID: 24508914]
[153]
O’Hayre, M.; Vázquez-Prado, J.; Kufareva, I.; Stawiski, E.W.; Handel, T.M.; Seshagiri, S.; Gutkind, J.S. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat. Rev. Cancer, 2013, 13(6), 412-424.
[http://dx.doi.org/10.1038/nrc3521] [PMID: 23640210]
[154]
Forbes, S.A.; Bindal, N.; Bamford, S.; Cole, C.; Kok, C.Y.; Beare, D.; Jia, M.; Shepherd, R.; Leung, K.; Menzies, A.; Teague, J.W.; Campbell, P.J.; Stratton, M.R.; Futreal, P.A. COSMIC: Mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res., 2011, 39(Database issue), D945-D950.
[http://dx.doi.org/10.1093/nar/gkq929] [PMID: 20952405]
[155]
Insel, P.A.; Sriram, K.; Wiley, S.Z.; Wilderman, A.; Katakia, T.; McCann, T.; Yokouchi, H.; Zhang, L.; Corriden, R.; Liu, D.; Feigin, M.E.; French, R.P.; Lowy, A.M.; Murray, F. GPCRomics: GPCR expression in cancer cells and tumors identifies new, potential biomarkers and therapeutic targets. Front. Pharmacol., 2018, 9, 431.
[http://dx.doi.org/10.3389/fphar.2018.00431] [PMID: 29872392]
[156]
Wobus, M.; Bornhäuser, M.; Jacobi, A.; Kräter, M.; Otto, O.; Ortlepp, C.; Guck, J.; Ehninger, G.; Thiede, C.; Oelschlägel, U. Association of the EGF-TM7 receptor CD97 expression with FLT3-ITD in acute myeloid leukemia. Oncotarget, 2015, 6(36), 38804-38815.
[http://dx.doi.org/10.18632/oncotarget.5661] [PMID: 26462154]
[157]
Maiga, A.; Lemieux, S.; Pabst, C.; Lavallée, V.P.; Bouvier, M.; Sauvageau, G.; Hébert, J. Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets. Blood Cancer J., 2016, 6(6)e431
[http://dx.doi.org/10.1038/bcj.2016.36] [PMID: 27258612]
[158]
Rombouts, E.J.C.; Pavic, B.; Löwenberg, B.; Ploemacher, R.E. Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood, 2004, 104(2), 550-557.
[http://dx.doi.org/10.1182/blood-2004-02-0566] [PMID: 15054042]
[159]
Spoo, A.C.; Lübbert, M.; Wierda, W.G.; Burger, J.A. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood, 2007, 109(2), 786-791.
[http://dx.doi.org/10.1182/blood-2006-05-024844] [PMID: 16888090]
[160]
Konoplev, S.; Rassidakis, G.Z.; Estey, E.; Kantarjian, H.; Liakou, C.I.; Huang, X.; Xiao, L.; Andreeff, M.; Konopleva, M.; Medeiros, L.J. Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer, 2007, 109(6), 1152-1156.
[http://dx.doi.org/10.1002/cncr.22510] [PMID: 17315232]
[161]
Chua, V.; Lapadula, D.; Randolph, C.; Benovic, J.L.; Wedegaertner, P.B.; Aplin, A.E. Dysregulated GPCR signaling and therapeutic options in uveal melanoma. Mol. Cancer Res., 2017, 15(5), 501-506.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0007] [PMID: 28223438]
[162]
Haouas, H.; Haouas, S.; Uzan, G.; Hafsia, A. Identification of new markers discriminating between myeloid and lymphoid acute leukemia. Hematology, 2010, 15(4), 193-203.
[http://dx.doi.org/10.1179/102453310X12647083620769] [PMID: 20670477]
[163]
Carreras, J.; Kikuti, Y.Y.; Beà, S.; Miyaoka, M.; Hiraiwa, S.; Ikoma, H.; Nagao, R.; Tomita, S.; Martin-Garcia, D.; Salaverria, I.; Sato, A.; Ichiki, A.; Roncador, G.; Garcia, J.F.; Ando, K.; Campo, E.; Nakamura, N. Clinicopathological characteristics and genomic profile of primary sinonasal tract diffuse large B cell lymphoma (DLBCL) reveals gain at 1q31 and RGS1 encoding protein; high RGS1 immunohistochemical expression associates with poor overall survival in DLBCL not otherwise specified (NOS). Histopathology, 2017, 70(4), 595-621.
[http://dx.doi.org/10.1111/his.13106] [PMID: 27775850]
[164]
Pise-Masison, C.A.; Radonovich, M.; Dohoney, K.; Morris, J.C.; O’Mahony, D.; Lee, M.J.; Trepel, J.; Waldmann, T.A.; Janik, J.E.; Brady, J.N. Gene expression profiling of ATL patients: Compilation of disease-related genes and evidence for TCF4 involvement in BIRC5 gene expression and cell viability. Blood, 2009, 113(17), 4016-4026.
[http://dx.doi.org/10.1182/blood-2008-08-175901] [PMID: 19131553]
[165]
Sethakorn, N.; Dulin, N.O. RGS expression in cancer: Oncomining the cancer microarray data. J. Recept. Signal Transduct. Res., 2013, 33(3), 166-171.
[http://dx.doi.org/10.3109/10799893.2013.773450] [PMID: 23464602]
[166]
Nogués, L.; Palacios-García, J.; Reglero, C.; Rivas, V.; Neves, M.; Ribas, C.; Penela, P.; Mayor, F., Jr G protein-coupled receptor kinases (GRKs) in tumorigenesis and cancer progression: GPCR regulators and signaling hubs. Semin. Cancer Biol., 2018, 48, 78-90.
[http://dx.doi.org/10.1016/j.semcancer.2017.04.013] [PMID: 28473253]
[167]
Nogués, L.; Reglero, C.; Rivas, V.; Neves, M.; Penela, P.; Mayor, F., Jr G-protein-coupled receptor kinase 2 as a potential modulator of the hallmarks of cancer. Mol. Pharmacol., 2017, 91(3), 220-228.
[http://dx.doi.org/10.1124/mol.116.107185] [PMID: 27895163]
[168]
Fereshteh, M.; Ito, T.; Kovacs, J.J.; Zhao, C.; Kwon, H.Y.; Tornini, V.; Konuma, T.; Chen, M.; Lefkowitz, R.J.; Reya, T. β-Arrestin2 mediates the initiation and progression of myeloid leukemia. Proc. Natl. Acad. Sci. USA, 2012, 109(31), 12532-12537.
[http://dx.doi.org/10.1073/pnas.1209815109] [PMID: 22773819]
[169]
Qin, R.; Li, K.; Qi, X.; Zhou, X.; Wang, L.; Zhang, P.; Zou, L. β-Arrestin1 promotes the progression of chronic myeloid leukaemia by regulating BCR/ABL H4 acetylation. Br. J. Cancer, 2014, 111(3), 568-576.
[http://dx.doi.org/10.1038/bjc.2014.335] [PMID: 24937675]
[170]
Pillai, S.; Trevino, J.; Rawal, B.; Singh, S.; Kovacs, M.; Li, X.; Schell, M.; Haura, E.; Bepler, G.; Chellappan, S. β-arrestin-1 mediates nicotine-induced metastasis through E2F1 target genes that modulate epithelial-mesenchymal transition. Cancer Res., 2015, 75(6), 1009-1020.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0681] [PMID: 25600647]
[171]
Rosanò, L.; Cianfrocca, R.; Masi, S.; Spinella, F.; Di Castro, V.; Biroccio, A.; Salvati, E.; Nicotra, M.R.; Natali, P.G.; Bagnato, A. Beta-arrestin links endothelin A receptor to beta-catenin signaling to induce ovarian cancer cell invasion and metastasis. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2806-2811.
[http://dx.doi.org/10.1073/pnas.0807158106] [PMID: 19202075]
[172]
Shenoy, S.K.; Han, S.; Zhao, Y.L.; Hara, M.R.; Oliver, T.; Cao, Y.; Dewhirst, M.W. β-arrestin1 mediates metastatic growth of breast cancer cells by facilitating HIF-1-dependent VEGF expression. Oncogene, 2012, 31(3), 282-292.
[http://dx.doi.org/10.1038/onc.2011.238] [PMID: 21685944]
[173]
Grainger, S.; Traver, D.; Willert, K. Wnt signaling in hematological malignancies. Prog. Mol. Biol. Transl. Sci., 2018, 153, 321-341.
[http://dx.doi.org/10.1016/bs.pmbts.2017.11.002] [PMID: 29389522]
[174]
Lynch, J.R.; Yi, H.; Casolari, D.A.; Voli, F.; Gonzales-Aloy, E.; Fung, T.K.; Liu, B.; Brown, A.; Liu, T.; Haber, M.; Norris, M.D.; Lewis, I.D.; So, C.W.E.; D’Andrea, R.J.; Wang, J.Y. Gaq signaling is required for the maintenance of MLL-AF9-induced acute myeloid leukemia. Leukemia, 2016, 30(8), 1745-1748.
[http://dx.doi.org/10.1038/leu.2016.24] [PMID: 26859074]
[175]
Uy, G.L.; Rettig, M.P.; Motabi, I.H.; McFarland, K.; Trinkaus, K.M.; Hladnik, L.M.; Kulkarni, S.; Abboud, C.N.; Cashen, A.F.; Stockerl-Goldstein, K.E.; Vij, R.; Westervelt, P.; DiPersio, J.F. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood, 2012, 119(17), 3917-3924.
[http://dx.doi.org/10.1182/blood-2011-10-383406] [PMID: 22308295]
[176]
Uy, G. L.; Rettig, M. P.; Stone, R. M.; Konopleva, M. Y.; Andreeff, M.; McFarland, K.; Shannon, W.; Fletcher, T. R.; Reineck, T.; Eades, W.; Stockerl-Goldstein, K.; Abboud, C. N.; Jacoby, M. A.; Westervelt, P.; DiPersio, J. F. A phase 1/2 study of chemosensitization with plerixafor plus G-CSF in relapsed or refractory acute myeloid leukemia. Blood Cancer J., 2017. 7, ARTN e542.
[177]
Shah, K.; Moharram, S.A.; Kazi, J.U. Acute leukemia cells resistant to PI3K/mTOR inhibition display upregulation of P2RY14 expression. Clin. Epigenetics, 2018, 10, 83.
[http://dx.doi.org/10.1186/s13148-018-0516-x] [PMID: 29951132]
[178]
Bonardi, F.; Fusetti, F.; Deelen, P.; van Gosliga, D.; Vellenga, E.; Schuringa, J.J. A proteomics and transcriptomics approach to identify leukemic stem cell (LSC) markers. Mol. Cell. Proteomics, 2013, 12(3), 626-637.
[http://dx.doi.org/10.1074/mcp.M112.021931] [PMID: 23233446]
[179]
Martin, G.H.; Desrichard, A.; Chung, S.S.; Woolthuis, C.; Hu, W.H.; Garrett-Bakelman, F.E.; Hamann, J.; Chan, T.; Park, C.Y. CD97 is a critical regulator of acute myeloid leukemia stem cell function.Blood, 2016. pii, jem.20190598
[180]
Coustan-Smith, E.; Song, G.; Shurtleff, S.; Yeoh, A.E.; Chng, W.J.; Chen, S.P.; Rubnitz, J.E.; Pui, C.H.; Downing, J.R.; Campana, D. Universal monitoring of minimal residual disease in acute myeloid leukemia. JCI Insight, 2018, 3(9), 98561.
[http://dx.doi.org/10.1172/jci.insight.98561] [PMID: 29720577]
[181]
Daria, D.; Kirsten, N.; Muranyi, A.; Mulaw, M.; Ihme, S.; Kechter, A.; Hollnagel, M.; Bullinger, L.; Döhner, K.; Döhner, H.; Feuring-Buske, M.; Buske, C. GPR56 contributes to the development of acute myeloid leukemia in mice. Leukemia, 2016, 30(8), 1734-1741.
[http://dx.doi.org/10.1038/leu.2016.76] [PMID: 27063597]
[182]
Pabst, C.; Bergeron, A.; Lavallée, V.P.; Yeh, J.; Gendron, P.; Norddahl, G.L.; Krosl, J.; Boivin, I.; Deneault, E.; Simard, J.; Imren, S.; Boucher, G.; Eppert, K.; Herold, T.; Bohlander, S.K.; Humphries, K.; Lemieux, S.; Hébert, J.; Sauvageau, G.; Barabé, F. GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood, 2016, 127(16), 2018-2027.
[http://dx.doi.org/10.1182/blood-2015-11-683649] [PMID: 26834243]
[183]
Saito, Y.; Kaneda, K.; Suekane, A.; Ichihara, E.; Nakahata, S.; Yamakawa, N.; Nagai, K.; Mizuno, N.; Kogawa, K.; Miura, I.; Itoh, H.; Morishita, K. Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56. Leukemia, 2013, 27(8), 1637-1649.
[http://dx.doi.org/10.1038/leu.2013.75] [PMID: 23478665]
[184]
Dietrich, P.A.; Yang, C.; Leung, H.H.; Lynch, J.R.; Gonzales, E.; Liu, B.; Haber, M.; Norris, M.D.; Wang, J.; Wang, J.Y. GPR84 sustains aberrant β-catenin signaling in leukemic stem cells for maintenance of MLL leukemogenesis. Blood, 2014, 124(22), 3284-3294.
[http://dx.doi.org/10.1182/blood-2013-10-532523] [PMID: 25293777]
[185]
Prabhu, V.V.; Madhukar, N.; Tarapore, R.; Garnett, M.; McDermott, U.; Benes, C.; Charter, N.; Deacon, S.; Oster, W.; Andreeff, M.; Elemento, O.; Stogniew, M.; Allen, J. Potent anti-cancer effects of selective GPR132/G2A agonist imipridone ONC212 in leukemia and lymphoma Proceedings of the American Association for Cancer Research Annual Meeting, 2017, p. 77.
[186]
Nii, T.; Ishizawa, J.; Prabhu, V.V.; Ruvolo, V.; Madhukar, N.; Zhao, R.; Mu, H.; Heese, L.; Kojima, K.; Garnett, M.; McDermott, U.; Benes, C.; Charter, N.; Deacon, S.; Ele-mento, O.; Allen, J.E.; Oster, W.; Stogniew, M.; Andreeff, M. The novel imipridone ONC212 highly synergizes with the BCL-2 inhibitor ABT-199 in AML and activates orphan receptor GPR132. Proceedings of the American Association for Cancer Research Annual Meeting 2018, 2018.
[187]
Oncoceutics, Oncoceutics and MD Anderson Expand Alliance to Cover Imipridone ONC212, https://oncoceutics.com/oncoceutics-md-anderson-expand-alliance-cover-imipridone-onc212/2019.
[188]
Boyd, A.L.; Aslostovar, L.; Reid, J.; Ye, W.; Tanasijevic, B.; Porras, D.P.; Shapovalova, Z.; Almakadi, M.; Foley, R.; Leber, B.; Xenocostas, A.; Bhatia, M. Identification of chemotherapy-induced leukemic-regenerating cells re-veals a transient vulnerability of human AML recurrence. Cancer Cell, 2018, •••, 34.
[189]
Charuchandra, S. Targeting the transient group of cells could prevent recurrence of the disease. TheScientist 2018 December, 2018.
[190]
Bosman, M.C.; Schuringa, J.J.; Vellenga, E. Constitutive NF-κB activation in AML: Causes and treatment strategies. Crit. Rev. Oncol. Hematol., 2016, 98, 35-44.
[http://dx.doi.org/10.1016/j.critrevonc.2015.10.001] [PMID: 26490297]
[191]
de Jonge, H.J.M.; Woolthuis, C.M.; Vos, A.Z.; Mulder, A.; van den Berg, E.; Kluin, P.M.; van der Weide, K.; de Bont, E.S.J.M.; Huls, G.; Vellenga, E.; Schuringa, J.J. Gene expression profiling in the leukemic stem cell-enriched CD34+ fraction identifies target genes that predict prognosis in normal karyotype AML. Leukemia, 2011, 25(12), 1825-1833.
[http://dx.doi.org/10.1038/leu.2011.172] [PMID: 21760593]
[192]
Wang, Y.; Krivtsov, A.V.; Sinha, A.U.; North, T.E.; Goessling, W.; Feng, Z.; Zon, L.I.; Armstrong, S.A. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science, 2010, 327(5973), 1650-1653.
[http://dx.doi.org/10.1126/science.1186624] [PMID: 20339075]
[193]
Muntean, A.G.; Hess, J.L. The pathogenesis of mixed-lineage leukemia. Annu. Rev. Pathol., 2012, 7, 283-301.
[http://dx.doi.org/10.1146/annurev-pathol-011811-132434] [PMID: 22017583]
[194]
Reynaud, S.; Malissein, E.; Donnard, M.; Bordessoule, D.; Turlure, P.; Trimoreau, F.; Denizot, Y. Functional platelet-activating factor receptors in immature forms of leukemic blasts. Leuk. Res., 2007, 31(3), 399-402.
[http://dx.doi.org/10.1016/j.leukres.2006.06.002] [PMID: 16837045]
[195]
Marjanovic, I.; Kostic, J.; Stanic, B.; Pejanovic, N.; Lucic, B.; Karan-Djurasevic, T.; Janic, D.; Dokmanovic, L.; Jankovic, S.; Vukovic, N.S.; Tomin, D.; Perisic, O.; Rakocevic, G.; Popovic, M.; Pavlovic, S.; Tosic, N. Parallel targeted next generation sequencing of childhood and adult acute myeloid leukemia patients reveals uniform genomic profile of the disease. Tumour Biol., 2016, 37(10), 13391-13401.
[http://dx.doi.org/10.1007/s13277-016-5142-7] [PMID: 27460089]
[196]
Lamba, S.; Felicioni, L.; Buttitta, F.; Bleeker, F.E.; Malatesta, S.; Corbo, V.; Scarpa, A.; Rodolfo, M.; Knowles, M.; Frattini, M.; Marchetti, A.; Bardelli, A. Mutational profile of GNAQQ209 in human tumors. PLoS One, 2009, 4(8)e6833
[http://dx.doi.org/10.1371/journal.pone.0006833] [PMID: 19718445]
[197]
Schwäble, J.; Choudhary, C.; Thiede, C.; Tickenbrock, L.; Sargin, B.; Steur, C.; Rehage, M.; Rudat, A.; Brandts, C.; Berdel, W.E.; Müller-Tidow, C.; Serve, H. RGS2 is an important target gene of Flt3-ITD mutations in AML and functions in myeloid differentiation and leukemic transformation. Blood, 2005, 105(5), 2107-2114.
[http://dx.doi.org/10.1182/blood-2004-03-0940] [PMID: 15536149]
[198]
Mosakhani, N.; Räty, R.; Tyybäkinoja, A.; Karjalainen-Lindsberg, M.L.; Elonen, E.; Knuutila, S. MicroRNA profiling in chemoresistant and chemosensitive acute myeloid leukemia. Cytogenet. Genome Res., 2013, 141(4), 272-276.
[http://dx.doi.org/10.1159/000351219] [PMID: 23689423]
[199]
Chatzikyriakidou, A.; Voulgari, P.V.; Georgiou, I.; Drosos, A.A. miRNAs and related polymorphisms in rheumatoid arthritis susceptibility. Autoimmun. Rev., 2012, 11(9), 636-641.
[http://dx.doi.org/10.1016/j.autrev.2011.11.004] [PMID: 22100329]
[200]
Hooks, S.B.; Callihan, P.; Altman, M.K.; Hurst, J.H.; Ali, M.W.; Murph, M.M. Regulators of G-Protein signaling RGS10 and RGS17 regulate chemoresistance in ovarian cancer cells. Mol. Cancer, 2010, 9, 289.
[http://dx.doi.org/10.1186/1476-4598-9-289] [PMID: 21044322]
[201]
Smith, C.C.; Shah, N.P. The role of kinase inhibitors in the treatment of patients with acute myeloid leukemia. In American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting, , pp. 313-318.
[http://dx.doi.org/10.1200/EdBook_AM.2013.33.313] [PMID: 23714533]
[202]
Xu, Q.; Simpson, S.E.; Scialla, T.J.; Bagg, A.; Carroll, M. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood, 2003, 102(3), 972-980.
[http://dx.doi.org/10.1182/blood-2002-11-3429] [PMID: 12702506]
[203]
Martelli, A.M.; Evangelisti, C.; Chiarini, F.; McCubrey, J.A. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget, 2010, 1(2), 89-103.
[http://dx.doi.org/10.18632/oncotarget.114] [PMID: 20671809]
[204]
Evron, T.; Daigle, T.L.; Caron, M.G. GRK2: Multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol. Sci., 2012, 33(3), 154-164.
[http://dx.doi.org/10.1016/j.tips.2011.12.003] [PMID: 22277298]
[205]
Staal, F.J.; Famili, F.; Garcia Perez, L.; Pike-Overzet, K. Aberrant Wnt signaling in leukemia. Cancers (Basel), 2016, 8(9)E78
[http://dx.doi.org/10.3390/cancers8090078] [PMID: 27571104]
[206]
Minke, K.S.; Staib, P.; Puetter, A.; Gehrke, I.; Gandhirajan, R.K.; Schlösser, A.; Schmitt, E.K.; Hallek, M.; Kreuzer, K.A. Small molecule inhibitors of WNT signaling effectively induce apoptosis in acute myeloid leukemia cells. Eur. J. Haematol., 2009, 82(3), 165-175.
[http://dx.doi.org/10.1111/j.1600-0609.2008.01188.x] [PMID: 19067737]
[207]
Jimenez, C.R.; Verheul, H.M. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications. In American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting, , pp. e504-10.
[http://dx.doi.org/10.14694/EdBook_AM.2014.34.e504] [PMID: 24857147]
[208]
Ebhardt, H.A.; Root, A.; Sander, C.; Aebersold, R. Applications of targeted proteomics in systems biology and translational medicine. Proteomics, 2015, 15(18), 3193-3208.
[http://dx.doi.org/10.1002/pmic.201500004] [PMID: 26097198]
[209]
Füzéry, A.K.; Levin, J.; Chan, M.M.; Chan, D.W. Translation of proteomic biomarkers into FDA approved cancer diagnostics: Issues and challenges. Clin. Proteomics, 2013, 10(1), 13.
[http://dx.doi.org/10.1186/1559-0275-10-13] [PMID: 24088261]
[210]
Maes, E.; Mertens, I.; Valkenborg, D.; Pauwels, P.; Rolfo, C.; Baggerman, G. Proteomics in cancer research: Are we ready for clinical practice? Crit. Rev. Oncol. Hematol., 2015, 96(3), 437-448.
[http://dx.doi.org/10.1016/j.critrevonc.2015.07.006] [PMID: 26277237]
[211]
Boja, E.S.; Fehniger, T.E.; Baker, M.S.; Marko-Varga, G.; Rodriguez, H. Analytical validation considerations of multiplex mass-spectrometry-based proteomic platforms for measuring protein biomarkers. J. Proteome Res., 2014, 13(12), 5325-5332.
[http://dx.doi.org/10.1021/pr500753r] [PMID: 25171765]
[212]
Kondo, T. Inconvenient truth: cancer biomarker development by using proteomics. Biochim. Biophys. Acta, 2014, 1844(5), 861-865.
[http://dx.doi.org/10.1016/j.bbapap.2013.07.009] [PMID: 23896458]
[213]
Kelstrup, C.D.; Bekker-Jensen, D.B.; Arrey, T.N.; Hogrebe, A.; Harder, A.; Olsen, J.V. Performance evaluation of the Q exactive HF-X for shotgun proteomics. J. Proteome Res., 2018, 17(1), 727-738.
[http://dx.doi.org/10.1021/acs.jproteome.7b00602] [PMID: 29183128]
[214]
Hernandez-Valladares, M.; Aasebø, E.; Mjaavatten, O.; Vaudel, M.; Bruserud, Ø.; Berven, F.; Selheim, F. Reliable FASP-based procedures for optimal quantitative proteomic and phosphoproteomic analysis on samples from acute myeloid leukemia patients. Biol. Proced. Online, 2016, 18, 13.
[http://dx.doi.org/10.1186/s12575-016-0043-0] [PMID: 27330413]
[215]
Aasebø, E.; Mjaavatten, O.; Vaudel, M.; Farag, Y.; Selheim, F.; Berven, F.; Bruserud, Ø.; Hernandez-Valladares, M. Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows. J. Proteomics, 2016, 145, 214-225.
[http://dx.doi.org/10.1016/j.jprot.2016.03.049] [PMID: 27107777]
[216]
Schaab, C.; Oppermann, F.S.; Klammer, M.; Pfeifer, H.; Tebbe, A.; Oellerich, T.; Krauter, J.; Levis, M.; Perl, A.E.; Daub, H.; Steffen, B.; Godl, K.; Serve, H. Global phosphoproteome analysis of human bone marrow reveals predictive phosphorylation markers for the treatment of acute myeloid leukemia with quizartinib. Leukemia, 2014, 28(3), 716-719.
[http://dx.doi.org/10.1038/leu.2013.347] [PMID: 24247654]
[217]
Gregorc, V.; Novello, S.; Lazzari, C.; Barni, S.; Aieta, M.; Mencoboni, M.; Grossi, F.; De Pas, T.; de Marinis, F.; Bearz, A.; Floriani, I.; Torri, V.; Bulotta, A.; Cattaneo, A.; Grigorieva, J.; Tsypin, M.; Roder, J.; Doglioni, C.; Levra, M.G.; Petrelli, F.; Foti, S.; Viganò, M.; Bachi, A.; Roder, H. Predictive value of a proteomic signature in patients with non-small-cell lung cancer treated with second-line erlotinib or chemotherapy (PROSE): a biomarker-stratified, randomised phase 3 trial. Lancet Oncol., 2014, 15(7), 713-721.
[http://dx.doi.org/10.1016/S1470-2045(14)70162-7] [PMID: 24831979]
[218]
Aasebo, E.; Forthun, R.B.; Berven, F.; Selheim, F.; Her-nandez-Valladares, M. Global cell proteome profiling, phospho-signaling and quantitative proteomics for identification of new biomarkers in acute myeloid leukemia patients. Curr. Pharm. Biotechnol., 2016, 17, 52-70.
[http://dx.doi.org/10.2174/1389201016666150826115626] [PMID: 26306748]
[219]
Peterson, A.C.; Russell, J.D.; Bailey, D.J.; Westphall, M.S.; Coon, J.J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteomics, 2012, 11(11), 1475-1488.
[http://dx.doi.org/10.1074/mcp.O112.020131] [PMID: 22865924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy