Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Molecular Mechanisms Underlying Cancer Preventive and Therapeutic Potential of Algal Polysaccharides

Author(s): Soraya Sajadimajd, Saeideh Momtaz, Pouya Haratipour, Fardous F. El-Senduny, Amin Iran Panah, Jafar Navabi, Zhaleh Soheilikhah, Mohammad Hosein Farzaei* and Roja Rahimi*

Volume 25, Issue 11, 2019

Page: [1210 - 1235] Pages: 26

DOI: 10.2174/1381612825666190425155126

Price: $65

Abstract

Background: Algal polysaccharide and oligosaccharide derivatives have been shown to possess a variety of therapeutic potentials and drug delivery applications. Algal polysaccharides contain sulfated sugar monomers derived from seaweed including brown, red, and green microalgae. Here, in this review, the recent progress of algal polysaccharides’ therapeutic applications as anticancer agents, as well as underlying cellular and molecular mechanisms was investigated. Moreover, recent progress in the structural chemistry of important polysaccharides with anticancer activities were illustrated.

Methods: Electronic databases including “Scopus”, “PubMed”, and “Cochrane library” were searched using the keywords “cancer”, or “tumor”, or “malignancy” in title/abstract, along with “algae”, or “algal” in the whole text until July 2018. Only English language papers were included.

Results: The most common polysaccharides involved in cancer management were sulfated polysaccharides, Fucoidans, Carageenans, and Ulvan from different species of algae that have been recognized in vitro and in vivo. The underlying anticancer mechanisms of algal polysaccharides included induction of apoptosis, cell cycle arrest, modulation of transduction signaling pathways, suppression of migration and angiogenesis, as well as activation of immune responses and antioxidant system. VEGF/VEGFR2, TGFR/Smad/Snail, TLR4/ROS/ER, CXCL12/ CXCR4, TGFR/Smad7/Smurf2, PI3K/AKT/mTOR, PBK/TOPK, and β-catenin/Wnt are among the main cellular signaling pathways which have a key role in the preventive and therapeutic effects of algal polysaccharides against oncogenesis.

Conclusion: Algal polysaccharides play a crucial role in the management of cancer and may be considered the next frontier in pharmaceutical research. Further well-designed clinical trials are mandatory to evaluate the efficacy and safety of algal polysaccharides in patients with cancer.

Keywords: Algal polysaccharide, sulfated polysaccharide, anticancer, antioxidant, antitumor, anti-inflammatory.

[1]
Knutsen S. A modified system of nomenclature for red algal galactans. Bot Mar 1994; 37(2): 163-70.
[http://dx.doi.org/10.1515/botm.1994.37.2.163]
[2]
Duckworth M, Yaphe W. The structure of agar: Part I. Fractionation of a complex mixture of polysaccharides. Carbohydr Res 1971; 16(1): 189-97.
[http://dx.doi.org/10.1016/S0008-6215(00)86113-3]
[3]
Ahn G, Lee W, Kim KN, et al. A sulfated polysaccharide of Ecklonia cava inhibits the growth of colon cancer cells by inducing apoptosis. EXCLI J 2015; 14: 294-306.
[PMID: 26417363]
[4]
Bakunina I, Chadova O, Malyarenko O, Ermakova S. The effect of fucoidan from the brown alga Fucus evanescence on the activity of α-N-acetylgalactosaminidase of human colon carcinoma cells. Mar Drugs 2018; 16(5): 155.
[http://dx.doi.org/10.3390/md16050155] [PMID: 29748462]
[5]
Bourgougnon N, Roussakis C, Kornprobst JM, Lahaye M. Effects in vitro of sulfated polysaccharide from Schizymenia dubyi (Rhodophyta, Gigartinales) on a non-small-cell bronchopulmonary carcinoma line (NSCLC-N6). Cancer Lett 1994; 85(1): 87-92.
[http://dx.doi.org/10.1016/0304-3835(94)90243-7] [PMID: 7923107]
[6]
Abd-Ellatef GF, Ahmed OM, Abdel-Reheim ES, Abdel-Hamid AZ. Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation. Breast Cancer (Dove Med Press) 2017; 9: 67-83.
[http://dx.doi.org/10.2147/BCTT.S125165] [PMID: 28280387]
[7]
Shao P, Chen X, Sun P. In vitro antioxidant and antitumor activities of different sulfated polysaccharides isolated from three algae. Int J Biol Macromol 2013; 62: 155-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.023] [PMID: 23994786]
[8]
Alekseyenko TV, Zhanayeva SY, Venediktova AA, et al. Antitumor and antimetastatic activity of fucoidan, a sulfated polysaccharide isolated from the Okhotsk Sea Fucus evanescens brown alga. Bull Exp Biol Med 2007; 143(6): 730-2.
[http://dx.doi.org/10.1007/s10517-007-0226-4] [PMID: 18239813]
[9]
Tang X, Li J, Xin X, Geng M. A new marine-derived sulfated polysaccharide from brown alga suppresses tumor metastasis both in vitro and in vivo. Cancer Biol Ther 2006; 5(11): 1474-80.
[http://dx.doi.org/10.4161/cbt.5.11.3278] [PMID: 17012853]
[10]
Chen M-C, Hsu WL, Hwang PA, Chou TC. Low molecular weight fucoidan inhibits tumor angiogenesis through downregulation of HIF-1/VEGF signaling under hypoxia. Mar Drugs 2015; 13(7): 4436-51.
[http://dx.doi.org/10.3390/md13074436] [PMID: 26193287]
[11]
Cong Q, Xiao F, Liao W, Dong Q, Ding K. Structure and biological activities of an alginate from Sargassum fusiforme, and its sulfated derivative. Int J Biol Macromol 2014; 69: 252-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.05.056] [PMID: 24877643]
[12]
Almeida-Lima J, Costa LS, Silva NB, et al. Evaluating the possible genotoxic, mutagenic and tumor cell proliferation-inhibition effects of a non-anticoagulant, but antithrombotic algal heterofucan. J Appl Toxicol 2010; 30(7): 708-15.
[http://dx.doi.org/10.1002/jat.1547] [PMID: 20589741]
[13]
Tominaga A, Okuyama H, Fukuoka S, et al. Effects of edible algae polysaccharides on allergic, inflammatory, and anti-tumor responses through toll-like receptor,4. Antiinflamm Antiallergy Agents Med Chem 2010; 09(3): 238-50.
[14]
Ahmed OM. Preventive effect of Spirulina versicolor and Enteromorpha flexuosa ethanolic extracts against diethylnitrosamine/benzo (a) pyreneinduced hepatocarcinogenecity in rats. J Int Acad Res Multidiscipl 2014; 2(6): 633-50.
[15]
Sarfati D, Koczwara B, Jackson C. The impact of comorbidity on cancer and its treatment. CA Cancer J Clin 2016; 66(4): 337-50.
[http://dx.doi.org/10.3322/caac.21342] [PMID: 26891458]
[16]
Senthilkumar K, Kim S-K. Anticancer effects of fucoidan. Adv Food Nutr Res 2014; 72: 195-213.
[17]
Heymach J, Krilov L, Alberg A, et al. Clinical cancer advances 2018: Annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol 2018; 36(10): 1020-44.
[http://dx.doi.org/10.1200/JCO.2017.77.0446] [PMID: 29380678]
[18]
Li Y, Thambi T, Lee DS. Co‐delivery of drugs and genes using polymeric nanoparticles for synergistic cancer therapeutic effects. Adv Healthc Mater 2018; 7(1)1700886
[http://dx.doi.org/10.1002/adhm.201700886] [PMID: 28941203]
[19]
Miao L, Guo S, Lin CM, Liu Q, Huang L. Nanoformulations for combination or cascade anticancer therapy. Adv Drug Deliv Rev 2017; 115: 3-22.
[http://dx.doi.org/10.1016/j.addr.2017.06.003] [PMID: 28624477]
[20]
Ahuja N, Sharma AR, Baylin SB. Epigenetic therapeutics: A new weapon in the war against cancer. Annu Rev Med 2016; 67: 73-89.
[http://dx.doi.org/10.1146/annurev-med-111314-035900] [PMID: 26768237]
[21]
Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S. Use of epigenetic drugs in disease: An overview. Genet Epigenet 2014; 6: 9-19.
[http://dx.doi.org/10.4137/GEG.S12270] [PMID: 25512710]
[22]
Amer MH. Gene therapy for cancer: present status and future perspective. Mol Cell Ther 2014; 2(1): 27.
[http://dx.doi.org/10.1186/2052-8426-2-27] [PMID: 26056594]
[23]
Annan AC. Gene therapy in the treatment of human cancer. Mol Basis Hum Cancer 2017; pp. 811-41.
[http://dx.doi.org/10.1007/978-1-59745-458-2_42]
[24]
Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. Lancet Oncol 2012; 13(6): e249-58.
[http://dx.doi.org/10.1016/S1470-2045(12)70073-6] [PMID: 22652233]
[25]
Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol 2007; 302(1): 1-12.
[http://dx.doi.org/10.1016/j.ydbio.2006.08.028] [PMID: 16989803]
[26]
Liu X, Sempere LF, Ouyang H, et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010; 120(4): 1298-309.
[http://dx.doi.org/10.1172/JCI39566] [PMID: 20237410]
[27]
Sun W. Recent advances in cancer immunotherapy. J Hematol Oncol 2017; 10(96)
[http://dx.doi.org/10.1186/s13045-017-0460-9]
[28]
Kang YP, Ward NP, DeNicola GM. Recent advances in cancer metabolism: A technological perspective. Exp Mol Med 2018; 50(4): 31.
[http://dx.doi.org/10.1038/s12276-018-0027-z] [PMID: 29657324]
[29]
Søgaard M, Thomsen RW, Bossen KS, Sørensen HT, Nørgaard M. The impact of comorbidity on cancer survival: A review. Clin Epidemiol 2013; 5(Suppl. 1): 3-29.
[http://dx.doi.org/10.2147/CLEP.S47150] [PMID: 24227920]
[30]
Sanchez-Vega F. Oncogenic signaling pathways in the cancer genome atlas. Cell 2018; 173(2): 321-37.
[31]
Ochwang’i DO, Kimwele CN, Oduma JA, Gathumbi PK, Mbaria JM, Kiama SG. Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. J Ethnopharmacol 2014; 151(3): 1040-55.
[http://dx.doi.org/10.1016/j.jep.2013.11.051] [PMID: 24362078]
[32]
Oertell K, Kashemirov BA, Negahbani A, et al. Probing DNA base-dependent leaving group kinetic effects on the DNA polymerase transition state. Biochemistry 2018; 57(26): 3925-33.
[http://dx.doi.org/10.1021/acs.biochem.8b00417] [PMID: 29889506]
[33]
Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60(5): 277-300.
[http://dx.doi.org/10.3322/caac.20073] [PMID: 20610543]
[34]
Alba K, Kontogiorgos V. Seaweed Polysaccharides 2015.
[35]
Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res 1946; 6(4): 205-16.
[PMID: 21018724]
[36]
Xu H, Xu X. Polysaccharide, a potential anti-cancer drug with high efficacy and safety. Adv Oncol Res Treat 2016; 2(110): 2.
[37]
Hoek C. Algae: An introduction to phycology. Cambridge university press 1995.
[38]
Canter-Lund H, Lund J. Freshwater algae: their microscopic world explored 1995.
[39]
Schneider T, Ehrig K, Liewert I, Alban S. Interference with the CXCL12/CXCR4 axis as potential antitumor strategy: superiority of a sulfated galactofucan from the brown alga Saccharina latissima and fucoidan over heparins. Glycobiology 2015; 25(8): 812-24.
[http://dx.doi.org/10.1093/glycob/cwv022] [PMID: 25878069]
[40]
Vishchuk OS, Ermakova SP, Zvyagintseva TN. Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: isolation, structural characteristics, and antitumor activity. Carbohydr Res 2011; 346(17): 2769-76.
[http://dx.doi.org/10.1016/j.carres.2011.09.034] [PMID: 22024567]
[41]
Vishchuk OS, Ermakova SP, Zvyagintseva TN. The fucoidans from brown algae of Far-Eastern seas: Anti-tumor activity and structure-function relationship. Food Chem 2013; 141(2): 1211-7.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.065] [PMID: 23790906]
[42]
Vishchuk OS, Sun H, Wang Z, et al. PDZ-binding kinase/T-LAK cell-originated protein kinase is a target of the fucoidan from brown alga Fucus evanescens in the prevention of EGF-induced neoplastic cell transformation and colon cancer growth. Oncotarget 2016; 7(14): 18763-73.
[http://dx.doi.org/10.18632/oncotarget.7708] [PMID: 26936995]
[43]
Kylin H. Biochemistry of sea algae. HZ Physiol Chem 1913; 83(171197): 3.
[44]
Maruyama H. The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifida 7: 1415-7.2006;
[45]
Lee J-B. Structure of rhamnan sulfate from the green alga Monostroma nitidum and its anti-herpetic effect. Carbohydr Polym 2010; 81(3): 572-7.
[http://dx.doi.org/10.1016/j.carbpol.2010.03.014]
[46]
Kwon MJ, Nam TJ. A polysaccharide of the marine alga Capsosiphon fulvescens induces apoptosis in AGS gastric cancer cells via an IGF-IR-mediated PI3K/Akt pathway. Cell Biol Int 2007; 31(8): 768-75.
[http://dx.doi.org/10.1016/j.cellbi.2007.01.010] [PMID: 17344071]
[47]
Yu Q, Yan J, Wang S, et al. Antiangiogenic effects of GFP08, an agaran-type polysaccharide isolated from Grateloupia filicina. Glycobiology 2012; 22(10): 1343-52.
[http://dx.doi.org/10.1093/glycob/cws096] [PMID: 22707571]
[48]
Estevez JM, Ciancia M, Cerezo AS. The system of low-molecular-weight carrageenans and agaroids from the room-temperature-extracted fraction of Kappaphycus alvarezii. Carbohydr Res 2000; 325(4): 287-99.
[http://dx.doi.org/10.1016/S0008-6215(00)00006-9] [PMID: 10839122]
[49]
Raman M, Doble M. κ-Carrageenan from marine red algae, Kappaphycus alvarezii-A functional food to prevent colon carcinogenesis. J Funct Foods 2015; 15: 354-64.
[http://dx.doi.org/10.1016/j.jff.2015.03.037]
[50]
Murad H, Ghannam A, Al-Ktaifani M, Abbas A, Hawat M. Algal sulfated carrageenan inhibits proliferation of MDA-MB-231 cells via apoptosis regulatory genes. Mol Med Rep 2015; 11(3): 2153-8.
[http://dx.doi.org/10.3892/mmr.2014.2915] [PMID: 25384757]
[51]
Funami T. Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocoll 2007; 21(4): 617-29.
[http://dx.doi.org/10.1016/j.foodhyd.2006.07.013]
[52]
Zhou G, Sun Y, Xin H, Zhang Y, Li Z, Xu Z. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacol Res 2004; 50(1): 47-53.
[http://dx.doi.org/10.1016/j.phrs.2003.12.002] [PMID: 15082028]
[53]
Zhang C, Yang F, Zhang XW, et al. Grateloupia longifolia polysaccharide inhibits angiogenesis by downregulating tissue factor expression in HMEC-1 endothelial cells. Br J Pharmacol 2006; 148(6): 741-51.
[http://dx.doi.org/10.1038/sj.bjp.0706741] [PMID: 16715123]
[54]
Kurd F, Samavati V. Water soluble polysaccharides from Spirulina platensis: extraction and in vitro anti-cancer activity. Int J Biol Macromol 2015; 74: 498-506.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.005] [PMID: 25583023]
[55]
Yuan Y, Macquarrie D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr Polym 2015; 129: 101-7.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.057] [PMID: 26050894]
[56]
Sousa AM, Alves VD, Morais S, Delerue-Matos C, Gonçalves MP. Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: evaluation of a microwave-assisted process using response surface methodology. Bioresour Technol 2010; 101(9): 3258-67.
[http://dx.doi.org/10.1016/j.biortech.2009.12.061] [PMID: 20056408]
[57]
Tsubaki S, Oono K, Hiraoka M, Onda A, Mitani T. Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chem 2016; 210: 311-6.
[http://dx.doi.org/10.1016/j.foodchem.2016.04.121] [PMID: 27211652]
[58]
Jiao L, Li X, Li T, et al. Characterization and anti-tumor activity of alkali-extracted polysaccharide from Enteromorpha intestinalis. Int Immunopharmacol 2009; 9(3): 324-9.
[http://dx.doi.org/10.1016/j.intimp.2008.12.010] [PMID: 19159698]
[59]
Govindan S, Thomas J, Kurup GM. In vitro antioxidant and antitumor activity of polysaccharide isolated from Ulva fasciata. Int J Pharma Bio Sci 2012; 3(3): 238-46.
[60]
Sevag MG. Eine neue physikalische Enteiweißungsmethode zur Darstellung biologisch wirksamer Substanzen. Biochem Z 1934; 273(419): 102.
[61]
Xie P, Fujii I, Zhao J, Shinohara M, Matsukura M. A novel polysaccharide derived from algae extract induces apoptosis and cell cycle arrest in human gastric carcinoma MKN45 cells via ROS/JNK signaling pathway. Int J Oncol 2016; 49(4): 1561-8.
[http://dx.doi.org/10.3892/ijo.2016.3658] [PMID: 27633119]
[62]
Robertson WV, Ropes MW, Bauer W. The degradation of mucins and polysaccharides by ascorbic acid and hydrogen peroxide. Biochem J 1941; 35(8-9): 903-8.
[http://dx.doi.org/10.1042/bj0350903] [PMID: 16747457]
[63]
Jin W, Zhang W, Liu G, et al. The structure-activity relationship between polysaccharides from Sargassum thunbergii and anti-tumor activity. Int J Biol Macromol 2017; 105(Pt 1): 686-92.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.089] [PMID: 28716753]
[64]
Jin W, Liu G, Zhong W, Sun C, Zhang Q. Polysaccharides from Sargassum thunbergii: Monthly variations and anti-complement and anti-tumour activities. Int J Biol Macromol 2017; 105(Pt 2): 1526-31.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.104] [PMID: 28528951]
[65]
Mourão PA, Bastos IG. Highly acidic glycans from sea cucumbers. Isolation and fractionation of fucose-rich sulfated polysaccharides from the body wall of Ludwigothurea grisea. Eur J Biochem 1987; 166(3): 639-45.
[http://dx.doi.org/10.1111/j.1432-1033.1987.tb13561.x] [PMID: 3038547]
[66]
Kloareg B, Quatrano R. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Rev 1988; 26: 259-315.
[67]
Bisgrove SR, Kropf DL. Cell wall deposition during morphogenesis in fucoid algae. Planta 2001; 212(5-6): 648-58.
[http://dx.doi.org/10.1007/s004250000434] [PMID: 11346938]
[68]
Jose GM, Radhakrishnan A, Kurup GM. Antioxidant and antimitotic activities of sulfated polysaccharide from marine brown algae Padina tetrastromatica. J Phytol 2015; 7: 39-51.
[69]
Wang X, Chen Y, Wang J, Liu Z, Zhao S. Antitumor activity of a sulfated polysaccharide from Enteromorpha intestinalis targeted against hepatoma through mitochondrial pathway. Tumour Biol 2014; 35(2): 1641-7.
[http://dx.doi.org/10.1007/s13277-013-1226-9] [PMID: 24197975]
[70]
Marudhupandi T, Ajith Kumar TT, Lakshmanasenthil S, Suja G, Vinothkumar T. In vitro anticancer activity of fucoidan from Turbinaria conoides against A549 cell lines. Int J Biol Macromol 2015; 72: 919-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.005] [PMID: 25451746]
[71]
Lins KO, Bezerra DP, Alves AP, et al. Antitumor properties of a sulfated polysaccharide from the red seaweed Champia feldmannii (Diaz-Pifferer). J Appl Toxicol 2009; 29(1): 20-6.
[http://dx.doi.org/10.1002/jat.1374] [PMID: 18651721]
[72]
Kang Y, Li H, Wu J, et al. Transcriptome profiling reveals the antitumor mechanism of polysaccharide from marine algae Gracilariopsis lemaneiformis. PLoS One 2016; 11(6)e0158279
[http://dx.doi.org/10.1371/journal.pone.0158279] [PMID: 27355352]
[73]
Jose GM, Kurup GM. ulfated polysaccharides from Padina tetrastromatica arrest cell cycle, prevent metastasis and downregulate angiogenic mediators in HeLa cells. Ioactive Carbohydr Dietary Fibre 2017; 12(7): 13.
[http://dx.doi.org/10.1016/j.bcdf.2017.10.001]
[74]
Jiao L. Antitumor and immunomodulating activity of polysaccharides from Enteromorpha intestinalis. Biotechnol Bioprocess Eng; BBE 2010; 15(3): 421-8.
[http://dx.doi.org/10.1007/s12257-008-0269-z]
[75]
Isnansetyo A. Cytotoxicity of fucoidan from three tropical brown algae against breast and colon cancer cell lines. Pharmacogn J 2017; 9(1): 14-20.
[http://dx.doi.org/10.5530/pj.2017.1.3]
[76]
Sun L. Immunomodulation and antitumor activities of degraded polysaccharide from marine microalgae Sarcinochrysis marina geitler. Int J Bioautomation 2013; 17(2): 107-16.
[77]
Park G-T, Go RE, Lee HM, et al. Potential anti-proliferative and immunomodulatory effects of marine microalgal exopolysaccharide on various human cancer cells and lymphocytes in vitro. Mar Biotechnol (NY) 2017; 19(2): 136-46.
[http://dx.doi.org/10.1007/s10126-017-9735-y] [PMID: 28161850]
[78]
Hayashi K, Hayashi T, Kojima I. A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retroviruses 1996; 12(15): 1463-71.
[http://dx.doi.org/10.1089/aid.1996.12.1463] [PMID: 8893054]
[79]
Kuznetsova T. Immunostimulating and anticoagulating activity of fucoidan from brown algae Fucus evanescens of Okhotskoe sea. ntibiotiki i khimioterapiia= Antibiotics and chemoterapy [sic] 2003; 48(4): 11-3.
[80]
Pourjavadi A. Novel superabsorbent hydrogel based on natural hybrid backbone: Optimized synthesis and its swelling behavior. Bull Korean Chem Soc 2009; 30(11): 2680-6.
[http://dx.doi.org/10.5012/bkcs.2009.30.11.2680]
[81]
Omidian H, Rocca JG, Park K. Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate. Macromol Biosci 2006; 6(9): 703-10.
[http://dx.doi.org/10.1002/mabi.200600062] [PMID: 16967483]
[82]
Guilherme MR. Superabsorbent hydrogel based on modified polysaccharide for removal of Pb2+ and Cu2+ from water with excellent performance. J Appl Polym Sci 2007; 105(5): 2903-9.
[http://dx.doi.org/10.1002/app.26287]
[83]
Russo R, Malinconico M, Santagata G. Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules 2007; 8(10): 3193-7.
[http://dx.doi.org/10.1021/bm700565h] [PMID: 17803277]
[84]
Gilchrist T, Martin AM. Wound treatment with Sorbsan--an alginate fibre dressing. Biomaterials 1983; 4(4): 317-20.
[http://dx.doi.org/10.1016/0142-9612(83)90036-4] [PMID: 6640060]
[85]
Laurienzo P. Marine polysaccharides in pharmaceutical applications: An overview. Mar Drugs 2010; 8(9): 2435-65.
[http://dx.doi.org/10.3390/md8092435] [PMID: 20948899]
[86]
Azmi AS, Ahmad A, Banerjee S, Rangnekar VM, Mohammad RM, Sarkar FH. Chemoprevention of pancreatic cancer: characterization of Par-4 and its modulation by 3,3′ diindolylmethane (DIM). Pharm Res 2008; 25(9): 2117-24.
[http://dx.doi.org/10.1007/s11095-008-9581-8] [PMID: 18427961]
[87]
Surh Y. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 1999; 428(1-2): 305-27.
[http://dx.doi.org/10.1016/S1383-5742(99)00057-5] [PMID: 10518003]
[88]
Pan M-H, Ho C-T. Chemopreventive effects of natural dietary compounds on cancer development. Chem Soc Rev 2008; 37(11): 2558-74.
[http://dx.doi.org/10.1039/b801558a] [PMID: 18949126]
[89]
Cerella C, Sobolewski C, Dicato M, Diederich M. Targeting COX-2 expression by natural compounds: A promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochem Pharmacol 2010; 80(12): 1801-15.
[http://dx.doi.org/10.1016/j.bcp.2010.06.050] [PMID: 20615394]
[90]
Laurienzo P. Marine polysaccharides in pharmaceutical applications: An overview. Mar Drugs 2010; 8(9): 2435-65.
[http://dx.doi.org/10.3390/md8092435] [PMID: 20948899]
[91]
Smit AJ. Medicinal and pharmaceutical uses of seaweed natural products: A review. J Appl Phycol 2004; 16(4): 245-62.
[http://dx.doi.org/10.1023/B:JAPH.0000047783.36600.ef]
[92]
Berteau O, Mulloy B. Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 2003; 13(6): 29R-40R.
[http://dx.doi.org/10.1093/glycob/cwg058] [PMID: 12626402]
[93]
Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 2011; 9(2): 196-223.
[http://dx.doi.org/10.3390/md9020196] [PMID: 21566795]
[94]
Li B, Lu F, Wei X, Zhao R. Fucoidan: structure and bioactivity. Molecules 2008; 13(8): 1671-95.
[http://dx.doi.org/10.3390/molecules13081671] [PMID: 18794778]
[95]
Itoh H, Noda H, Amano H, Zhuaug C, Mizuno T, Ito H. Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res 1993; 13(6A): 2045-52.
[PMID: 8297113]
[96]
Kusaykin M, Bakunina I, Sova V, et al. Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds. Biotechnol J 2008; 3(7): 904-15.
[http://dx.doi.org/10.1002/biot.200700054] [PMID: 18543244]
[97]
Foley SA, Szegezdi E, Mulloy B, Samali A, Tuohy MG. An unfractionated fucoidan from Ascophyllum nodosum: extraction, characterization, and apoptotic effects in vitro. J Nat Prod 2011; 74(9): 1851-61.
[http://dx.doi.org/10.1021/np200124m] [PMID: 21875034]
[98]
Athukorala Y, et al. Antiproliferative activity of sulfated polysaccharide isolated from an enzymatic digest of Ecklonia cava on the U-937 cell line. J Appl Phycol 2009; 21(3): 307-14.
[http://dx.doi.org/10.1007/s10811-008-9368-7]
[99]
Narazaki M, Segarra M, Tosato G. Sulfated polysaccharides identified as inducers of neuropilin-1 internalization and functional inhibition of VEGF165 and semaphorin3A. Blood 2008; 111(8): 4126-36.
[http://dx.doi.org/10.1182/blood-2007-09-112474] [PMID: 18272814]
[100]
Lv J, Xiao Q, Wang L, et al. Fucoidan prevents multiple myeloma cell escape from chemotherapy-induced drug cytotoxicity. Fitoterapia 2013; 84: 257-63.
[http://dx.doi.org/10.1016/j.fitote.2012.12.018] [PMID: 23266733]
[101]
Rioux L-E, Turgeon SL, Beaulieu M. Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry 2010; 71(13): 1586-95.
[http://dx.doi.org/10.1016/j.phytochem.2010.05.021] [PMID: 20599236]
[102]
Menshova RV, Ermakova SP, Anastyuk SD, et al. Structure, enzymatic transformation and anticancer activity of branched high molecular weight laminaran from brown alga Eisenia bicyclis. Carbohydr Polym 2014; 99: 101-9.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.037] [PMID: 24274485]
[103]
Miao HQ, Elkin M, Aingorn E, Ishai-Michaeli R, Stein CA, Vlodavsky I. Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int J Cancer 1999; 83(3): 424-31.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19991029)83:3<424:AID-IJC20>3.0.CO;2-L] [PMID: 10495437]
[104]
Buck CB, Thompson CD, Roberts JN, Müller M, Lowy DR, Schiller JT. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2006; 2(7)e69
[http://dx.doi.org/10.1371/journal.ppat.0020069] [PMID: 16839203]
[105]
Ji H. Separation of the polysaccharides in Caulerpa racemosa and their chemical composition and antitumor activity. J Appl Polym Sci 2008; 110(3): 1435-40.
[http://dx.doi.org/10.1002/app.28676]
[106]
Leiro JM, Castro R, Arranz JA, Lamas J. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int Immunopharmacol 2007; 7(7): 879-88.
[http://dx.doi.org/10.1016/j.intimp.2007.02.007] [PMID: 17499190]
[107]
Tabarsa M, Han JH, Kim CY, You SG. Molecular characteristics and immunomodulatory activities of water-soluble sulfated polysaccharides from Ulva pertusa. J Med Food 2012; 15(2): 135-44.
[http://dx.doi.org/10.1089/jmf.2011.1716] [PMID: 22191629]
[108]
Devaki T, Sathivel A. BalajiRaghavendran HR. Stabilization of mitochondrial and microsomal function by polysaccharide of Ulva lactuca on D-Galactosamine induced hepatitis in rats. Chem Biol Interact 2009; 177(2): 83-8.
[http://dx.doi.org/10.1016/j.cbi.2008.09.036] [PMID: 19000663]
[109]
Sathivel A, Raghavendran HR, Srinivasan P, Devaki T. Anti-peroxidative and anti-hyperlipidemic nature of Ulva lactuca crude polysaccharide on D-galactosamine induced hepatitis in rats. Food Chem Toxicol 2008; 46(10): 3262-7.
[http://dx.doi.org/10.1016/j.fct.2008.07.016] [PMID: 18706469]
[110]
Raposo MFJ, de Morais RMSC, Bernardo de Morais AMM. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 2013; 11(1): 233-52.
[http://dx.doi.org/10.3390/md11010233] [PMID: 23344113]
[111]
Schepetkin IA, Quinn MT. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 2006; 6(3): 317-33.
[http://dx.doi.org/10.1016/j.intimp.2005.10.005] [PMID: 16428067]
[112]
Fan Y, Luo A. Evaluation of anti-tumor activity of water-soluble polysaccharides from Dendrobium denneanum. Afr J Pharm Pharmacol 2011; 5(3): 415-20.
[http://dx.doi.org/10.5897/AJPP11.089]
[113]
Fan Y, Lin M, Luo A, Chun Z, Luo A. Characterization and antitumor activity of a polysaccharide from Sarcodia ceylonensis. Molecules 2014; 19(8): 10863-76.
[http://dx.doi.org/10.3390/molecules190810863] [PMID: 25068783]
[114]
Anisimova NY, Ustyuzhanina NE, Donenko FV, et al. Influence of fucoidans and their derivatives on antitumor and phagocytic activity of human blood leucocytes. Biochemistry (Mosc) 2015; 80(7): 925-33.
[http://dx.doi.org/10.1134/S0006297915070111] [PMID: 26542005]
[115]
Chen M-C, Hsu WL, Hwang PA, Chen YL, Chou TC. Combined administration of fucoidan ameliorates tumor and chemotherapy-induced skeletal muscle atrophy in bladder cancer-bearing mice. Oncotarget 2016; 7(32): 51608-18.
[http://dx.doi.org/10.18632/oncotarget.9958] [PMID: 27323407]
[116]
Ermakova S, Sokolova R, Kim SM, Um BH, Isakov V, Zvyagintseva T. Fucoidans from brown seaweeds Sargassum hornery, Eclonia cava, Costaria costata: structural characteristics and anticancer activity. Appl Biochem Biotechnol 2011; 164(6): 841-50.
[http://dx.doi.org/10.1007/s12010-011-9178-2] [PMID: 21302149]
[117]
Ishikawa C, Mori N. In vitro and in vivo anti-primary effusion lymphoma activities of fucoidan extracted from Cladosiphon okamuranus Tokida. Oncol Rep 2017; 38(5): 3197-204.
[http://dx.doi.org/10.3892/or.2017.5978] [PMID: 29048633]
[118]
Teng H, Yang Y, Wei H, et al. Fucoidan suppresses hypoxia-induced lymphangiogenesis and lymphatic metastasis in mouse hepatocarcinoma. Mar Drugs 2015; 13(6): 3514-30.
[http://dx.doi.org/10.3390/md13063514] [PMID: 26047481]
[119]
Ellouali M, Boisson-Vidal C, Durand P, Jozefonvicz J. Antitumor activity of low molecular weight fucans extracted from brown seaweed Ascophyllum nodosum. Anticancer Res 1993; 13(6A): 2011-9.
[PMID: 8297108]
[120]
Rocha HA, Moraes FA, Trindade ES, et al. Structural and hemostatic activities of a sulfated galactofucan from the brown alga Spatoglossum schroederi. An ideal antithrombotic agent? J Biol Chem 2005; 280(50): 41278-88.
[http://dx.doi.org/10.1074/jbc.M501124200] [PMID: 16174777]
[121]
Athukorala Y, Lee KW, Kim SK, Jeon YJ. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour Technol 2007; 98(9): 1711-6.
[http://dx.doi.org/10.1016/j.biortech.2006.07.034] [PMID: 16973353]
[122]
Cumashi A, Ushakova NA, Preobrazhenskaya ME, et al. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007; 17(5): 541-52.
[http://dx.doi.org/10.1093/glycob/cwm014] [PMID: 17296677]
[123]
Barroso EM, Costa LS, Medeiros VP, et al. A non-anticoagulant heterofucan has antithrombotic activity in vivo. Planta Med 2008; 74(7): 712-8.
[http://dx.doi.org/10.1055/s-2008-1074522] [PMID: 18496786]
[124]
Bilan MI, Vinogradova EV, Tsvetkova EA, et al. A sulfated glucuronofucan containing both fucofuranose and fucopyranose residues from the brown alga Chordaria flagelliformis. Carbohydr Res 2008; 343(15): 2605-12.
[http://dx.doi.org/10.1016/j.carres.2008.06.001] [PMID: 18619579]
[125]
Zhang W, Okimura T, Xu L, et al. Ascophyllan functions as an adjuvant to promote anti-cancer effect by dendritic cell activation. Oncotarget 2016; 7(15): 19284-98.
[http://dx.doi.org/10.18632/oncotarget.8200] [PMID: 27008707]
[126]
Fan S, Zhang J, Nie W, et al. Antitumor effects of polysaccharide from Sargassum fusiforme against human hepatocellular carcinoma HepG2 cells. Food Chem Toxicol 2017; 102: 53-62.
[http://dx.doi.org/10.1016/j.fct.2017.01.020] [PMID: 28131629]
[127]
Ren DL, Wang JZ, Noda H, Amano H, Ogawa S. The effects of an algal polysaccharide from Gloiopeltis tenax on transplantable tumors and immune activities in mice. Planta Med 1995; 61(2): 120-5.
[http://dx.doi.org/10.1055/s-2006-958029] [PMID: 7753917]
[128]
Fernández LE, Valiente OG, Mainardi V, Bello JL, Vélez H, Rosado A. Isolation and characterization of an antitumor active agar-type polysaccharide of Gracilaria dominguensis. Carbohydr Res 1989; 190(1): 77-83.
[http://dx.doi.org/10.1016/0008-6215(89)84148-5] [PMID: 2790840]
[129]
Gardeva E. Cancer protective action of polysaccharide, derived from red microalga Porphyridium cruentum-a biological background. Biotechnol Biotechnol Equip 2009; 23: 783-7.
[130]
Ishiguro S, Uppalapati D, Goldsmith Z, et al. Exopolysaccharides extracted from Parachlorella kessleri inhibit colon carcinoma growth in mice via stimulation of host antitumor immune responses. PLoS One 2017; 12(4)e0175064
[http://dx.doi.org/10.1371/journal.pone.0175064] [PMID: 28380056]
[131]
Jose GM, Raghavankutty M, Kurup GM. Sulfated polysaccharides from Padina tetrastromatica induce apoptosis in HeLa cells through ROS triggered mitochondrial pathway. Process Biochem 2018; 68: 197-204.
[http://dx.doi.org/10.1016/j.procbio.2018.02.014]
[132]
Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD, Meyer AS. Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro. Mar Drugs 2011; 9(12): 2605-21.
[http://dx.doi.org/10.3390/md9122605] [PMID: 22363242]
[133]
Delma CR, Somasundaram ST, Srinivasan GP, Khursheed M, Bashyam MD, Aravindan N. Fucoidan from Turbinaria conoides: A multifaceted ‘deliverable’ to combat pancreatic cancer progression. Int J Biol Macromol 2015; 74: 447-57.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.031] [PMID: 25541359]
[134]
Haneji K, Matsuda T, Tomita M, et al. Fucoidan extracted from Cladosiphon okamuranus Tokida induces apoptosis of human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells. Nutr Cancer 2005; 52(2): 189-201.
[http://dx.doi.org/10.1207/s15327914nc5202_9] [PMID: 16201850]
[135]
Hsu H-Y, Lin TY, Lu MK, Leng PJ, Tsao SM, Wu YC. Fucoidan induces Toll-like receptor 4-regulated reactive oxygen species and promotes endoplasmic reticulum stress-mediated apoptosis in lung cancer. Sci Rep 2017; 7: 44990.
[http://dx.doi.org/10.1038/srep44990] [PMID: 28332554]
[136]
Kim H, Jeon TJ. Fucoidan Induces Cell Aggregation and Apoptosis in Osteosarcoma MG-63 Cells. Anim Cells Syst 2016; 20(4): 186-92.
[http://dx.doi.org/10.1080/19768354.2016.1215349]
[137]
Lee H-E, Choi ES, Shin JA, et al. Fucoidan induces caspase-dependent apoptosis in MC3 human mucoepidermoid carcinoma cells. Exp Ther Med 2014; 7(1): 228-32.
[http://dx.doi.org/10.3892/etm.2013.1368] [PMID: 24348795]
[138]
Park HS, Hwang HJ, Kim GY, et al. Induction of apoptosis by fucoidan in human leukemia U937 cells through activation of p38 MAPK and modulation of Bcl-2 family. Mar Drugs 2013; 11(7): 2347-64.
[http://dx.doi.org/10.3390/md11072347] [PMID: 23880928]
[139]
Kim EJ, Park SY, Lee JY, Park JH. Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol 2010; 10(1): 96.
[http://dx.doi.org/10.1186/1471-230X-10-96] [PMID: 20727207]
[140]
Yang L, Wang P, Wang H, et al. Fucoidan derived from Undaria pinnatifida induces apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the ROS-mediated mitochondrial pathway. Mar Drugs 2013; 11(6): 1961-76.
[http://dx.doi.org/10.3390/md11061961] [PMID: 23752353]
[141]
Xue M, Ge Y, Zhang J, et al. Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vitro and in vivo. PLoS One 2012; 7(8)e43483
[http://dx.doi.org/10.1371/journal.pone.0043483] [PMID: 22916270]
[142]
Park HS, Kim GY, Nam TJ, Deuk Kim N, Hyun Choi Y. Antiproliferative activity of fucoidan was associated with the induction of apoptosis and autophagy in AGS human gastric cancer cells. J Food Sci 2011; 76(3): T77-83.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02099.x] [PMID: 21535865]
[143]
Li X. Fucoidan Induce Apoptosis of HeLa Cells Accompanied by The Induction of Autophagy. Lat Am J Pharm 2017; 36(6): 1126-33.
[144]
Park HY, Park SH, Jeong JW, et al. Induction of p53-independent apoptosis and G1 cell cycle arrest by fucoidan in HCT116 human colorectal carcinoma cells. Mar Drugs 2017; 15(6): 154.
[http://dx.doi.org/10.3390/md15060154] [PMID: 28555064]
[145]
Park H-K, Kim IH, Kim J, Nam TJ. Induction of apoptosis by laminarin, regulating the insulin-like growth factor-IR signaling pathways in HT-29 human colon cells. Int J Mol Med 2012; 30(4): 734-8.
[http://dx.doi.org/10.3892/ijmm.2012.1084] [PMID: 22859258]
[146]
Park H-K, Kim IH, Kim J, Nam TJ. Induction of apoptosis and the regulation of ErbB signaling by laminarin in HT-29 human colon cancer cells. Int J Mol Med 2013; 32(2): 291-5.
[http://dx.doi.org/10.3892/ijmm.2013.1409] [PMID: 23739740]
[147]
Gardeva E. Cytotoxic and apoptogenic potential of red microalgal polysaccharides. Biotechnol Biotechnol Equip 2012; 26(4): 3167-72.
[http://dx.doi.org/10.5504/BBEQ.2012.0035]
[148]
Murad H, Hawat M, Ekhtiar A, et al. Induction of G1-phase cell cycle arrest and apoptosis pathway in MDA-MB-231 human breast cancer cells by sulfated polysaccharide extracted from Laurencia papillosa. Cancer Cell Int 2016; 16(1): 39.
[http://dx.doi.org/10.1186/s12935-016-0315-4] [PMID: 27231438]
[149]
Park HY. Fucoidan induces G1 arrest of the cell cycle in EJ human bladder cancer cells through down-regulation of pRB phosphorylation. Rev Bras Farmacogn 2015; 25(3): 246-51.
[http://dx.doi.org/10.1016/j.bjp.2015.03.011]
[150]
Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002; 12(1): 9-18.
[http://dx.doi.org/10.1038/sj.cr.7290105] [PMID: 11942415]
[151]
Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 2012; 66(2): 105-43.
[http://dx.doi.org/10.1016/j.phrs.2012.04.005] [PMID: 22569528]
[152]
Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 2009; 8(8): 1168-75.
[http://dx.doi.org/10.4161/cc.8.8.8147] [PMID: 19282669]
[153]
Sun Y, Zhang D, Mao M, Lu Y, Jiao N. Roles of p38 and JNK protein kinase pathways activated by compound cantharidin capsules containing serum on proliferation inhibition and apoptosis of human gastric cancer cell line. Exp Ther Med 2017; 14(2): 1809-17.
[http://dx.doi.org/10.3892/etm.2017.4704] [PMID: 28810654]
[154]
Dixit D, Ghildiyal R, Anto NP, Sen E. Chaetocin-induced ROS-mediated apoptosis involves ATM-YAP1 axis and JNK-dependent inhibition of glucose metabolism. Cell Death Dis 2014; 5(5)e1212
[http://dx.doi.org/10.1038/cddis.2014.179] [PMID: 24810048]
[155]
Xie P, Horio F, Fujii I, Zhao J, Shinohara M, Matsukura M. A novel polysaccharide derived from algae extract inhibits cancer progression via JNK, not via the p38 MAPK signaling pathway. Int J Oncol 2018; 52(5): 1380-90.
[PMID: 29512724]
[156]
Lin C-M, Shyu KG, Wang BW, Chang H, Chen YH, Chiu JH. Chrysin suppresses IL-6-induced angiogenesis via down-regulation of JAK1/STAT3 and VEGF: An in vitro and in ovo approach. J Agric Food Chem 2010; 58(11): 7082-7.
[http://dx.doi.org/10.1021/jf100421w] [PMID: 20443595]
[157]
Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002; 21(13): 2000-8.
[http://dx.doi.org/10.1038/sj.onc.1205260] [PMID: 11960372]
[158]
Lee TL, Yeh J, Friedman J, et al. A signal network involving coactivated NF-kappaB and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas. Int J Cancer 2008; 122(9): 1987-98.
[http://dx.doi.org/10.1002/ijc.23324] [PMID: 18172861]
[159]
Yu ZY, Huang R, Xiao H, et al. Fluacrypyrim, a novel STAT3 activation inhibitor, induces cell cycle arrest and apoptosis in cancer cells harboring constitutively-active STAT3. Int J Cancer 2010; 127(6): 1259-70.
[http://dx.doi.org/10.1002/ijc.25169] [PMID: 20087863]
[160]
Rui X, Pan HF, Shao SL, Xu XM. Anti-tumor and anti-angiogenic effects of Fucoidan on prostate cancer: possible JAK-STAT3 pathway. BMC Complement Altern Med 2017; 17(1): 378.
[http://dx.doi.org/10.1186/s12906-017-1885-y] [PMID: 28764703]
[161]
Lee NY, Ermakova SP, Zvyagintseva TN, Kang KW, Dong Z, Choi HS. Inhibitory effects of fucoidan on activation of epidermal growth factor receptor and cell transformation in JB6 Cl41 cells. Food Chem Toxicol 2008; 46(5): 1793-800.
[http://dx.doi.org/10.1016/j.fct.2008.01.025] [PMID: 18313192]
[162]
Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006; 366(1): 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018] [PMID: 16377102]
[163]
Hsu T-C, Young MR, Cmarik J, Colburn NH. Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radic Biol Med 2000; 28(9): 1338-48.
[http://dx.doi.org/10.1016/S0891-5849(00)00220-3] [PMID: 10924853]
[164]
Yang J, Yuan D, Xing T, et al. Ginsenoside Rh2 inhibiting HCT116 colon cancer cell proliferation through blocking PDZ-binding kinase/T-LAK cell-originated protein kinase. J Ginseng Res 2016; 40(4): 400-8.
[http://dx.doi.org/10.1016/j.jgr.2016.03.007] [PMID: 27746693]
[165]
Abe Y, Matsumoto S, Kito K, Ueda N. Cloning and expression of a novel MAPKK-like protein kinase, lymphokine-activated killer T-cell-originated protein kinase, specifically expressed in the testis and activated lymphoid cells. J Biol Chem 2000; 275(28): 21525-31.
[http://dx.doi.org/10.1074/jbc.M909629199] [PMID: 10781613]
[166]
Zhu F, Zykova TA, Kang BS, et al. Bidirectional signals transduced by TOPK-ERK interaction increase tumorigenesis of HCT116 colorectal cancer cells. Gastroenterology 2007; 133(1): 219-31.
[http://dx.doi.org/10.1053/j.gastro.2007.04.048] [PMID: 17631144]
[167]
Karar J, Maity A. PI3K/AKT/mTOR Pathway in Angiogenesis. Front Mol Neurosci 2011; 4(51): 51.
[PMID: 22144946]
[168]
Lee H, Kim J-S, Kim E. Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PLoS One 2012; 7(11)e50624
[http://dx.doi.org/10.1371/journal.pone.0050624] [PMID: 23226337]
[169]
Wang P, Liu Z, Liu X, et al. Anti-metastasis effect of fucoidan from Undaria pinnatifida sporophylls in mouse hepatocarcinoma Hca-F cells. PLoS One 2014; 9(8)e106071
[http://dx.doi.org/10.1371/journal.pone.0106071] [PMID: 25162296]
[170]
Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013; 13(1): 11-26.
[http://dx.doi.org/10.1038/nrc3419] [PMID: 23258168]
[171]
Xue M, Ge Y, Zhang J, et al. Fucoidan inhibited 4T1 mouse breast cancer cell growth in vivo and in vitro via downregulation of Wnt/β-catenin signaling. Nutr Cancer 2013; 65(3): 460-8.
[http://dx.doi.org/10.1080/01635581.2013.757628] [PMID: 23530646]
[172]
Boo H-J, Hong JY, Kim SC, et al. The anticancer effect of fucoidan in PC-3 prostate cancer cells. Mar Drugs 2013; 11(8): 2982-99.
[http://dx.doi.org/10.3390/md11082982] [PMID: 23966032]
[173]
Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta 2013; 1833(12): 3460-70.
[174]
Yuan X, Zhou Y, Wang W, et al. Activation of TLR4 signaling promotes gastric cancer progression by inducing mitochondrial ROS production. Cell Death Dis 2013; 4(9)e794
[http://dx.doi.org/10.1038/cddis.2013.334] [PMID: 24030146]
[175]
Chen S, Zhao Y, Zhang Y, Zhang D. Fucoidan induces cancer cell apoptosis by modulating the endoplasmic reticulum stress cascades. PLoS One 2014; 9(9)e108157
[http://dx.doi.org/10.1371/journal.pone.0108157] [PMID: 25232957]
[176]
Tu WH, Thomas TZ, Masumori N, et al. The loss of TGF-beta signaling promotes prostate cancer metastasis. Neoplasia 2003; 5(3): 267-77.
[http://dx.doi.org/10.1016/S1476-5586(03)80058-1] [PMID: 12869309]
[177]
Hsu H-Y, Lin TY, Hwang PA, et al. Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGFβ receptor degradation in breast cancer. Carcinogenesis 2013; 34(4): 874-84.
[http://dx.doi.org/10.1093/carcin/bgs396] [PMID: 23275155]
[178]
Hsu H-Y, Lin TY, Wu YC, et al. Fucoidan inhibition of lung cancer in vivo and in vitro: role of the Smurf2-dependent ubiquitin proteasome pathway in TGFβ receptor degradation. Oncotarget 2014; 5(17): 7870-85.
[http://dx.doi.org/10.18632/oncotarget.2317] [PMID: 25149540]
[179]
Yan M-D, Yao CJ, Chow JM, et al. Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells. Mar Drugs 2015; 13(10): 6099-116.
[http://dx.doi.org/10.3390/md13106099] [PMID: 26404322]
[180]
Yan B, Guo Q, Fu FJ, et al. The role of miR-29b in cancer: regulation, function, and signaling. OncoTargets Ther 2015; 8: 539-48.
[PMID: 25767398]
[181]
Dias PF, Siqueira JM Jr, Vendruscolo LF, et al. Antiangiogenic and antitumoral properties of a polysaccharide isolated from the seaweed Sargassum stenophyllum. Cancer Chemother Pharmacol 2005; 56(4): 436-46.
[http://dx.doi.org/10.1007/s00280-004-0995-7] [PMID: 15902462]
[182]
Chen H, Zhang L, Long X, et al. Sargassum fusiforme polysaccharides inhibit VEGF-A-related angiogenesis and proliferation of lung cancer in vitro and in vivo. Biomed Pharmacother 2017; 85: 22-7.
[http://dx.doi.org/10.1016/j.biopha.2016.11.131] [PMID: 27930983]
[183]
Saitoh Y, Nagai Y, Miwa N. Fucoidan-Vitamin C complex suppresses tumor invasion through the basement membrane, with scarce injuries to normal or tumor cells, via decreases in oxidative stress and matrix metalloproteinases. Int J Oncol 2009; 35(5): 1183-9.
[PMID: 19787274]
[184]
Lv Y, Song Q, Shao Q, et al. Comparison of the effects of marchantin C and fucoidan on sFlt-1 and angiogenesis in glioma microenvironment. J Pharm Pharmacol 2012; 64(4): 604-9.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01430.x] [PMID: 22420666]
[185]
Huang T-H, Chiu YH, Chan YL, et al. Prophylactic administration of fucoidan represses cancer metastasis by inhibiting vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) in Lewis tumor-bearing mice. Mar Drugs 2015; 13(4): 1882-900.
[http://dx.doi.org/10.3390/md13041882] [PMID: 25854641]
[186]
Hussein UK, Mahmoud HM, Farrag AG, Bishayee A. Chemoprevention of diethylnitrosamine-initiated and phenobarbital-promoted hepatocarcinogenesis in rats by sulfated polysaccharides and aqueous extract of Ulva lactuca. Integr Cancer Ther 2015; 14(6): 525-45.
[http://dx.doi.org/10.1177/1534735415590157] [PMID: 26130745]
[187]
Kang Y, Wang ZJ, Xie D, et al. Characterization and potential antitumor activity of polysaccharide from Gracilariopsis lemaneiformis. Mar Drugs 2017; 15(4): 100.
[http://dx.doi.org/10.3390/md15040100] [PMID: 28353631]
[188]
Karnjanapratum S, You S. Molecular characteristics of sulfated polysaccharides from Monostroma nitidum and their in vitro anticancer and immunomodulatory activities. Int J Biol Macromol 2011; 48(2): 311-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.12.002] [PMID: 21145343]
[189]
Kawamoto H. Effects of fucoidan from Mozuku on human stomach cell lines. Food Sci Technol Res 2006; 12(3): 218-22.
[http://dx.doi.org/10.3136/fstr.12.218]
[190]
Raafat EM, Gamal-Eldeen AM, El-Hussieny EA, Ahmed EF, Eissa AA. Polysaccharide extracts of the brown alga Sargassum asperifolium possess in vitro cancer chemopreventive properties. Nat Prod Res 2014; 28(24): 2304-11.
[http://dx.doi.org/10.1080/14786419.2014.926351] [PMID: 24934729]
[191]
Usoltseva RV, Anastyuk SD, Shevchenko NM, et al. Polysaccharides from brown algae Sargassum duplicatum: the structure and anticancer activity in vitro. Carbohydr Polym 2017; 175: 547-56.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.044] [PMID: 28917899]
[192]
Xue M, Liang H, Tang Q, et al. The protective and immunomodulatory effects of fucoidan against 7, 12-dimethyl benz [a] anthracene-induced experimental mammary carcinogenesis through the PD1/PDL1 signaling pathway in rats. Nutr Cancer 2017; 69(8): 1234-44.
[http://dx.doi.org/10.1080/01635581.2017.1362446] [PMID: 29043842]
[193]
Zhu C. Fucoidan inhibits the growth of hepatocellular carcinoma independent of angiogenesis. Evid Based Complement and Alternat Med 2013; 2013692549
[http://dx.doi.org/10.1155/2013/692549]
[194]
Abudabbus A, Badmus JA, Shalaweh S, Bauer R, Hiss D. Effects of fucoidan and chemotherapeutic agent combinations on malignant and non-malignant breast cell lines. Curr Pharm Biotechnol 2017; 18(9): 748-57.
[http://dx.doi.org/10.2174/1389201018666171115115112] [PMID: 29141543]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy