Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Riboswitches in Archaea

Author(s): Angela Gupta and D. Swati*

Volume 22, Issue 2, 2019

Page: [135 - 149] Pages: 15

DOI: 10.2174/1386207322666190425143301

Price: $65

Abstract

Background: Riboswitches are cis-acting, non-coding RNA elements found in the 5’UTR of bacterial mRNA and 3’ UTR of eukaryotic mRNA, that fold in a complex manner to act as receptors for specific metabolites hence altering their conformation in response to the change in concentrations of a ligand or metabolite. Riboswitches function as gene regulators in numerous bacteria, archaea, fungi, algae and plants.

Aim and Objective: This study identifies different classes of riboswitches in the Archaeal domain of life. Previous studies have suggested that riboswitches carry a conserved aptameric domain in different domains of life. Since Archaea are considered to be the most idiosyncratic organisms it was interesting to look for the conservation pattern of riboswitches in these obviously strange microorganisms.

Materials and Methods: Completely sequenced Archaeal Genomes present in the NCBI repository were used for studying riboswitches and other ncRNAs. The sequence files in FASTA format were downloaded from NCBI Genome database and information related to these genomes was retrieved from GenBank. Three bioinformatics approaches were used namely, ab initio, consensus structure prediction and statistical model-based prediction for identifying riboswitches.

Results: Archaeal genomes have a sporadic distribution of putative riboswitches like the TPP, FMN, Guanidine, Lysine and c-di-AMP riboswitches, which are known to occur in bacteria. Also, a class of riboswitch sensing c-di-GMP, a second messenger, has been identified in a few Archaeal organisms.

Conclusion: This study clearly reveals that bioinformatics methods are likely to play a major role in identifying conserved riboswitches and in establishing how widespread these classes are in all domains of life, even though the final confirmation may come from wet lab methods.

Keywords: ncRNA, Archaea, riboswitches, aptamer, expression platform, free energy.

[1]
Nahvi, A.; Sudarsan, N.; Ebert, M.S.; Zou, X.; Brown, K.L.; Breaker, R.R. Genetic control by a metabolite binding mRNA. Chem. Biol., 2002, 9(9), 1043-1049.
[2]
Barrick, J.E.; Corbino, K.A.; Winkler, W.C.; Nahvi, A.; Mandal, M.; Collins, J.; Lee, M.; Roth, A.; Sudarsan, N.; Jona, I. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. USA, 2004, 101(17), 6421-6426.
[3]
Cromie, M.J.; Shi, Y.; Latifi, T.; Groisman, E.A. An RNA sensor for intracellular Mg 2+. Cell, 2006, 125(1), 71-84.
[4]
Dann, C.E.; Wakeman, C.A.; Sieling, C.L.; Baker, S.C.; Irnov, I.; Winkler, W.C. Structure and mechanism of a metal-sensing regulatory RNA. Cell, 2007, 130(5), 878-892.
[5]
Hollands, K.; Sevostiyanova, A.; Groisman, E.A. Unusually long-lived pause required for regulation of a Rho-dependent transcription terminator. Proc. Natl. Acad. Sci. , 2014, 111(19), E1999-E2007.
[6]
Nawrocki, E.P.; Burge, S.W.; Bateman, A.; Daub, J.; Eberhardt, R.Y.; Eddy, S.R.; Floden, E.W.; Gardner, P.P.; Jones, T.A.; Tate, J.; Finn, R.D. Nucleic Acids Res., 2015, 43(Database issue), D130-D137.
[7]
Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol., 1990, 215, 403-410.
[8]
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 2003, 31(13), 3406-3415.
[9]
Lorenz, R.; Bernhart, S.H.; Hoener zu Siederdissen, C.; Tafer, H.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. ViennaRNA Package 2.0. Algorithms Mol. Biol., 2011, 6, 26.
[10]
Seehafer, C.; Kalweit, A.; Steger, G.; Graf, S.; Hamman, C. From Alpaca to Zebrafish: hammerhead ribozymes wherever you look. RNA, 2011, 17(1), 21-26.
[11]
Nawrocki, E.P.; Eddy, S.R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics, 2013, 29, 2933-2935.
[12]
Winkler, W.; Nahvi, A.; Breaker, R.R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature, 2002, 419(6910), 952-956.
[13]
Mironov, A.S.; Gusarov, I.; Rafikov, R.; Lopez, L.E.; Shatalin, K.; Kreneva, R.A.; Perumov, D.A.; Nudler, E. Sensing small molecules by nascent RNA: A mechanism to control transcription in bacteria. Cell, 2002, 111(5), 747-756.
[14]
Mandal, M.; Boese, B.; Barrick, J.E.; Winkler, W.C.; Breaker, R.R. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell, 2003, 113(5), 577-586.
[15]
Argaman, L.; Hershberg, R.; Vogel, J.; Bejerano, G.; Wagner, E. G.H.; Margalit, H.; Altuvia, S. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Bio., 2001, 11(12), 941-950.
[16]
Meyer, M.M.; Hammond, M.C.; Salinas, Y.; Roth, A.; Sudarsan, N.; Breaker, R.R. Challenges of ligand identification for riboswitch candidates. RNA Biol., 2011, 8(1), 5-10.
[17]
Dambach, M.; Sandoval, M.; Updegrove, T.B.; Anantharaman, V.; Aravind, L.; Waters, L.S.; Storz, G. The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. Mol. Cell, 2015, 57(6), 1099-1109.
[18]
Price, I.R.; Gaballa, A.; Ding, F.; Helmann, J.D.; Ke, A. Mn 2+-sensing mechanisms of yybP-ykoY orphan riboswitches. Mol. Cell, 2015, 57(6), 1110-1123.
[19]
Huang, L.; Wang, J.; Timothy, J.; Wilson, T.J.; Lilley, M.J. Structure of the Guanidine III Riboswitch. Cell Chem. Biol., 2017, 24(11), 1407-1415.e2.
[20]
Battaglia, R.A.; Price, I.R.; Ke, A. Structural basis for guanidine sensing by the ykkC family of riboswitches. RNA, 2017, 23(4), 578-585.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy