[1]
Miller, J.S.; Epstein, A.J. Organic and organometallic molecular magnetic materials-designer magnets. Angew, 1994, 33(4), 385-415.
[2]
Nguyen, P.; Gómez-Elipe, P.; Manners, L. Organometallic polymers with transition metals in the main chain. Chem. Rev., 1999, 99(6), 1515-1548.
[3]
Sola, A.; Tárraga, A.; Molina, P. A ferrocenyl-guanidine derivative as a highly selective electrochemical and colorimetric chemosensor molecule for acetate anions. Dalton T., 2012, 41(27), 8401-8409.
[4]
Wang, Y.; He, X.; Wang, K.; Ni, X.; Su, J.; Chen, Z. Ferrocene-functionalized SWCNT for electrochemical detection of T4 polynucleotide kinase activity. Biosens. Bioelectron., 2012, 32(1), 213-218.
[5]
Du, L.Z.; Gong, J.F.; Xu, C.; Zhu, Y.; Wu, Y.J.; Song, M.P. Synthesis and structures of novel diastereomeric cyclopalladated ferrocenylimines derived from chiral β-amino alcohols. Inorg. Chem. Commun., 2006, 9(4), 410-414.
[6]
Zhang, J.; Zhao, L.; Song, M.; Mak, T.C.W.; Wu, Y. Highly efficient cyclopalladated ferrocenylimine catalyst for Suzuki cross-coupling reaction of 3-pyridylboronic pinacol ester with aryl halides. J. Organomet. Chem., 2006, 691(6), 1301-1306.
[7]
Yang, F.; Cui, X.; Li, Y.N.; Zhang, J.; Ren, G.R.; Wu, Y. Cyclopalladated ferrocenylimines: Efficient catalysts for homocoupling and Sonogashira reaction of terminal alkynes. Tetrahedron, 2007, 63(9), 1963-1969.
[8]
Ornelas, C. Application of ferrocene and its derivatives in cancer research. New J. Chem., 2011, 35(10), 1973-1985.
[9]
Snegur, V.; Zykova, S.; Simenel, A.; Nekrasov Yu, S.; Starikova, Z.A.; Peregudova, S.M.; Il’in, M.M.; Kachala, V.V.; Sviridova, I.K.; Sergeeva, N.S. Redox-active ferrocene-modified pyrimidines and adenine as antitumor agents: structure, separation of enantiomers, and inhihibition of the DNA synthesis in tumor cells. Russ. Chem. Bull., 2013, 62(9), 2056-2064.
[10]
Hocek, M. Syntheses of Purines Bearing Carbon Substituents in Positions 2, 6 or 8 by Metal‐ or Organometal‐Mediated C−C Bond‐Forming Reactions. Eur. J. Org. Chem., 2003, 2, 245-254.
[11]
Gundersen, L.; Nissen-Meyer, J.; Spilsberg, D. Synthesis and antimycobacterial activity of 6-arylpurines: The requirements for the N-9 substituent in active antimycobacterial purines. J. Med. Chem., 2002, 45(6), 1383-1386.
[12]
Cocuzza, A.; Chidester, D.; Culp, S.; Fitzgerald, L.; Gilligan, P. Use of the suzuki reaction for the synthesis of aryl-substituted heterocycles as Corticotropin-releasing Hormone (CRH) antagonists. Bioorg. Med. Chem. Lett., 1999, 9(7), 1063-1066.
[13]
Chiosis, G.; Lucas, B.; Shtil, A.; Huezo, H.; Rosen, N. Development of a purine-scaffold novel class of hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of her2 tyrosine kinase. Bioorg. Med. Chem., 2002, 10(11), 3555-3564.
[14]
De Clercq, E.; Holy, A.; Rosenberg, I.; Sakuma, T.; Balzarini, J.; Maudgal, P.C. A novel selective broad-spectrum anti-DNA virus agent. Nature, 1986, 323, 464-467.
[15]
Wagstaff, A. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs, 1994, 47, 153-205.
[16]
Zhao, L.; Zhang, L.; Liu, J.; Wan, L.J.; Chen, Y.Q.; Zhang, S.Q.; Yan, Z.W.; Jiang, J.H. Synthesis and antitumor activity of conjugates of 5-Fluorouracil and emodin. Eur. J. Med. Chem., 2012, 47, 255-260.
[17]
Cho, Y.; Lee, J.; Song, S. Novel Thermosensitive 5-Fluorouracil−Cyclotriphosphazene Conjugates: Synthesis, thermosensitivity, degradability, and in vitro antitumor activity. Bioconjug. Chem., 2005, 16(6), 1529-1535.
[18]
Chen, S. The syntheses and mass spectra of some N-substituted ferrocenylmethyl adenines. J. Organomet. Chem., 1980, 202(2), 183-189.
[19]
Kowalski, K. Ferrocenyl-nucleobase complexes: Synthesis, chemistry and applications. Coord. Chem., 2016, 317, 132-156.
[20]
Meunier, P.; Quattara, I.; Gautheron, B.; Tirouflet, J.; Camboli, D.; Besançon, J. Synthesis, characterization and cytotoxic properties of the first ‘metallocenonucleosides. Eur. J. Med. Chem., 1991, 26(3), 351-362.
[21]
Price, C.; Aslanoglu, M.; Isaac, C.J.; Elsegood, M.R.J.; Clegg, W.; Horrocks, B.R.; Houlton, A. Metallocene-nucleobase conjugates. Synthesis, structure and nucleic acid binding. J. Chem. Soc., Dalton Trans., 1996, 21, 4115-4120.
[22]
Lanez, T.; Henni, M.; Hemmami, H. Development of cyclic voltammetric method for the study of the interaction of antioxidant standards with superoxide anion radicals case of α-tocopherol. Sci. Study Res. Chem. Chem. Eng. Biotech. Food Ind., 2015, 16(2), 161-168.
[23]
Lanez, T.; Hemmami, H. Antioxidant activities of N-ferrocenylmethyl-2- and -3-nitroaniline and determination of their binding parameters with Superoxide Anion Radicals. Curr. Pharm. Anal., 2017, 13(2), 110-116.
[24]
Ahmed, S.; Shakeel, F. Antioxidant activity coefficient, mechanism, and kinetics of different derivatives of flavones and flavanones towards superoxide radical. Czech J. Food Sci., 2012, 30(2), 153-163.
[25]
Ahmed, S.; Shakeel, F. Voltammetric determination of antioxidant character in Berberis lycium Royel, Zanthoxylum armatum and Morus nigra Linn plants. Pak. J. Pharm. Sci., 2012, 25(3), 501-507.
[26]
Brett, C.M.A.; Brett, A.M.O. Electrochemistry: Principles, Methods and Applications; Oxford Science University Publications: Oxford, 1993.
[27]
Osgerby, J.M.; Pauson, P.L. 128. Ferrocene derivatives. Part VI. DL-ferrocenylalanine. J. Chem. Soc., 1958, 656-660.
[28]
Houlton, A.; Isaac, C.J.; Gibson, A.E.; Horrocks, B.R.; Clegg, W.; Elsegood, M.R.J. Synthesis, structure and redox properties of ferrocenylmethylnucleobases. J. Chem. Soc., Dalton Trans., 1999, 18, 3229-3234.
[29]
Molyneux, P. The use of stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity songklanakarin. J. Sci. Technol., 2004, 26, 211-219.
[30]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci., Technol., 1995, 28(1), 25-30.
[31]
Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst, 2002, 127, 183-198.
[32]
Korotkova, E.I.; Karbainov, Y.A.; Avramchik, O.A. Investigation of antioxidant and catalytic properties of some biologically active substances by voltammetry. Bioanal. Chem., 2003, 375(3), 465-468.
[33]
Pisoschi, A.M.; Cheregi, M.C.; Danet, A.F. Total antioxidant capacity of some commercial fruit juices: electrochemical and spectrophotometrical approaches. Molecules, 2009, 14(1), 480-493.
[34]
Milardovic, S.; Ivekovic, D.; Grabaric, B.S. A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry, 2006, 68(2), 175-180.
[35]
Milardovic, S.; Ivekovic, D.; Rumenjak, V.; Grabaric, B.S. Use of DPPH⋅|DPPH redox couple for biamperometric determination of antioxidant activity. Electroanalysis, 2005, 17, 1847-1853.
[36]
Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr., 2003, 133(9), 2812-2819.
[37]
Chu, X.; Shen, G.L.; Jian, J.H.; Kang, T.F.; Xiong, B.; Yu, R.Q. Voltammetric studies of the interaction of daunomycin anticancer drug with DNA and analytical applications. Anal. Chim. Acta, 1998, 373, 29-38.
[38]
Carter, M.T.; Rodriguez, M.; Bard, A.J. Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2′-bipyridine. J. Am. Chem. Soc., 1989, 111(24), 8901-8911.
[39]
Zhao, G.C.; Zhu, J.J.; Zhang, J.J.; Chen, H.Y. Voltammetric studies of the interaction of methylene blue with DNA by means of β-cyclodextrin. Anal. Chim. Acta, 1999, 394, 337-344.
[40]
Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem., 2002, 50(17), 4976-4982.
[41]
Nicholson, R.S.; Shain, I. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. J. Anal. Chem., 1964, 36(4), 706-723.
[42]
Muhammad, H.; Hanif, M.; Tahiri, I.A.; Versiani, M.A.; Shah, F.; Khaliq, O.; Ali, S.T.; Ahmed, S. Electrochemical behavior of superoxide anion radical towards quinones: A mechanistic approach. Res. Chem. Intermed., 2018, 44(8), 1-14.