[1]
(a) Kouznetsov, V.V.; Mendez, L.Y.; Gomez, C.M. Recent progress in the synthesis of quinolines. Curr. Org. Chem., 2005, 9, 141-161.
(b) Roma, G.; Braccio, M.D.; Grossi, G.; Mattioli, F.; Ghia, M. 1,8-Naphthyridines IV. 9-substituted N, N-dialkyl-5-(alkylamino or cycloalkylamino) [1,2,4] triazolo [4,3-a] [1,8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur. J. Med. Chem., 2000, 35, 1021-1035.
(c) Phan, L.T.; Jian, T.; Chen, Z.; Qiu, Y.L.; Wang, Z.; Beach, T.; Polemeropoulos, A.; Or, Y.S. Synthesis and antibacterial activity of a novel class of 4‘-substituted 16-membered ring macrolides derived from tylosin. J. Med. Chem., 2004, 47, 2965-2968.
(d) Bailly, C.; Laine, W.; Baldeyrou, B. Pauw-Gillet de, M.C.; Colson, P.; Houssier, C.; Cimanga, K.; Miert, S.V.; Vlietinck, A.J.; Pieters, L. DNA intercalation, topoisomerase II inhibition and cytotoxic activity of the plant alkaloid neocryptolepine. Anti-Cancer Drug Res., 2000, 15, 191-201.
(e) Vargas, L.Y.; Castelli, M.V.; Kouznetsov, V.V.; Urbina, J.M.; Lopez, S.N.; Sortino, M.; Enriz, R.D.; Ribas, J.C.; Zacchino, S. In vitro antifungal activity of new series of homoallylamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers. Bioorg. Med. Chem., 2003, 11, 1531-1550.
[2]
(a) Calus, S.; Gondek, E.; Danel, A.; Jarosz, B.; Pokladko, M.; Kityk, A.V. Electroluminescence of 6-R-1,3-diphenyl-1H-pyrazolo [3,4-b] quinoline-based organic light-emitting diodes (R=F, Br, Cl, CH3, C2H3 and N(C6H5)2). Mater. Lett., 2007, 61, 3292-3295.
(b) Caeiro, G.; Lopes, J.M.; Magnoux, P.; Ayrault, P.; Ribeiro, F.R. A FT-IR study of deactivation phenomena during methylcyclohexane transformation on H-USY zeolites: nitrogen poisoning, coke formation, and acidity-activity correlations. J. Catal., 2007, 249, 234-243.
(c)Katritzky, A.R.; Rees, C.W.; Scriven, E.F. Comprehensive heterocyclic chemistry II; Pergamon press, Elsevier: Oxford, 1996.
[3]
Heusch, R.; Leverkusen, A.G.B. Ullmann’s Encyclopedia of Industrial Chemistry; , 2000, 12, p. 458-500.
[4]
(a) Greshoff, M. Investigations of Echinopsin, a new crystalline alkaloid. Rec. Trav. Chim, 1900, 19, 360-363.
(b) Troeger, J.; Runne, H. Beiträge zur erforschung der angosturaalkaloide. Arch. Pharm., 1911, 249, 174-208.
(c) Beckurts, H.; Troeger, J.; Muller, W. Beiträge zur erforschung der angosturaalkaloide. ueber isomerisierung und abbau des kusparins. Arch. Pharm., 1914, 252, 459-496.
(d) Spath, E.; Papainonou, G. Monatsch., 1929, 52, 129.
[5]
(a) Shang, X-F.; Morris-Natschke, S.L.; Yang, G-Z.; Liu, Y-Q.; Guo, X.; Xu, X-S.; Goto, M.; Li, J-C.; Zhang, Z-Y.; Lee, K-H. Biologically active quinoline and quinazoline alkaloids part II. Med. Res. Rev., 2018, 38(5), 1614-1660.
(b) Prajapati, S.M.; Patel, K.D.; Vekariya, R.H.; Panchal, S.N.; Patel, H.D. Recent advances in the synthesis of quinolines: a review. RSC Adv., 2014, 4, 24463-24476.
[6]
Kouznetsov, V.V. Recent synthetic developments in a powerful imino Diels-Alder reaction (Povarov reaction): application to the synthesis of N-polyheterocycles and related alkaloids. Tetrahedron, 2009, 65(18), 2721-2750.
[7]
Nainwal, L.M.; Tasneem, S.; Akhtar, W.; Verma, G.; Khan, M.F.; Parvez, S.; Shaquiquzzaman, M.; Akhter, M.; Alam, M.M. Green recipes to quinoline: a review. Eur. J. Med. Chem., 2019, 164, 121-170.
[8]
Gómez, C.M.M.; Kouznetsov, V.V.; Sortino, M.A.; Álvarez, S.L.; Zacchino, S.A. In vitro antifungal activity of polyfunctionalized 2-(hetero) arylquinolines prepared through imino Diels-Alder reactions. Bioorg. Med. Chem., 2008, 16(17), 7908-7920.
[9]
Varma, P.P.; Sherigara, B.S.; Mahadevan, K.M.; Hulikal, V. Mild and simple access to diverse 4-amino-substituted 2-phenyl-1,2,3,4-tetrahydroquinolines and 2-phenylquinolines based on a multicomponent imino Diels-Alder reaction. Synth. Commun., 2010, 40(15), 2220-2231.
[10]
Achar, K.C.; Hosamani, K.M.; Seetharamareddy, H.R. Phosphotungstic acid: an efficient catalyst for synthesis of 2-substituted tetrahydroquinoline via imino Diels-Alder reaction and fluorescent studies. Synth. Commun., 2010, 41(1), 33-40.
[12]
Kouznetsov, V.V.; Forero, J.S.B.; Torres, D.F.A. A simple entry to novel spiro dihydroquinoline-oxindoles using Povarov reaction between 3-N-aryliminoisatins and isoeugenol. Tetrahedron Lett., 2008, 49(41), 5855-5857.
[13]
Catti, F.; Kiuru, P.S.; Slawin, A.M.; Westwood, N.J. The synthesis of highly functionalised pyridines using Ghosez-type reactions of dihydropyrazoles. Tetrahedron, 2008, 64(40), 9561-9566.
[14]
Hosokawa, T.; Matsumura, A.; Katagiri, T.; Uneyama, K. One-Pot Synthesis of 3-fluoro-4-(trifluoromethyl)quinolines from pentafluoropropen-2-ol and their molecular modification. J. Org. Chem., 2008, 73(4), 1468-1474.
[15]
Marminon, C.; Fenet, B.; Mignosi, V. Terreux, Nebois, R.P. Diels-Alder reactions between acrolein N,N-dimethylhydrazone and N-benzylated benzotriazole-, indazole- or indole-4,7-diones. Heterocycles, 2009, 78, 2799-2809.
[16]
Bergonzini, G.; Gramigna, L.; Mazzanti, A.; Fochi, M.; Bernardi, L.; Ricci, A. Organocatalytic asymmetric Povarov reactions with 2- and 3-vinylindoles. Chem. Commun., 2010, 46, 327-329.
[17]
Pérez-Ruiz, R.; Domingo, L.R.; Jiménez, M.C.; Miranda, M.A. Experimental and theoretical studies on the radical-cation-mediated imino-Diels-Alder reaction. Org. Lett., 2011, 13(19), 5116-5119.
[18]
Xie, M.; Liu, X.; Zhu, Y.; Zhao, X.; Xia, Y.; Lin, L.; Feng, X. Asymmetric synthesis of tetrahydroquinolines with quaternary stereocenters through the Povarov reaction. Chem. Eur. J, 2011, 17(49), 13800-13805.
[19]
Gerard, B.; O’Shea, M.W.; Donckele, E.; Kesavan, S.; Akella, L.B.; Xu, H.; Jacobsen, E.N.; Marcaurelle, L.A. Application of a catalytic asymmetric Povarov reaction using chiral ureas to the synthesis of a tetrahydroquinoline library. ACS Comb. Sci., 2012, 14, 621-630.
[20]
Yu, J.; Jiang, H-J.; Zhou, Y.; Luo, S-W.; Gong, L-Z. Sodium salts of anionic chiral cobalt(III) complexes as catalysts of the enantioselective Povarov reaction. Angew. Chem. Int. Ed., 2015, 54, 11209-11213.
[21]
Huang, Y.; Qiu, C.; Li, Z.; Feng, W.; Gan, H.; Liu, J.; Guo, K. Tritylium cation as low loading lewis acidic organocatalyst in Povarov reactions. ACS Sustain. Chem.& Eng., 2016, 4(1), 47-52.
[22]
Vidal, A.S.; Miró, J.; Rosello, M.S.; Pozo, C.D.; Fustero, S. Gold-catalyzed Povarov-type reaction of fluorinated imino esters and furans. J. Org. Chem., 2016, 81(15), 6515-6524.
[23]
Wang, H.; Wang, C.; Huang, K.; Liu, L.; Chang, W.; Li, J. Copper-catalyzed cascade reaction via intramolecular hydroamination cyclization of homopropargylic amines and intermolecular Povarov reaction with imines. Org. Lett., 2016, 18(10), 2367-2370.
[24]
Ni, M.; Zhang, Y.; Gong, T.; Feng, B. Gold-oxazoline complex-catalyzed cross-dehydrogenative coupling of glycine derivatives and alkenes. Adv. Synth. Catal., 2017, 359(5), 824-831.
[25]
Ren, X.; Li, G.; Huang, J.; Wang, W.; Zhang, Y.; Xing, G.; Gao, C.; Zhao, G.; Zhao, J.; Tang, Z. Step-controlled Povarov-type reaction with 1,2-dihydroquinolines as precursors of dienophiles: direct synthesis of spirocyclic bi-tetrahydroquinolines and functionalized 1,2-dihydroquinolines. Org. Lett., 2017, 19, 58-61.
[26]
Ramesh, E.; Raghunathan, R. Indium chloride catalyzed intramolecular cyclization of N-aryl imines: synthesis of pyrrolo [2,3-d] pyrimidine annulated tetrahydroquinoline derivatives. Tetrahedron Lett., 2008, 49(16), 2583-2587.
[27]
Ramesh, E.; Manian, R.D.R.S.; Raghunathan, R.; Sainath, S.; Raghunathan, M. Synthesis and antibacterial property of quinolines with potent DNA gyrase activity. Bioorg. Med. Chem., 2009, 17(2), 660-666.
[28]
Ramesh, E.; Vidhya, T.K.S.; Raghunathan, R. Indium chloride/silica gel supported synthesis of pyrano/thiopyranoquinolines through intramolecular imino Diels-Alder reaction using microwave irradiation. Tetrahedron Lett., 2008, 49(17), 2810-2814.
[29]
Dai, X.; Cheng, C.; Ding, C.; Yao, Q.; Zhang, A. Synthesis of 2,7-naphthyridine-containing analogues of luotonin A. Synlett, 2008, 19, 2989-2992.
[30]
Desrat, S.; Weghe, P.V. Intramolecular imino diels−alder reaction: progress toward the synthesis of uncialamycin. J. Org. Chem., 2009, 74(17), 6728-6734.
[35]
Xu, P.; Liu, G-S.; Xi, J.; Wang, S.; Yao, Z-J. Efficient synthesis of furoquinolinones using Hendrickson reagent-initiated cascade annulation. Tetrahedron, 2011, 67(30), 5455-5460.
[36]
Zhang, H-R.; Dong, Z-W.; Yang, Y-J.; Wang, P-L.; Hui, X-P. N-heterocyclic carbene-catalyzed stereoselective cascade reaction: synthesis of functionalized tetrahydroquinolines. Org. Lett., 2013, 15, 4750-4753.
[37]
Min, C.; Lin, C-T.; Seidel, D. Catalytic enantioselective intramolecular Aza-Diels-Alder reactions. Angew. Chem. Int. Ed., 2015, 127, 6608-6612.
[38]
An, X-D.; Yu, S. Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and O-acyl hydroxylamine. Org. Lett., 2015, 17(11), 2692-2695.
[39]
Dong, W.; Hu, B.; Gao, X.; Li, Y.; Xie, X.; Zhang, Z. Visible-light-induced photocatalytic aerobic oxidation/Povarov cyclization reaction: synthesis of substituted quinoline-fused lactones. J. Org. Chem., 2016, 81(19), 8770-8776.
[40]
Yu, X-L.; Kuang, L.; Chen, S.; Zhu, X-L.; Li, Z-L.; Tan, B.; Liu, X-Y. Counteranion-controlled unprecedented diastereo- and enantioselective tandem formal Povarov reaction for construction of bioactive octahydro-dipyrroloquinolines. ACS Catal., 2016, 6(9), 6182-6190.
[41]
Liu, Q.; Wang, C.; Li, Q.; Hou, Y.; Wu, Y.; Liu, L.; Chang, W.; Li, J. Povarov reaction of cycloiminium formed in situ via hydroamination cycloisomerization of homopropargylic amines with electron-rich olefins. J. Org. Chem., 2017, 82(2), 950-958.
[42]
Sridharan, V.; Avendano, C.; Menendez, J.C. New findings on the cerium(IV) ammonium nitrate catalyzed Povarov reaction: stereoselective synthesis of 4-Alkoxy-2-aryl-1,2,3,4-tetrahydroquinoline derivatives. Synthesis, 2008, 7, 1039-1044.
[43]
Barluenga, J.; Mendoza, A.; Rodriguez, F.; Fananas, F.J. Synthesis of spiroquinolines through a one-pot multicatalytic and multicomponent cascade reaction. Angew. Chem. Int. Ed., 2008, 47(37), 7044-7047.
[44]
Xiao, F.; Chen, Y.; Liu, Y.; Wang, J. Sequential catalytic process: synthesis of quinoline derivatives by AuCl3/CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes. Tetrahedron, 2008, 64(12), 2755-2761.
[45]
Cao, K.; Zhang, F.M.; Tu, Y.Q.; Zhuo, X.T.; Fan, C.A. Iron(III)‐catalyzed and air-mediated tandem reaction of aldehydes, alkynes and amines: an efficient approach to substituted quinolines. Chem. Eur. J, 2009, 15(26), 6332-6334.
[46]
Huang, H.; Jiang, H.; Chen, K.; Liu, H. A simple and convenient copper-catalyzed tandem synthesis of quinoline-2-carboxylates at room temperature. J. Org. Chem., 2009, 74(15), 5476-5480.
[48]
Sridharan, V.; Avendaño, C.; Menéndez, J.C. Convenient, two-step synthesis of 2-styrylquinolines: an application of the CAN-catalyzed vinylogous type-II Povarov reaction. Tetrahedron, 2009, 65(10), 2087-2096.
[49]
Desimoni, G.; Faita, G.; Mella, M.; Toscanini, M.; Boiocchi, M. Multicomponent reactions of indole, ethyl glyoxylate and anilines: from friedel-crafts to Aza-Diels-Alder reactions catalysed by scandium triflate. Eur. J. Org. Chem., 2009, 16, 2627-2634.
[51]
Smith, C.D.; Gavrilyuk, J.I.; Lough, A.J.; Batey, R.A. Lewis acid catalyzed three-component hetero-Diels−Alder (Povarov) reaction of N-arylimines with strained norbornene-derived dienophiles. J. Org. Chem., 2010, 75(3), 702-715.
[52]
Saavedra, L.A.; Vallejos, G.; Kouznetsov, V.V.; Gutierrez, M.; Gómez, C.M.M.; Méndez, L.Y.V.; Jaimes, J.H.B. Synthesis of new diversely linked biquinoline derivatives by multicomponent imino-Diels-Alder cycloaddition and intramolecular friedel-crafts cyclization. Synthesis, 2010, 4, 593-600.
[54]
García, E.V.; Catti, F.; Ramón, R.; Lavilla, R. Unsaturated lactams: new inputs for Povarov-type multicomponent reactions. Org. Lett., 2010, 12(4), 860-863.
[55]
Sueki, S.; Okamoto, C.; Shimizu, I.; Seto, K.; Furukawa, Y. One-pot synthesis and fluorescence properties of 2-arylquinolines. Bull. Chem. Soc. Jpn., 2010, 83(4), 385-390.
[56]
Wang, X-S.; Zhou, J.; Yang, K.; Yao, C-S. Yb(OTf)3: an efficient catalyst for the synthesis of 3-arylbenzo [f]quinoline-1,2-dicarboxylate derivatives via imino-Diels-Alder reaction. Tetrahedron Lett., 2010, 51(43), 5721-5723.
[57]
Wang, C.; Han, Z-Y.; Luo, H-W.; Gong, L-Z. Highly enantioselective relay catalysis in the three-component reaction for direct construction of structurally complex heterocycles. Org. Lett., 2010, 12(10), 2266-2269.
[58]
Kumar, A.; Srivastava, S.; Gupta, G. Supramolecular carbohydrate scaffold-catalyzed synthesis of tetrahydroquinolines. Tetrahedron Lett., 2010, 51(3), 517-520.
[59]
Jia, X-d.; Ren, Y.; Huo, C-d.; Wang, W-J.; Chen, X-N.; Xu, X-L.; Wang, X-c. Radical cation salt induced tandem cyclization between anilines and N-vinyl amides: synthesis of 2-methyl-4-anilino-1,2,3,4-tetrahydroquinoline derivatives. Tetrahedron Lett., 2010, 51(51), 6779-6782.
[60]
De, K.; Legros, J.; Crousse, B.; Chandrasekaran, S.; Delpon, D.B. Synthesis of substituted 8-aminoquinolines and phenanthrolines through a Povarov approach. Org. Biomol. Chem., 2011, 9, 347-350.
[62]
Zhang, W.; Dai, Y.; Wang, X.; Zhang, W. One-pot synthesis of pyrrolidino- and piperidinoquinolinones by three-component aza-Diels-Alder reactions of in situ generated N-arylimines and cyclic enamides. Tetrahedron Lett., 2011, 52(46), 6122-6126.
[65]
Palaniappan, S.; Rajender, B.; Umashankar, M. Controllable stereoselective synthesis of cis or trans pyrano and furano tetrahydroquinolines: polyaniline-p-toluenesulfonate salt catalyzed one-pot aza-Diels-Alder reactions. J. Mol. Catal. A: Chem., 2012, 352, 70-74.
[66]
Bhuyan, D.; Sarma, R.; Prajapati, D. Microwave-assisted efficient synthesis of spiroquinoline derivatives via a catalyst- and solvent-free aza-Diels-Alder reaction. Tetrahedron Lett., 2012, 53(47), 6460-6463.
[67]
Balci, F.M.; Imrich, H.G.; Conrad, J.; Beifuss, U. Influence of guanidinium salts and other ionic liquids on the three-component aza-Diels-Alder reaction. Helv. Chim. Acta, 2013, 96, 1681-1692.
[68]
Zanwar, M.R.; Gawande, S.D.; Kavala, V.; Kuo, C-W.; Yaoa, C-F. Iron(III) chloride catalyzed synthesis of highly substituted indolyl-tetrahydroquinoline derivatives by using indolylnitroalkene as dienophiles and its application to the synthesis of indolo-benzonaphthyridine derivatives. Adv. Synth. Catal., 2014, 356(18), 3849-3860.
[69]
Luo, X-H.; Niu, Y-H.; Cao, X-P.; Shan, Ye. X.-S. Cyclopropenes for the synthesis of cyclopropane-fused dihydroquinolines and benzazepines. Adv. Synth. Catal., 2015, 357(13), 2893-2902.
[70]
Imrich, H-G.; Conrad, J.; Bubrin, D.; Beifuss, U. From nitrobenzenes to substituted tetrahydroquinolines in a single step by a domino reduction/imine formation/aza-Diels-Alder reaction. J. Org. Chem., 2015, 80(4), 2319-2332.
[71]
Dai, W.; Jiang, X-L.; Tao, J-Y.; Shi, F. Application of 3-methyl-2-vinylindoles in catalytic asymmetric Povarov reaction: diastereo- and enantioselective synthesis of indole-derived tetrahydroquinolines. J. Org. Chem., 2016, 81(1), 185-192.
[72]
Vasconcelos, S.N.S. Silva da, V.H.M.; Braga, A.A.C.; Shamim, A.; Souza, F.B.; Pimenta, D.C.; Stefani, H.A. 3-Alkenyltyrosines accessed by suzuki-miyaura coupling: A key intermediate in the synthesis and mechanistic study of Povarov multicomponent reactions. Asian J. Org. Chem., 2017, 6(7), 913-920.
[73]
Wang, X-S.; Li, Q.; Yao, C-S.; Tu, S-J. An efficient method for the synthesis of benzo[f]quinoline and benzo[a]phenanthridine derivatives catalyzed by iodine by a three-component reaction of arenecarbaldehyde, naphthalene-2-amine, and cyclic ketone. Eur. J. Org. Chem., 2008, 20, 3513-3518.
[74]
Wang, X-S.; Li, Q.; Wu, J-R.; Li, Y-L.; Yao, C-S.; Tu, S-J. An efficient and highly selective method for the synthesis of 3-arylbenzo-quinoline derivatives catalyzed by iodine via three-component reactions. Synthesis, 2008, 12, 1902-1910.
[75]
Li, Q.; Yao, C-S.; Zhang, M-M.; Tu, S-J.; Wang, X-S.I. 2‐catalyzed reactions of schiff base and alkyl aldehyde towards benzo[f]quinoline derivatives. J. Heterocycl. Chem., 2008, 45(4), 1027-1031.
[80]
Bala, B.D.; Balamurugan, K.; Perumal, S. Facile, four-component, domino reactions for the regioselective synthesis of tetrahydrobenzo[g]quinolines. Tetrahedron Lett., 2011, 52(35), 4562-4566.
[82]
Gao, Q.; Liu, S.; Wu, X.; Zhang, J.; Wu, A. Coproduct promoted Povarov reaction: synthesis of substituted quinolines from methyl ketones, arylamines, and α-ketoesters. J. Org. Chem., 2015, 80(11), 5984-5991.
[83]
Li, X.; Xing, Q.; Li, P.; Zhao, J.; Li, F. Three-component Povarov reaction with alcohols as alkene precursors: Efficient access to 2-arylquinolines. Eur. J. Org. Chem., 2017, 3, 618-625.
[84]
Chou, S-S.P.; Cai, Y-L. Synthesis and applications of sulfur-substituted cis-hexahydro-2-quinolinones. Tetrahedron, 2011, 67(6), 1183-1186.
[85]
Varma, P.P.; Srinivasa, A.; Mahadevan, K.M. Efficient InCl3/H2O-catalyzed one-pot stereoselective synthesis of cis-2-methyl-4-amido-1,2,3,4-tetrahydroquinoline derivatives. Synth. Commun., 2011, 41(15), 2186-2194.
[86]
Wu, L.; Jiang, R.; Yang, J-M.; Wang, S-Y.; Ji, S-J. Catalyst-free diastereoselective synthesis of 2-methyl-4-amino-1,2,3,4-tetrahydro-quinoline derivatives in water. Tetrahedron Lett., 2013, 54(22), 2849-2852.
[87]
Chandrashekarappa, K.K.H.; Mahadevan, K.M.; Manjappa, K.B. High throughput one pot synthesis of 2-methylquinolines. Tetrahedron Lett., 2013, 54(11), 1368-1370.
[88]
Symeonidis, T.S.; Litinas, K.E. Synthesis of methyl substituted [5,6]- and [7,8]-fused pyridocoumarins via the iodine-catalyzed reaction of aminocoumarins with n-butyl vinyl ether. Tetrahedron Lett., 2013, 54(48), 6517-6519.
[90]
Min, C.; Sanchawala, A.; Seidel, D. Dual C-H Functionalization of N-Aryl Amines: synthesis of polycyclic amines via an oxidative Povarov approach. Org. Lett., 2014, 16(10), 2756-2759.
[91]
Rehan, M.; Hazra, G.; Ghorai, P. Synthesis of polysubstituted quinolines via transition-metal-free oxidative cycloisomerization of o-cinnamylanilines. Org. Lett., 2015, 17(7), 1668-1671.
[92]
Huo, C.; Chen, F.; Yuan, Y.; Xie, H.; Wang, Y. Iron catalyzed dual-oxidative dehydrogenative (DOD) tandem annulation of glycine derivatives with tetrahydrofurans. Org. Lett., 2015, 17(20), 5028-5031.
[94]
Kobayashi, S.; Furuya, T.; Otani, T.; Saito, T. A diene-transmissive Diels-Alder reaction involving inverse electron-demand hetero-Diels-Alder cycloaddition of cross-conjugated azatrienes. Tetrahedron Lett., 2008, 49, 4513-4515.
[95]
Kobayashi, S.; Furuya, T.; Otani, T.; Saito, T. A novel and facile stereocontrolled synthetic method for polyhydro-quinolines and pyridopyridazines via a diene-transmissive Diels-Alder reaction involving inverse electron-demand hetero Diels-Alder cycloaddition of cross-conjugated azatrienes. Tetrahedron, 2008, 64(41), 9705-9716.
[96]
Kobayashi, S.; Semba, T.; Takahashi, T.; Yoshida, S.; Dai, K.; Otani, T.; Saito, T. A novel and efficient stereo-controlled synthesis of hexahydroquinolinones via the diene-transmissive hetero-Diels-Alder reaction of cross-conjugated azatrienes with ketenes and electrophilic dienophiles. Tetrahedron, 2009, 65(4), 920-933.
[97]
Lee, Y.R.; Hung, T.V. Ethylenediamine diacetate (EDDA)-catalyzed one-pot synthesis of tetrahydroquinolines by domino Knoevenagel/hetero Diels-Alder reactions from 1,3-dicarbonyls. Tetrahedron, 2008, 64(30-31), 7338-7346.