[1]
Heftmann, E., Ed.; Chromatography, Part B: Applications; 5th ed,. , 1992.
[2]
Kirk, O. Encyclopedia of Chemical Technology; , 1978.
[3]
Reisch, M.S. Better times ahead for U.S. dye producers. Chem. Eng. News, 1988, 66, 7-14. [http://dx.doi.org/10.1021/cen-v066n030.p007].
[4]
Mortensen, S.K.; Trier, X.T.; Foverskov, A.; Petersen, J.H. Specific determination of 20 primary aromatic amines in aqueous food simulants by liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Chromatogr. A, 2005, 1091(1-2), 40-50. [http://dx.doi.org/10.1016/j.chroma.2005.07.026]. [PMID: 16395791].
[5]
Touraud, E.; Pinheiro, H.M.; Thomas, O. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigments, 2003, 61(2), 121-139.
[6]
Lednicer. D. The Organic Chemistry of Drug Synthesis. 2007.
[7]
Koss, L.G.; Melamed, M.R.; Kelly, E. Further cytologic and histologic studies of bladder lesions in workers exposed to para-aminodiphenyl: progress report. I. Natl. Cancer Inst, 1969, 43(1), 233-243. [PMID: 5796385].
[8]
Chen, C.; Liu, J.; Halpert, J.R.; Wilderman, P.R. Use of phenoxyaniline analogues to generate biochemical insights into the interaction of polybrominated diphenyl ether with CYP2B enzymes. Biochemistry, 2018, 57(5), 817-826. [http://dx.doi.org/10.1021/acs.biochem.7b01024]. [PMID: 29215266].
[9]
Regar, M.; Baroliya, P.K.; Patidar, A.; Dashora, R.; Mehta, A.; Chauhan, R.S.; Goswami, A.K. Antidyslipidemic and antioxidant effects of novel hydroxytriazenes. Pharm. Chem. J., 2016, 50(5), 310-314. [http://dx.doi.org/10.1007/s11094-016-1442-x].
[10]
Tas, D.O.; Pavlostathis, S.G. Effect of nitrate reduction on the microbial reductive transformation of pentachloronitrobenzene. Environ. Sci. Technol., 2008, 42(9), 3234-3240. [http://dx.doi.org/10.1021/es702261w]. [PMID: 18522099].
[11]
Dom, N.; Nobels, I.; Knapen, D.; Blust, R. Bacterial gene profiling assay applied as an alternative method for mode of action classification: pilot study using chlorinated anilines. Environ. Toxicol. Chem., 2011, 30(5), 1059-1068. [http://dx.doi.org/10.1002/etc.476]. [PMID: 21309029].
[12]
Skare, J.A.; Hewitt, N.J.; Doyle, E.; Powrie, R.; Elcombe, C. Metabolite screening of aromatic amine hair dyes using in vitro hepatic models. Xenobiotica, 2009, 39(11), 811-825. [http://dx.doi.org/10.3109/00498250903134443]. [PMID: 19845432].
[13]
Hauri, U.; Lütolf, B.; Schlegel, U.; Hohl, C. Determination of carcinogenic aromatic amines in dyes, cosmetics, finger paints and inks for pens and tattoos with LC/MS. Mitt. Lebensmitteluntersuchung Hyg., 2005, 96(5), 321-335.
[14]
National Toxicology Program. NTP Toxicology and Carcinogenesis Studies of p-Nitroaniline (CAS No. 100-01-6) in B6C3F1 Mice (Gavage Studies). Natl. Toxicol. Program Tech. Rep. Ser., 1993, 418, 1-203. [PMID: 12616293].
[15]
Chung, K-T. Azo dyes and human health: A review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev, 2016, 34(4), 1-60. [http://dx.doi.org/10.1080/10590501.2016.1236602].
[16]
Benigni, R.; Passerini, L. Carcinogenicity of the aromatic amines: From structure-activity relationships to mechanisms of action and risk assessment. Mutat. Res., 2002, 511(3), 191-206. [http://dx.doi.org/10.1016/S1383-5742(02)00008-X]. [PMID: 12088717].
[17]
Mitra, A.P.; Cote, R.J. Molecular pathogenesis and diagnostics of bladder cancer. Annu. Rev. Pathol., 2009, 4, 251-285. [http://dx.doi.org/10.1146/annurev.pathol.4.110807.092230]. [PMID: 18840072].
[18]
Ward, E.; Carpenter, A.; Markowitz, S.; Roberts, D.; Halperin, W. Excess number of bladder cancers in workers exposed to ortho-toluidine and aniline. J. Natl. Cancer Inst., 1991, 83(7), 501-506. [http://dx.doi.org/10.1093/jnci/83.7.501]. [PMID: 2005633].
[19]
Benigni, R.; Giuliani, A.; Franke, R.; Gruska, A. Quantitative structure-activity relationships of mutagenic and carcinogenic aromatic amines. Chem. Rev., 2000, 100(10), 3697-3714. [http://dx.doi.org/10.1021/cr9901079]. [PMID: 11749325].
[20]
Seager, S.L.; Slabaugh, M.R. Organic and Biochemistry for Today, 4th ed; Cole Pub Co., 2000.
[21]
Favre, H.A.; Powell, W.H. Nomenclature of Organic Chemistry., 2014.
[22]
Oh, S.W.; Kang, M.N.; Cho, C.W.; Lee, M.W. Detection of carcinogenic amines from dyestuffs or dyed substrates. Dyes Pigments, 1997, 33(2), 119-135. [http://dx.doi.org/10.1016/S0143-7208(96)00038-1].
[23]
Lubash, G.D.; Phillips, R.E.; Shields, J.D., III; Bonsnes, R.W.; Joseph, D.; Shelds, M.D.; Bonsnes, R.W. Acute Aniline Poisoning Treated By Hemodialysis. Arch. Intern. Med., 1964, 114(4), 530-532. [http://dx.doi.org/10.1001/archinte.1964.03860100112013]. [PMID: 14184642].
[24]
Katritzky, A.R.; Lobanov, V.S.; Karelson, M. QSPR: the correlation and quantitative prediction of chemical and physical properties from structure. Chem. Soc. Rev., 1995, 24(4), 279-287. [http://dx.doi.org/10.1039/cs9952400279].
[25]
Sundberg, R.J. Comprehensive Heterocyclic Chemistry, Pyrroles
and their Benzo Derivatives: (iii)., 1984.
[26]
Khan, F.; Prakash, D.; Jain, R. Development of an HPLC method for determination of pentachloronitrobenzene, hexachlorobenzene and their possible metabolites. BMC Chem. Biol., 2011, 11(1), 2-6. [http://dx.doi.org/10.1186/1472-6769-11-2]. [PMID: 22112041].
[27]
Tas, D.O.; Pavlostathis, S.G. Effect of nitrate reduction on the microbial reductive transformation of pentachloronitrobenzene. Environ. Sci. Technol., 2008, 42(9), 3234-3240. [http://dx.doi.org/10.1021/es702261w]. [PMID: 18522099].
[28]
Dom, N.; Knapen, D.; Blust, R. Assessment of aquatic experimental versus predicted and extrapolated chronic toxicity data of four structural analogues. Chemosphere, 2012, 86(1), 56-64. [http://dx.doi.org/10.1016/j.chemosphere.2011.08.050]. [PMID: 21944038].
[29]
Ashford, R.D. Ashford’s Dictionary of Industrial Chemicals. Anal. Chem., 1995, 67(11), 385-385. [http://dx.doi.org/10.1021/ac00107a730].
[30]
Booth, G. Nitro Compounds; Aromatic, 2012.
[31]
Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; , 2000. [http://dx.doi.org/10.1002/9783527613106]
[32]
Lindner, M.; Bäumler, M.; Stäbler, A. inter-correlation among the hydrophilic–lipophilic balance, surfactant system, viscosity, particle sizE, and stability of candelilla wax-based dispersions. Coatings, 2018, 8(12), 469-487. [http://dx.doi.org/10.3390/coatings8120469].
[33]
Cappelli, C.I.; Benfenati, E.; Cester, J. Evaluation of QSAR models
for predicting the partition coefficient (log P) of chemicals under
the REACH regulation J. Environ. Res., 2015, 143(A), 26-32.
[34]
Korinth, G.; Wellner, T.; Schaller, K.H.; Drexler, H. Potential of the octanol–water partition coefficient (log P) to predict the dermal penetration behaviour of amphiphilic compounds in aqueous solutions. Toxicol. Lett., 2012, 215(1), 40-53. [http://dx.doi.org/10.1016/j.toxlet.2012.09.013]. [PMID: 23041607].
[35]
Murray, W.J.; Kier, L.B.; Hall, L.H. Molecular connectivity. 6. Examination of the parabolic relationship between molecular connectivity and biological activity. J. Med. Chem., 1976, 19(5), 573-578. [http://dx.doi.org/10.1021/jm00227a002]. [PMID: 1271398].
[36]
Cumming, H.; Ruker, C. Octanol−water partition coefficient measurement by a simple 1 H NMR method. ACS Omega, 2017, 2(9), 6244-6249. [http://dx.doi.org/10.1021/acsomega.7b01102].
[37]
Medic-Saric, M.; Mornar, A.; Badovinac-Crnjevic, T.; Jasprica, I. experimental and calculation procedures for molecular lipophilicity: A comparative study for 3,3′-(2-methoxy-benzylidene)bis(4-hydroxycoumarin). Croat. Chem. Acta, 2004, 77(1), 367-370.
[38]
Narayan Das, R.; Roy, K. Computation of chromatographic lipophilicity parameter logk0 of ionic liquid cations from “ETA” descriptors: Application in modeling of toxicity of ionic liquids to pathogenic bacteria. J. Mol. Liq., 2016, 216, 754-763. [http://dx.doi.org/10.1016/j.molliq.2016.02.013].
[39]
Cserhati, T. Determination of the lipophilicity of some aniline derivatives by reversed-phase thin-layer chromatography. The effect of the organic phase in the eluent. Chromatographia, 1984, 18(6), 318-322. [http://dx.doi.org/10.1007/BF02259085].
[40]
Cserháti, T.; Bordás, B.; Szögyi, M. Determination of the lipophilicity of some aniline derivatives by reversed-phase thin-layer chromatography. The effect of salt. Chromato., 1986, 21(6), 312-316. [http://dx.doi.org/10.1007/BF02311601].
[41]
Zhang, Y.; Liu, H.; Jiao, Y.; Yuan, H.; Wang, F.; Lu, S.; Yao, S.; Ke, Z.; Tai, W.; Jiang, Y.; Chen, Y.; Lu, T. De novo design of N-(pyridin-4-ylmethyl)aniline derivatives as KDR inhibitors: 3D-QSAR, molecular fragment replacement, protein-ligand interaction fingerprint, and ADMET prediction. Mol. Divers., 2012, 16(4), 787-802. [http://dx.doi.org/10.1007/s11030-012-9405-y]. [PMID: 23090418].
[42]
Fujita, T. recent success stories leading to commercializable bioactive compounds with the aid of traditional QSAR procedures. Mol. Inform., 1997, 16(2), 107-112.
[43]
Ahmadinejad, N.; Shafiei, F.; Isfahani, T.M. quantitative structure- property relationship (QSPR) investigation of camptothecin drugs derivatives. Comb. Chem. High Throughput Screen., 2018, 21(7), 533-542. [http://dx.doi.org/10.2174/1386207321666180927102836]. [PMID: 30264675].
[44]
Damborskyl, J.; Schulz, T.W. comparison of the QSAR models for toxicity and biodegradability of anilines and phenols. Chemos, 1996, 34(2), 429-446. [http://dx.doi.org/10.1016/S0045-6535(96)00361-X].
[45]
Cash, G.G.; Anderson, B.; Mayo, K.; Bogaczyk, S.; Tunkel, J. Predicting genotoxicity of aromatic and heteroaromatic amines using electrotopological state indices. Mutat. Res., 2005, 585(1-2), 170-183. [http://dx.doi.org/10.1016/j.mrgentox.2005.05.001]. [PMID: 15961341].
[46]
Mannhold, R.; Poda, G.I.; Ostermann, C.; Tetko, I.V. Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. J. Pharm. Sci., 2009, 98(3), 861-893. [http://dx.doi.org/10.1002/jps.21494]. [PMID: 18683876].
[50]
Depczynski, U.; Frost, V.J.; Molt, K. Genetic algorithms applied to the selection of factors in principal component regression. Anal. Chim. Acta, 2000, 420, 217-227. [http://dx.doi.org/10.1016/S0003-2670(00)00893-X].
[51]
Niazi, A.; Leardi, R. Genetic algorithms in chemometrics., 2012. [http://dx.doi.org/10.1002/cem.2426
[52]
Leardi, R. Nature-inspired Methods in Chemometrics: Genetic Algorithms and Artificial Neural Networks; (1th ed.. ). , 2003.
[53]
Fernandez, M.; Caballero, J.; Fernandez, L.; Sarai, A. Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM). Mol. Divers., 2011, 15(1), 269-289. [http://dx.doi.org/10.1007/s11030-010-9234-9]. [PMID: 20306130].
[54]
Alsberg, B.K.; Marchand-Geneste, N.; King, R.D. A new 3D molecular structure representation using quantum topology with application to structure–property relationships. Chemom. Intell. Lab. Syst., 2000, 54(2), 75-91. [http://dx.doi.org/10.1016/S0169-7439(00)00101-5].
[55]
Leardi, R. Application of genetic algorithm–PLS for feature selection in spectral data sets. J. Chemometr., 2000, 14(5-6), 643-655. [http://dx.doi.org/10.1002/1099-128X(200009/12)14:5/6<643:AID -CEM621>3.0.CO;2-E].
[56]
Hair, J.F.; Anderson, R.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis., 2006.
[57]
Kutner, M.H.; Nachtsheim, C.J.; Neter, J. Applied Linear Regression Models, 4th ed; , 2004.
[58]
Allison, P.D. Multiple Regression.: A Primer 1999.
[59]
Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 5th ed; , 2015.
[60]
Snedecor, G.W.; Cochran, W.G. Statistical Methods., 1967.
[61]
Saxena, A.K.; Prathipati, P. Comparison of MLR, PLS and GA-MLR in QSAR analysis. SAR QSAR Environ. Res., 2003, 14(5-6), 433-445. [http://dx.doi.org/10.1080/10629360310001624015]. [PMID: 14758986].
[62]
Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst., 2001, 58(2), 109-130. [http://dx.doi.org/10.1016/S0169-7439(01)00155-1].
[63]
Gedeck, P.; Rohde, B.; Bartels, C. QSAR--how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets. J. Chem. Inf. Model., 2006, 46(5), 1924-1936. [http://dx.doi.org/10.1021/ci050413p]. [PMID: 16995723].
[64]
Wentzell, P.D.; Vega Montoto, L. Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures. Chemom. Intell. Lab. Syst., 2003, 65(2), 257-279. [http://dx.doi.org/10.1016/S0169-7439(02)00138-7].
[65]
Naes, T.; Martens, H. Comprision of prediction methods for multicollinear data. Commun. Stat. Simul. Comput., 1985, 14(3), 545-576. [http://dx.doi.org/10.1080/03610918508812458].
[66]
Lorber, A.; Wangen, L.E.; Kowalski, B.R. a theatrical foundation for the PLS algorithem. J. Chemometr., 1987, 1(1), 19-31. [http://dx.doi.org/10.1002/cem.1180010105].
[67]
Helland, I.S. On the structure of partial least squares regression. Commun. Stat. Simul. Comput., 1988, 17(2), 581-607. [http://dx.doi.org/10.1080/03610918808812681].
[68]
Thomas, E.V.; Haaland, D.M. Comparison of multivariate calibration methods for quantitative spectral analysis. Anal. Chem., 1990, 62(10), 1091-1099. [http://dx.doi.org/10.1021/ac00209a024].
[69]
I.; Mun˜oz de la Pen˜a, A.; Espinosa-Mansilla, A.; Salinas, F. multicomponent determination of flavor enhancers in food preparations by partial least squaers and principal component regression modeling of spectrophotometric data. Analyst (Lond.), 1993, 118(7), 807-813. [http://dx.doi.org/10.1039/AN9931800807].
[70]
Luinge, H.J.; Hop, E.; Lutz, E.T.G.; van Hemert, H.A.; de Jong, E.A.M. Determination of the fat, protein and lactose content of milk using Fourier transform infrared spectrometry. Anal. Chim. Acta, 1993, 284(2), 419-433. [http://dx.doi.org/10.1016/0003-2670(93)85328-H].
[71]
Dupuy, N.; Duponchel, L.; Amram, B.; Huvenne, J.P.; Legrand, P. Quantitative analysis of latex in paper coatings by ATR‐FTIR spectroscopy. J. Chemometr., 1994, 8(5), 333-347. [http://dx.doi.org/10.1002/cem.1180080504].
[72]
Andrew, K.N.; Worsfold, P.J. Comparison of multivariate calibration techniques for the quantification of model process streams using diode-array spectrophotometry. Analyst (Lond.), 1994, 119(7), 1541-1546. [http://dx.doi.org/10.1039/an9941901541].
[73]
Navarro-Villoslada, L.V. Pe’rez-Arribas, M.E. Leo’n-Gonza´- lez, L.M. Polo-Dı’ez, Preconcentration and flow-injection multivariate determination of priority pollutant Chlorophenols. Anal. Chim. Acta, 1995, 308(1-3), 238-245. [http://dx.doi.org/10.1016/0003-2670(94)00412-F].
[74]
Mouazen, A.M.; Kuang, B.; Baerdemaeker, J.D.; Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, 2010, 158(1–2), 23-31. [http://dx.doi.org/10.1016/j.geoderma.2010.03.001].
[75]
Donachie, A.; Walmsley, A.D.; Haswell, S.J. Application and comparisons of chemometric techniques for calibration modelling using electrochemical/ICP-MS data for trace elements in UHQ water and humic acid matrices. Anal. Chim. Acta, 1999, 378(1-3), 235-243. [http://dx.doi.org/10.1016/S0003-2670(98)00609-6].
[76]
Centner, J. Verdu´-Andre’s, B. Walczak, D. Jouan-Rimbaud, F. Despagne, L. Pasti, R. Poppi, D. Massart, O.E. de Noord, comparison of multivariate calibration techniques applied to experimental NIR data sets. Appl. Spectrosc., 2000, 54(4), 608-623. [http://dx.doi.org/10.1366/0003702001949816].
[77]
Ni, Y.; Gong, X. Simultaneous spectrophotometric determination of mixtures of food colorants. Anal. Chim. Acta, 1997, 354(1-3), 163-171. [http://dx.doi.org/10.1016/S0003-2670(97)00297-3].
[78]
Aleixandre-Tudo, J.L.; Alvarez, I.; Garcia, M.J.; Lizama, V.; Aleixandre, J.L. Application of multivariate regression methods to predict sensory quality of red wines. Czech J. Food Sci., 2015, 33(3), 217-227. [http://dx.doi.org/10.17221/370/2014-CJFS].
[79]
Walker, J.D.; Jaworska, J.; Comber, M.H.; Schultz, T.W.; Dearden, J.C. Guidelines for developing and using quantitative structure-activity relationships. Environ. Toxicol. Chem., 2003, 22(8), 1653-1665. [http://dx.doi.org/10.1897/01-627]. [PMID: 12924568].
[80]
Ghafourian, T.; Cronin, M.T. The impact of variable selection on the modelling of oestrogenicity. SAR QSAR Environ. Res., 2005, 16(1-2), 171-190. [http://dx.doi.org/10.1080/10629360412331319808]. [PMID: 15844449].
[81]
Roy, K.; Leonard, J.T. On selection of training and test sets for the development of predictive QSAR models. QSAR Comb. Sci., 2006, 25(3), 235-251. [http://dx.doi.org/10.1002/qsar.200510161].
[82]
Kolossov, E.; Stanforth, R. The quality of QSAR models: problems and solutions. SAR QSAR Environ. Res., 2007, 18(1-2), 89-100. [http://dx.doi.org/10.1080/10629360601053984]. [PMID: 17365961].
[83]
Roy, P.P.; Roy, K. On some aspects of variable selection for partial least squares regression models. QSAR Comb. Sci., 2008, 27(3), 302-313. [http://dx.doi.org/10.1002/qsar.200710043].
[84]
Walker, J.D.; Jaworska, J.; Comber, M.H.; Schultz, T.W.; Dearden, J.C. Guidelines for developing and using quantitative structure-activity relationships. Environ. Toxicol. Chem., 2003, 22(8), 1653-1665. [http://dx.doi.org/10.1897/01-627]. [PMID: 12924568].
[85]
Worth, A.P.; Hartung, T.; Van Leeuwen, C.J. The role of the European centre for the validation of alternative methods (ECVAM) in the validation of (Q)SARs. SAR QSAR Environ. Res., 2004, 15(5-6), 345-358. [http://dx.doi.org/10.1080/10629360412331297362]. [PMID: 15669694].
[86]
Leach, A.R. Molecular Modeling: Principles and Applications., 2001.
[87]
Shao, J. Linear Model Selection by Cross-Validation. Am. Stat. Assoc., 1993, 88, 486-494. [http://dx.doi.org/10.1080/01621459.1993.10476299].
[88]
Shao, Z.; Joo Er, M. Efficient leave-one-out cross-validation-based regularized extreme learning machine. Neurocomputing, 2016, 194, 260-270. [http://dx.doi.org/10.1016/j.neucom.2016.02.058].
[89]
Roy, K.; Mitra, I. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb. Chem. High Throughput Screen., 2011, 14(6), 450-474. [http://dx.doi.org/10.2174/138620711795767893]. [PMID: 21521150].
[90]
Luntz, A.; Brailovsky, V. On estimation of characters obtained in
statistical procedure of recognition (in Russian). Techicheskaya
Kibernetica 3, 1969. Article ID: 10011253087
[91]
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276. [http://dx.doi.org/10.1016/S1093-3263(01)00123-1]. [PMID: 11858635].
[92]
Kubinyi, H.; Hamprecht, F.A.; Mietzner, T. Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. J. Med. Chem., 1998, 41(14), 2553-2564. [http://dx.doi.org/10.1021/jm970732a]. [PMID: 9651159].
[93]
Guha, R.; Jurs, P.C. Determining the validity of a QSAR model--a classification approach. J. Chem. Inf. Model., 2005, 45(1), 65-73. [http://dx.doi.org/10.1021/ci0497511]. [PMID: 15667130].
[94]
Novellino, E.; Fattorusso, C.; Greco, G. Use of comparative molecular field analysis and cluster analysis in series design. Pharm. Acta Helv., 1995, 70(2), 149-154. [http://dx.doi.org/10.1016/0031-6865(95)00014-Z].
[95]
Norinder, U. Single and domain made variable selection in 3D QSAR application. J. Chemometr., 1996, 10, 95-105. [http://dx.doi.org/10.1002/(SICI)1099-128X(199603)10:2<95:AID-CEM407>3.0.CO;2-M].
[96]
Zefirov, N.S.; Palyulin, V.A. QSAR for boiling points of “small” sulfides. Are the “high-quality structure-property-activity regressions” the real high quality QSAR models? J. Chem. Inf. Comput. Sci., 2001, 41(4), 1022-1027. [http://dx.doi.org/10.1021/ci0001637]. [PMID: 11500119].
[97]
Mingzhu, Z.; Dongqing, W. Exploring the Ligand-Protein Networks in Traditional Chinese Medicine: Current Databases, Methods and Applications. Adv. Struct. Bioinform., 2014, 827, 227.
[98]
Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; , 2008.
[99]
Todeschini, R.; Vighi, M.; Finizio, A.; Gramatica, P. 3D-modelling and prediction by WHIM descriptors. Part 8. Toxicity and physico-chemical properties of environmental priority chemicals by 2D-TI and 3D-WHIM descriptors. SAR QSAR Environ. Res., 1997, 7(1-4), 173-193. [http://dx.doi.org/10.1080/10629369708039130]. [PMID: 9501508].
[100]
Moriguchi, I.; Hirino, S.; Liu, Q.; Nakagome, I.; Matsushita, Y. Simple method of calculating octanol/water partition coefficient. Chem. Pharm. Bull. (Tokyo), 1992, 40, 127-130. [http://dx.doi.org/10.1248/cpb.40.127].
[101]
Cronin, M.T.; Dearden, J.C.; Duffy, J.C.; Edwards, R.; Manga, N.; Worth, A.P.; Worgan, A.D. The importance of hydrophobicity and electrophilicity descriptors in mechanistically-based QSARs for toxicological endpoints. SAR QSAR Environ. Res., 2002, 13(1), 167-176. [http://dx.doi.org/10.1080/10629360290002316]. [PMID: 12074385].
[102]
Luan, F.; Zhang, R.; Yao, X.; Liu, M.H.U. Z.; Fan, B. support vector machinr- based QSPR for the prediction of van der Waals constant. QSAR Comb. Sci., 2005, 24(2), 227-239. [http://dx.doi.org/10.1002/qsar.200430890].
[103]
Tao, S.; Xi, X.; Xu, F.; Dawson, R. A QSAR model for predicting toxicity (LC50) to rainbow trout. Water Res., 2002, 36(11), 2926-2930. [http://dx.doi.org/10.1016/S0043-1354(01)00514-0]. [PMID: 12146883].
[104]
Schroeder, L.D.; Sjoquist, D.L.; Stephan, P. E. Understanding Regression Analysis; Sage Publications, 1986. [http://dx.doi.org/10.4135/9781412986410]
[105]
Vittinghoff, E.; Glidden, D.V.; Shiboski, S.C.; McCulloch, C.E. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models; Springer, 2005, p. 7.
[106]
Mooi, E.; Sarstedt, M. Regression Analysis. In: A Concise Guide to Market Research; Mooi, E.; Sarstedt, M., Eds.; Springer, 2014; pp. 161-200.
[107]
Aiken, L.S.; West, S.G. Multiple Regression: Testing and Interpreting Interactions; Sage Publications, Inc.: Thousand Oaks, CA, US, 1991.
[108]
Field, A. Discovering Statistics Using SPSS, 4th ed; Sage Publications, Inc., 2013.
[109]
Sykes, A.O. An Introduction to Regression Analysis., 1993.
[110]
Field, A. (Research methods in psychology): Multiple regression,, 2008.