Abstract
Background: The DNA-binding proteins is an important process in multiple biomolecular functions. However, the tradition experimental methods for DNA-binding proteins identification are still time consuming and extremely expensive.
Objective: In past several years, various computational methods have been developed to detect DNAbinding proteins. However, most of them do not integrate multiple information.
Methods: In this study, we propose a novel computational method to predict DNA-binding proteins by two steps Multiple Kernel Support Vector Machine (MK-SVM) and sequence information. Firstly, we extract several feature and construct multiple kernels. Then, multiple kernels are linear combined by Multiple Kernel Learning (MKL). At last, a final SVM model, constructed by combined kernel, is built to predict DNA-binding proteins.
Results: The proposed method is tested on two benchmark data sets. Compared with other existing method, our approach is comparable, even better than other methods on some data sets.
Conclusion: We can conclude that MK-SVM is more suitable than common SVM, as the classifier for DNA-binding proteins identification.
Keywords: DNA-binding proteins, feature extraction, support vector machine, multiple kernel learning, kernel alignment, binding sites.
Graphical Abstract
[http://dx.doi.org/10.3390/ijms18081781] [PMID: 28813000]
[http://dx.doi.org/10.1016/j.ins.2017.08.045]
[http://dx.doi.org/10.3390/molecules22122056] [PMID: 29186828]
[http://dx.doi.org/10.3390/ijms17101623] [PMID: 27669239]
[http://dx.doi.org/10.1186/s12859-016-1253-9] [PMID: 27677692]
[http://dx.doi.org/10.1155/2016/3832176] [PMID: 27340658]
[http://dx.doi.org/10.1186/s12859-016-1035-4] [PMID: 27112932]
[http://dx.doi.org/10.1093/bioinformatics/19.1.125] [PMID: 12499302]
[http://dx.doi.org/10.2174/157016461302160514004105]
[http://dx.doi.org/10.1186/1752-0509-9-S5-S3] [PMID: 26356630]
[http://dx.doi.org/10.1021/acs.jcim.7b00307] [PMID: 29125297]
[http://dx.doi.org/10.1109/TCBB.2013.104] [PMID: 24334392]
[http://dx.doi.org/10.1093/bioinformatics/btm174] [PMID: 17646316]
[http://dx.doi.org/10.1093/nar/gks372] [PMID: 22570420]
[http://dx.doi.org/10.1016/j.neucom.2017.07.065]
[http://dx.doi.org/10.1109/JBHI.2018.2883834] [PMID: 30507518]
[http://dx.doi.org/10.1016/j.neucom.2015.08.054]
[http://dx.doi.org/10.1016/j.ymeth.2018.06.001] [PMID: 29879508]
[http://dx.doi.org/10.1016/j.neucom.2018.10.028]
[http://dx.doi.org/10.1371/journal.pone.0185587] [PMID: 28961273]
[http://dx.doi.org/10.1016/j.ins.2016.06.026]
[http://dx.doi.org/10.1371/journal.pone.0106691] [PMID: 25184541]
[http://dx.doi.org/10.3389/fgene.2018.00716] [PMID: 30697228]
[http://dx.doi.org/10.1109/ACCESS.2019.2894225]
[http://dx.doi.org/10.3389/fgene.2018.00239] [PMID: 30023002]
[http://dx.doi.org/10.1186/s12864-018-5273-x] [PMID: 30598109]
[http://dx.doi.org/10.3389/fgene.2018.00234] [PMID: 30018632]
[http://dx.doi.org/10.1371/journal.pcbi.1006418] [PMID: 30142158]
[http://dx.doi.org/10.3389/fgene.2018.00618] [PMID: 30619454]
[http://dx.doi.org/10.1016/j.jtbi.2018.11.012] [PMID: 30452958]
[http://dx.doi.org/10.3389/fgene.2019.00020] [PMID: 30804977]
[http://dx.doi.org/10.1093/bioinformatics/btq019] [PMID: 20089514]
[http://dx.doi.org/10.1093/nar/gki949] [PMID: 16284202]
[http://dx.doi.org/10.1016/j.jmb.2004.05.058] [PMID: 15312763]
[http://dx.doi.org/10.1016/S1570-9639(03)00112-2] [PMID: 12758155]
[http://dx.doi.org/10.1016/j.jtbi.2005.09.018] [PMID: 16274699]
[http://dx.doi.org/10.1002/minf.201400025] [PMID: 27490858]
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[http://dx.doi.org/10.1186/1471-2105-8-463] [PMID: 18042272]
[http://dx.doi.org/10.1016/j.jtbi.2009.07.017] [PMID: 19631664]
[http://dx.doi.org/10.1186/1471-2105-15-S15-S9] [PMID: 25474679]
[http://dx.doi.org/10.1023/A:1007091128394] [PMID: 11043931]
[http://dx.doi.org/10.1109/TCBB.2010.93] [PMID: 20855926]
[http://dx.doi.org/10.1155/2015/902198] [PMID: 26634213]
[http://dx.doi.org/10.1007/BF00994018]
[http://dx.doi.org/10.1145/1961189.1961199]
[http://dx.doi.org/10.1371/journal.pone.0024756] [PMID: 21935457]
[http://dx.doi.org/10.1080/07391102.2009.10507281] [PMID: 19385697]
[http://dx.doi.org/10.1038/srep15479] [PMID: 26482832]
[http://dx.doi.org/10.1186/1752-0509-9-S1-S10] [PMID: 25708928]
[http://dx.doi.org/10.1371/journal.pone.0086703] [PMID: 24475169]