[1]
Venook, A.P.; Papandreou, C.; Furuse, J.; de Guevara, L.L. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist, 2010, 15, 5-13.
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet‐Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65, 87-108.
[3]
Boskabady, M.H.; Keyhanmanesh, R.; Saadatloo, M.A. Relaxant effects of different fractions from Nigella sativa L. on guinea pig tracheal chains and its possible mechanism(s). Indian J. Exp. Biol., 2008, 46, 805-810.
[4]
Shafiq, H.; Ahmad, A.; Masud, T.; Kaleem, M. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa. Iran. J. Basic Med. Sci., 2014, 17, 967-979.
[5]
Burits, M.; Bucar, F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res., 2000, 14, 323-328.
[6]
Randhawa, M.A.; Alghamdi, M.S. Anti-cancer activity of Nigella sativa (black seed) - a review. Am. J. Chin. Med., 2011, 39, 1075-1091.
[7]
Al-Ghamdi, M.S. The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. J. Ethnopharmacol., 2017, 6, 45-48.
[8]
Yildiz, F.; Coban, S.; Terzi, A.; Ates, M.; Aksoy, N.; Cakir, H.; Ocak, A.R.; Bitiren, M. Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver. World J. Gastroenterol., 2008, 14, 5204-5209.
[9]
Coban, S.; Yildiz, F.; Terzi, A.; Behcet, A.; Nurten, B.; Muharrem, C. The effects of Nigella sativa on bile duct ligation induced liver injury in rats. Cell Biochem. Funct., 2010, 28, 83-88.
[10]
Kanter, M.; Coskun, O.; Budancamanac, M. Hepatoprotective effects of Nigella sativa L. and Urtica dioica L. on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride- treated rats. World J. Gastroenterol., 2005, 11, 6684-6688.
[11]
Abdel-Wahab, W.M. Protective effect of thymoquinone on sodium fluoride-induced hepatotoxicity and oxidative stress in rats. J. Basic Appl. Zool., 2013, 66, 263-270.
[12]
Slamenova, D.; Horvathova, E.; Sramkova, M.; Marsalkova, L. DNA-protective effects of two components of essential plant oils carvacrol and thymol on mammalian cells cultured in vitro. Neoplasma, 2007, 54, 108-112.
[13]
Iyoda, K.; Sasaki, Y.; Horimoto, M.; Toyama, T.; Yakushijin, T.; Sakakibara, M.; Takehara, T.; Fujimoto, J.; Hori, M.; Wands, J.R.; Hayashi, N. Involvement of the p38 mitogen‐activated protein kinase cascade in hepatocellular carcinoma. Cancer, 2003, 97, 3017-3026.
[14]
Islam, M.H. Study of pharmacological activities of Nigella Sativa L seed extracts in different germination stages. PhD Thesis, Integral University Lucknow:. 2015.
[15]
Narayanaswamy, R.; Wai, L.K.; Ismail, I.S. Molecular docking studies of quinones against human Inducible Nitric Oxide Synthase (iNOS). J. Chem. Pharm. Res., 2017, 9, 39-44.
[16]
Alam, S.; Khan, F. QSAR and docking studies on xanthone derivatives for anticancer activity targeting DNA topoisomerase IIα. Drug Des. Devel. Ther., 2014, 8, 183.
[17]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19, 1639-1662.
[18]
Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. Semiempirical free energy force field with charge based desolvation. J. Comput. Chem., 2007, 28, 1145-1152.
[19]
Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Chem. Theory Comput., 2008, 4, 1463-1472.
[20]
SchuÈttelkopf. A.W.; Van Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D, 2004, 60, 1355-1363.
[21]
Van Gunsteren, W.F.; Billeter, S.; Eising, A.; Hünenberger, P.H.; Krüger, P.; Mark, A.E.; Scott, W.; Tironi, I.G. Biomolecular simulation: The GROMOS96 manual and user guide. 1996, 1, 1042.
[22]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log (N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98, 10089-10092.
[23]
Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4, 435-447.
[24]
Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys., 2007, 126(1)014101
[25]
Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys., 1981, 52, 7182-7190.
[26]
Liu, Y.; Wang, X.; Wang, X.; Yu, R.; Liu, D.; Kang, C. De novo design of VEGFR-2 tyrosine kinase inhibitors based on a linked-fragment approach. J. Mol. Model., 2016, 22, 222.
[27]
Singh, S.; Gupta, A.K.; Verma, A. Molecular properties and bioactivity score of the Aloe vera antioxidant compounds – in order to lead finding. Res. J. Pharm. Biol. Chem. Sci., 2013, 4, 876-881.
[28]
Bonate, P.L.; Howard, D.R. Pharmacokinetics in Drug Development. Advances and Applications. Springer Science & Business Media, 2011, 3, 1-19.
[29]
Matlock, M.K.; Hughes, T.B.; Swamidass, S.J. XenoSite-Server: A web-available site of metabolism prediction tool. Bioinformatics, 2015, 31, 1136-1137.
[30]
Tsao, A.S.; Kim, E.S.; Hong, W.K. Chemoprevention of cancer. CA Cancer J. Clin., 2004, 54, 150-180.
[31]
Khan, M.K.A.; Siddiqui, M.H.; Akhtar, S.; Ahmad, K.; Baig, M.H.; Osama, K. Screening of plant-derived natural compounds as potent chemotherapeutic agents against breast cancer: An in silico approach. J. Chem. Pharmaceut. Res., 2015, 7, 519-526.
[32]
Khader, M.; Eckl, P.M. Thymoquinone: An emerging natural drug with a wide range of medical applications. Iran. J. Basic Med. Sci., 2014, 17, 950.
[33]
El-Tawil, O.; Moussa, S.Z. Antioxidant and hepatoprotective effects of thymoquinone against carbon tetrachloride-induced hepatotoxicity in isolated rat hepatocyte. J. Egypt. Soc. Toxicol., 2006, 34, 33-41.
[34]
Badary, O.A.; Taha, R.A.; Gamal el-Din, A.M.; Abdel-Wahab, M.H. Thymoquinone is a potent superoxide anion scavenger. Drug Chem. Toxicol., 2003, 26, 87-98.
[35]
Al-Shabanah, O.A.; Badary, O.A.; Nagi, M.N. Al- Gharably N.M.; Al-Rikabi, A.C.; Al-Bekairi, A.M. Thymoquinone protects against doxorubicin- induce cardiotoxicity without compromising its antitumor activity. J. Exp. Clin. Cancer Res., 1998, 17, 193-198.
[36]
Badary, O.A.; Al-Shabanah, O.A.; Nagi, M.N.; Al-Rikabi, A.C.; Elmazar, M.M. Inhibition of benzo(a)pyrene-induced forestomach carcinogenesis in mice by thymoquinone. Eur. J. Cancer Prev., 1999, 8, 435-440.
[37]
Gedara, S.R. Terpenoid content of the leaves of Thymus algeriensis Boiss. Mans J. Pharm. Sci., 2008, 24, 133-143.
[38]
Hirobe, C.; Qiao, Z.S.; Takeya, K.; Itokawa, H. Cytotoxic principles from Majorana syriaca. Nat. Med., 1998, 52, 74-77.
[39]
Jayakumar, S.; Madankumar, A.; Asokkumar, S.; Raghunandhakumar, S.; Gokuladhas, K.; Kamaraj, S.; Divya, M.G.J.; Devaki, T. Potential preventive effect of carvacrol against diethylnitrosamineinduced hepatocellular carcinoma in rats. Mol. Cell. Biochem., 2012, 360, 51-60.
[40]
Mehta, N.; Ozick, L.A.; Gbadehan, E. Drug-induced hepatotoxicity. Basic Medical Biochemistry: A Clinical Approach; Williams and Wilkins, 2010, pp. 327-340.
[41]
Majdalawieh, A.F.; Fayyad, M.W.; Nasrallah, G.K. Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa. Crit. Rev. Food Sci. Nutr., 2017, 57, 3911-3928.
[42]
Koul, H.K.; Pal, M.; Koul, S. Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer, 2013, 4, 342-359.
[43]
Zhang, A.; Lakshmanan, J.; Motameni, A.; Harbrecht, B.G. MicroRNA-203 suppresses proliferation in liver cancer associated with PIK3CA, p38 MAPK, c-Jun, and GSK3 signaling. Mol. Cell. Biochem., 2018, 441, 89-98.
[44]
Woo, C.C.; Hsu, A.; Kumar, A.P.; Sethi, G.; Tan, K.H.B. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS. PLoS One, 2013, 8, 75356.