Review Article

以谷氨酰胺酶为靶点的化学物质对癌症的代谢再规划

卷 27, 期 32, 2020

页: [5317 - 5339] 页: 23

弟呕挨: 10.2174/0929867326666190416165004

价格: $65

摘要

背景:肿瘤的代谢重编程是癌症的标志。在癌细胞代谢网络的变化中,谷氨酰胺分解是肿瘤中改变的关键反应。谷氨酰胺酶蛋白控制着谷氨酰胺代谢的第一步,其表达与多种癌症的恶性程度和生长速度相关。两种类型的谷氨酰胺酶同工酶GLS和GLS2在表达方式和功能上有所不同:GLS具有致癌性,而GLS2被描述为肿瘤抑制因子。 结果:我们集中研究了谷氨酰胺酶与关键癌基因和抑癌基因的联系。靶向谷氨酰胺酶同工酶包括旨在灭活癌症代谢重新连接的不同策略。此外,我们发现了与谷氨酰胺酶相关的代谢酶,转录因子和信号传导途径。另一方面,许多化学品已被描述为GLS和/或GLS2同工型的同工酶特异性抑制剂。这些分子在许多类型的肿瘤中被表征为协同和治疗剂。 结论:本综述阐述了在癌症中重新建立的代谢途径,谷氨酰胺酶同工型在癌症中的作用以及谷氨酰胺酶调节的代谢回路。我们还展示了大量的抗癌药物,它们能特异性抑制谷氨酰胺酶同工酶来治疗几种癌症。

关键词: 癌症代谢,组合治疗,谷氨酰胺酶同工酶,谷氨酰胺,谷氨酰胺酶抑制剂,代谢重编程。

[1]
Cheng, Z.J.; Miao, D.L.; Su, Q.Y.; Tang, X.L.; Wang, X.L.; Deng, L.B.; Shi, H.D.; Xin, H.B. THZ1 suppresses human non-small-cell lung cancer cells in vitro through interference with cancer metabolism. Acta Pharmacol. Sin., 2019, 40(6), 814-822.
[http://dx.doi.org/10.1038/s41401-018-0187-3] [PMID: 30446732]
[2]
Schulte, M.L.; Fu, A.; Zhao, P.; Li, J.; Geng, L.; Smith, S.T.; Kondo, J.; Coffey, R.J.; Johnson, M.O.; Rathmell, J.C.; Sharick, J.T.; Skala, M.C.; Smith, J.A.; Berlin, J.; Washington, M.K.; Nickels, M.L.; Manning, H.C. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med., 2018, 24(2), 194-202.
[http://dx.doi.org/10.1038/nm.4464] [PMID: 29334372]
[3]
Lee, N.; Kim, D. Cancer metabolism: fueling more than just growth. Mol. Cells, 2016, 39(12), 847-854.
[http://dx.doi.org/10.14348/molcells.2016.0310] [PMID: 28030896]
[4]
DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv., 2016, 2(5), e1600200.
[http://dx.doi.org/10.1126/sciadv.1600200] [PMID: 27386546]
[5]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[6]
Vander Heiden, M.G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov., 2011, 10(9), 671-684.
[http://dx.doi.org/10.1038/nrd3504] [PMID: 21878982]
[7]
Vander Heiden, M.G.; DeBerardinis, R.J. Understanding the intersections between metabolism and cancer biology. Cell, 2017, 168(4), 657-669.
[http://dx.doi.org/10.1016/j.cell.2016.12.039] [PMID: 28187287]
[8]
Rajagopalan, K.N.; DeBerardinis, R.J. Role of glutamine in cancer: therapeutic and imaging implications. J. Nucl. Med., 2011, 52(7), 1005-1008.
[http://dx.doi.org/10.2967/jnumed.110.084244] [PMID: 21680688]
[9]
Marin-Valencia, I.; Yang, C.; Mashimo, T.; Cho, S.; Baek, H.; Yang, X.L.; Rajagopalan, K.N.; Maddie, M.; Vemireddy, V.; Zhao, Z.; Cai, L.; Good, L.; Tu, B.P.; Hatanpaa, K.J.; Mickey, B.E.; Matés, J.M.; Pascual, J.M.; Maher, E.A.; Malloy, C.R.; Deberardinis, R.J.; Bachoo, R.M. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab., 2012, 15(6), 827-837.
[http://dx.doi.org/10.1016/j.cmet.2012.05.001] [PMID: 22682223]
[10]
Kim, J.; DeBerardinis, R. J. Cancer. Silencing a metabolic oncogene. Science, 2013, 340(6132), 558-559.
[http://dx.doi.org/10.1126/science.1238523] [PMID: 23641103]
[11]
Stalnecker, C.A.; Ulrich, S.M.; Li, Y.; Ramachandran, S.; McBrayer, M.K.; DeBerardinis, R.J.; Cerione, R.A.; Erickson, J.W. Mechanism by which a recently discovered allosteric inhibitor blocks glutamine metabolism in transformed cells. Proc. Natl. Acad. Sci. USA, 2015, 112(2), 394-399.
[http://dx.doi.org/10.1073/pnas.1414056112] [PMID: 25548170]
[12]
Ledford, H. Metabolic quirks yield tumour hope. Nature, 2014, 508(7495), 158-159.
[http://dx.doi.org/10.1038/508158a] [PMID: 24717486]
[13]
Deberardinis, R.J. A mitochondrial power play in lymphoma. Cancer Cell, 2012, 22(4), 423-424.
[http://dx.doi.org/10.1016/j.ccr.2012.09.023] [PMID: 23079653]
[14]
DeBerardinis, R.J. Serine metabolism: some tumors take the road less traveled. Cell Metab., 2011, 14(3), 285-286.
[http://dx.doi.org/10.1016/j.cmet.2011.08.004] [PMID: 21907134]
[15]
Yuneva, M.O.; Fan, T.W.; Allen, T.D.; Higashi, R.M.; Ferraris, D.V.; Tsukamoto, T.; Matés, J.M.; Alonso, F.J.; Wang, C.; Seo, Y.; Chen, X.; Bishop, J.M. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab., 2012, 15(2), 157-170.
[http://dx.doi.org/10.1016/j.cmet.2011.12.015] [PMID: 22326218]
[16]
Andronesi, O.C.; Arrillaga-Romany, I.C.; Ly, K.I.; Bogner, W.; Ratai, E.M.; Reitz, K.; Iafrate, A.J.; Dietrich, J.; Gerstner, E.R.; Chi, A.S.; Rosen, B.R.; Wen, P.Y.; Cahill, D.P.; Batchelor, T.T. Pharmacodynamics of mutant-IDH1 inhibitors in glioma patients probed by in vivo 3D MRS imaging of 2-hydroxyglutarate. Nat. Commun., 2018, 9(1), 1474.
[http://dx.doi.org/10.1038/s41467-018-03905-6] [PMID: 29662077]
[17]
Hensley, C.T.; Faubert, B.; Yuan, Q.; Lev-Cohain, N.; Jin, E.; Kim, J.; Jiang, L.; Ko, B.; Skelton, R.; Loudat, L.; Wodzak, M.; Klimko, C.; McMillan, E.; Butt, Y.; Ni, M.; Oliver, D.; Torrealba, J.; Malloy, C.R.; Kernstine, K.; Lenkinski, R.E.; DeBerardinis, R.J. Metabolic heterogeneity in human lung tumors. Cell, 2016, 164(4), 681-694.
[http://dx.doi.org/10.1016/j.cell.2015.12.034] [PMID: 26853473]
[18]
Michalak, K.P.; Maćkowska-Kędziora, A.; Sobolewski, B.; Woźniak, P. Key roles of glutamine pathways in reprogramming the cancer metabolism. Oxid. Med. Cell. Longev., 2015, 2015, 964321.
[http://dx.doi.org/10.1155/2015/964321] [PMID: 26583064]
[19]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[20]
Alberghina, L.; Gaglio, D. Redox control of glutamine utilization in cancer. Cell Death Dis., 2014, 5e1561
[http://dx.doi.org/10.1038/cddis.2014.513] [PMID: 25476909]
[21]
Wise, D.R.; Thompson, C.B. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci., 2010, 35(8), 427-433.
[http://dx.doi.org/10.1016/j.tibs.2010.05.003] [PMID: 20570523]
[22]
DeBerardinis, R.J.; Cheng, T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 2010, 29(3), 313-324.
[http://dx.doi.org/10.1038/onc.2009.358] [PMID: 19881548]
[23]
DeBerardinis, R.J.; Mancuso, A.; Daikhin, E.; Nissim, I.; Yudkoff, M.; Wehrli, S.; Thompson, C.B. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19345-19350.
[http://dx.doi.org/10.1073/pnas.0709747104] [PMID: 18032601]
[24]
Hensley, C.T.; Wasti, A.T.; DeBerardinis, R.J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest., 2013, 123(9), 3678-3684.
[http://dx.doi.org/10.1172/JCI69600] [PMID: 23999442]
[25]
Seltzer, M.J.; Bennett, B.D.; Joshi, A.D.; Gao, P.; Thomas, A.G.; Ferraris, D.V.; Tsukamoto, T.; Rojas, C.J.; Slusher, B.S.; Rabinowitz, J.D.; Dang, C.V.; Riggins, G.J. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res., 2010, 70(22), 8981-8987.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1666] [PMID: 21045145]
[26]
Damiani, C.; Colombo, R.; Gaglio, D.; Mastroianni, F.; Pescini, D.; Westerhoff, H.V.; Mauri, G.; Vanoni, M.; Alberghina, L. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: the WarburQ effect. PLOS Comput. Biol., 2017, 13(9), e1005758.
[http://dx.doi.org/10.1371/journal.pcbi.1005758] [PMID: 28957320]
[27]
Ma, L.; Tao, Y.; Duran, A.; Llado, V.; Galvez, A.; Barger, J.F.; Castilla, E.A.; Chen, J.; Yajima, T.; Porollo, A.; Medvedovic, M.; Brill, L.M.; Plas, D.R.; Riedl, S.J.; Leitges, M.; Diaz-Meco, M.T.; Richardson, A.D.; Moscat, J. Control of nutrient stress-induced metabolic reprogramming by PKCζ in tumorigenesis. Cell, 2013, 152(3), 599-611.
[http://dx.doi.org/10.1016/j.cell.2012.12.028] [PMID: 23374352]
[28]
Amoedo, N.D.; Obre, E.; Rossignol, R. Drug discovery strategies in the field of tumor energy metabolism: limitations by metabolic flexibility and metabolic resistance to chemotherapy. Biochim. Biophys. Acta Bioenerg., 2017, 1858(8), 674-685.
[http://dx.doi.org/10.1016/j.bbabio.2017.02.005] [PMID: 28213330]
[29]
Mullen, A.R.; Wheaton, W.W.; Jin, E.S.; Chen, P.H.; Sullivan, L.B.; Cheng, T.; Yang, Y.; Linehan, W.M.; Chandel, N.S.; DeBerardinis, R.J. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 2011, 481(7381), 385-388.
[http://dx.doi.org/10.1038/nature10642] [PMID: 22101431]
[30]
Devic, S. Warburg effect - a consequence or the cause of carcinogenesis? J. Cancer, 2016, 7(7), 817-822.
[http://dx.doi.org/10.7150/jca.14274] [PMID: 27162540]
[31]
Wilde, L.; Roche, M.; Domingo-Vidal, M.; Tanson, K.; Philp, N.; Curry, J.; Martinez-Outschoorn, U. Metabolic coupling and the reverse warburg effect in cancer: implications for novel biomarker and anticancer agent development. Semin. Oncol., 2017, 44(3), 198-203.
[http://dx.doi.org/10.1053/j.seminoncol.2017.10.004] [PMID: 29248131]
[32]
Soga, T. Cancer metabolism: key players in metabolic reprogramming. Cancer Sci., 2013, 104(3), 275-281.
[http://dx.doi.org/10.1111/cas.12085] [PMID: 23279446]
[33]
Peng, X.; Chen, Z.; Farshidfar, F.; Xu, X.; Lorenzi, P.L.; Wang, Y.; Cheng, F.; Tan, L.; Mojumdar, K.; Du, D.; Ge, Z.; Li, J.; Thomas, G.V.; Birsoy, K.; Liu, L.; Zhang, H.; Zhao, Z.; Marchand, C.; Weinstein, J.N.; Bathe, O.F.; Liang, H. Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Rep., 2018, 23, 255-269.
[http://dx.doi.org/10.1016/j.celrep.2018.03.077] [PMID: 29617665]
[34]
Matés, J.M.; Segura, J.A.; Martín-Rufián, M.; Campos-Sandoval, J.A.; Alonso, F.J.; Márquez, J. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr. Mol. Med., 2013, 13(4), 514-534.
[http://dx.doi.org/10.2174/1566524011313040005] [PMID: 22934847]
[35]
Márquez, J.; Matés, J.M.; Alonso, F.J.; Martín-Rufián, M.; Lobo, C.; Campos-Sandoval, J.A. Canceromics studies un-ravel tumour’s glutamine addiction after metabolic repro-gramming in: Tumour cell metabolism: pathways, regulation and biology; Mazurek, S.; Shoshan, M; Verlag, S., Ed.; Vienna, 2015, pp. 257-286.
[36]
Cassago, A.; Ferreira, A.P.; Ferreira, I.M.; Fornezari, C.; Gomes, E.R.; Greene, K.S.; Pereira, H.M.; Garratt, R.C.; Dias, S.M.; Ambrosio, A.L. Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc. Natl. Acad. Sci. USA, 2012, 109(4), 1092-1097.
[http://dx.doi.org/10.1073/pnas.1112495109] [PMID: 22228304]
[37]
Márquez, J.; Matés, J.M.; Campos-Sandoval, J.A. Glutaminases. In:The glutamate/GABA/glutamine cycle: amino acid neurotransmitter homeostasis. Advances in neurobiology; Sonnewald, U.; Schousboe, A., Eds.; Springer Verlag: Vienna, 2016, pp. 133-171.
[38]
Thangavelu, K.; Pan, C.Q.; Karlberg, T.; Balaji, G.; Uttamchandani, M.; Suresh, V.; Schüler, H.; Low, B.C.; Sivaraman, J. Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc. Natl. Acad. Sci. USA, 2012, 109(20), 7705-7710.
[http://dx.doi.org/10.1073/pnas.1116573109] [PMID: 22538822]
[39]
Wang, J.B.; Erickson, J.W.; Fuji, R.; Ramachandran, S.; Gao, P.; Dinavahi, R.; Wilson, K.F.; Ambrosio, A.L.; Dias, S.M.; Dang, C.V.; Cerione, R.A. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell, 2010, 18(3), 207-219.
[http://dx.doi.org/10.1016/j.ccr.2010.08.009] [PMID: 20832749]
[40]
de la Rosa, V.; Campos-Sandoval, J.A.; Martín-Rufián, M.; Cardona, C.; Matés, J.M.; Segura, J.A.; Alonso, F.J.; Márquez, J. A novel glutaminase isoform in mammalian tissues. Neurochem. Int., 2009, 55(1-3), 76-84.
[http://dx.doi.org/10.1016/j.neuint.2009.02.021] [PMID: 19428810]
[41]
Martín-Rufián, M.; Tosina, M.; Campos-Sandoval, J.A.; Manzanares, E.; Lobo, C.; Segura, J.A.; Alonso, F.J.; Matés, J.M.; Márquez, J. Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism. PLoS One, 2012, 7(6), e38380.
[http://dx.doi.org/10.1371/journal.pone.0038380] [PMID: 22679499]
[42]
Fouad, Y.A.; Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res., 2017, 7(5), 1016-1036.
[PMID: 28560055]
[43]
Daye, D.; Wellen, K.E. Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin. Cell Dev. Biol., 2012, 23(4), 362-369.
[http://dx.doi.org/10.1016/j.semcdb.2012.02.002] [PMID: 22349059]
[44]
Yang, C.; Sudderth, J.; Dang, T.; Bachoo, R.M.; McDonald, J.G.; DeBerardinis, R.J. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res., 2009, 69(20), 7986-7993.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2266] [PMID: 19826036]
[45]
Jiang, L.; Shestov, A.A.; Swain, P.; Yang, C.; Parker, S.J.; Wang, Q.A.; Terada, L.S.; Adams, N.D.; McCabe, M.T.; Pietrak, B.; Schmidt, S.; Metallo, C.M.; Dranka, B.P.; Schwartz, B.; DeBerardinis, R.J. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature, 2016, 532(7598), 255-258.
[http://dx.doi.org/10.1038/nature17393] [PMID: 27049945]
[46]
Peterse, E.F.P.; Niessen, B.; Addie, R.D.; de Jong, Y.; Cleven, A.H.G.; Kruisselbrink, A.B.; van den Akker, B.E.W.M.; Molenaar, R.J.; Cleton-Jansen, A.M.; Bovée, J.V.M.G. Targeting glutaminolysis in chondrosarcoma in context of the IDH1/2 mutation. Br. J. Cancer, 2018, 118(8), 1074-1083.
[http://dx.doi.org/10.1038/s41416-018-0050-9] [PMID: 29576625]
[47]
Zhang, C.; Liu, J.; Zhao, Y.; Yue, X.; Zhu, Y.; Wang, X.; Wu, H.; Blanco, F.; Li, S.; Bhanot, G.; Haffty, B.G.; Hu, W.; Feng, Z. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. eLife, 2016, 5, e10727.
[http://dx.doi.org/10.7554/eLife.10727] [PMID: 26751560]
[48]
Romero, R.; Sayin, V.I.; Davidson, S.M.; Bauer, M.R.; Singh, S.X.; LeBoeuf, S.E.; Karakousi, T.R.; Ellis, D.C.; Bhutkar, A.; Sánchez-Rivera, F.J.; Subbaraj, L.; Martinez, B.; Bronson, R.T.; Prigge, J.R.; Schmidt, E.E.; Thomas, C.J.; Goparaju, C.; Davies, A.; Dolgalev, I.; Heguy, A.; Allaj, V.; Poirier, J.T.; Moreira, A.L.; Rudin, C.M.; Pass, H.I.; Vander Heiden, M.G.; Jacks, T.; Papagiannakopoulos, T. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med., 2017, 23(11), 1362-1368.
[http://dx.doi.org/10.1038/nm.4407] [PMID: 28967920]
[49]
Xiao, D.; Ren, P.; Su, H.; Yue, M.; Xiu, R.; Hu, Y.; Liu, H.; Qing, G. Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2. Oncotarget, 2015, 6(38), 40655-40666.
[http://dx.doi.org/10.18632/oncotarget.5821] [PMID: 26528759]
[50]
Anso, E.; Mullen, A.R.; Felsher, D.W.; Matés, J.M.; Deberardinis, R.J.; Chandel, N.S. Metabolic changes in cancer cells upon suppression of MYC. Cancer Metab., 2013, 1(1), 7.
[http://dx.doi.org/10.1186/2049-3002-1-7] [PMID: 24280108]
[51]
Gao, P.; Tchernyshyov, I.; Chang, T.C.; Lee, Y.S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; Dang, C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458(7239), 762-765.
[http://dx.doi.org/10.1038/nature07823] [PMID: 19219026]
[52]
Wise, D.R.; DeBerardinis, R.J.; Mancuso, A.; Sayed, N.; Zhang, X.Y.; Pfeiffer, H.K.; Nissim, I.; Daikhin, E.; Yudkoff, M.; McMahon, S.B.; Thompson, C.B. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. USA, 2008, 105(48), 18782-18787.
[http://dx.doi.org/10.1073/pnas.0810199105] [PMID: 19033189]
[53]
Son, J.; Lyssiotis, C.A.; Ying, H.; Wang, X.; Hua, S.; Ligorio, M.; Perera, R.M.; Ferrone, C.R.; Mullarky, E.; Shyh-Chang, N.; Kang, Y.; Fleming, J.B.; Bardeesy, N.; Asara, J.M.; Haigis, M.C.; DePinho, R.A.; Cantley, L.C.; Kimmelman, A.C. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 2013, 496(7443), 101-105.
[http://dx.doi.org/10.1038/nature12040] [PMID: 23535601]
[54]
Elgogary, A.; Xu, Q.; Poore, B.; Alt, J.; Zimmermann, S.C.; Zhao, L.; Fu, J.; Chen, B.; Xia, S.; Liu, Y.; Neisser, M.; Nguyen, C.; Lee, R.; Park, J.K.; Reyes, J.; Hartung, T.; Rojas, C.; Rais, R.; Tsukamoto, T.; Semenza, G.L.; Hanes, J.; Slusher, B.S.; Le, A. Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proc. Natl. Acad. Sci. USA, 2016, 113(36), E5328-E5336.
[http://dx.doi.org/10.1073/pnas.1611406113] [PMID: 27559084]
[55]
Lee, Y.Z.; Yang, C.W.; Chang, H.Y.; Hsu, H.Y.; Chen, I.S.; Chang, H.S.; Lee, C.H.; Lee, J.C.; Kumar, C.R.; Qiu, Y.Q.; Chao, Y.S.; Lee, S.J. Discovery of selective inhibitors of Glutaminase-2, which inhibit mTORC1, activate autophagy and inhibit proliferation in cancer cells. Oncotarget, 2014, 5(15), 6087-6101.
[http://dx.doi.org/10.18632/oncotarget.2173] [PMID: 25026281]
[56]
Tan, H.W.S.; Sim, A.Y.L.; Long, Y.C. Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat. Commun., 2017, 8(1), 338.
[http://dx.doi.org/10.1038/s41467-017-00369-y] [PMID: 28835610]
[57]
Dang, C.V.; Hamaker, M.; Sun, P.; Le, A.; Gao, P. Therapeutic targeting of cancer cell metabolism. J. Mol. Med. (Berl.), 2011, 89(3), 205-212.
[http://dx.doi.org/10.1007/s00109-011-0730-x] [PMID: 21301795]
[58]
Shukla, S.K.; Purohit, V.; Mehla, K.; Gunda, V.; Chaika, N.V.; Vernucci, E.; King, R.J.; Abrego, J.; Goode, G.D.; Dasgupta, A.; Illies, A.L.; Gebregiworgis, T.; Dai, B.; Augustine, J.J.; Murthy, D.; Attri, K.S.; Mashadova, O.; Grandgenett, P.M.; Powers, R.; Ly, Q.P.; Lazenby, A.J.; Grem, J.L.; Yu, F.; Matés, J.M.; Asara, J.M.; Kim, J.W.; Hankins, J.H.; Weekes, C.; Hollingsworth, M.A.; Serkova, N.J.; Sasson, A.R.; Fleming, J.B.; Oliveto, J.M.; Lyssiotis, C.A.; Cantley, L.C.; Berim, L.; Singh, P.K. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell, 2017, 32(1), 71-87.e7.
[http://dx.doi.org/10.1016/j.ccell.2017.06.004] [PMID: 28697344]
[59]
Herranz, D.; Ambesi-Impiombato, A.; Sudderth, J.; Sánchez-Martín, M.; Belver, L.; Tosello, V.; Xu, L.; Wendorff, A.A. Castillo. M.; Haydu, JE.; Márquez, J.; Matés, J.M.; Kung, AL.; Rayport, S.; Cordon-Cardo, C.; DeBerardinis, R.J.; Ferrando, A.A. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukaemia. Nat. Med., 2015, 21, 1182-1189.
[http://dx.doi.org/10.1038/nm.3955] [PMID: 26390244]
[60]
Zhang, X.D.; Qin, Z.H.; Wang, J. The role of p53 in cell metabolism. Acta Pharmacol. Sin., 2010, 31(9), 1208-1212.
[http://dx.doi.org/10.1038/aps.2010.151] [PMID: 20729871]
[61]
Hur, M.W.; Yoon, J.H.; Kim, M.Y.; Ko, H.; Jeon, B.N. Kr-POK (ZBTB7c) regulates cancer cell proliferation through glutamine metabolism. Biochim. Biophys. Acta. Gene Regul. Mech., 2017, 1860(8), 829-838.
[http://dx.doi.org/10.1016/j.bbagrm.2017.05.005] [PMID: 28571744]
[62]
Zhao, J.; Zhou, R.; Hui, K.; Yang, Y.; Zhang, Q.; Ci, Y.; Shi, L.; Xu, C.; Huang, F.; Hu, Y. Selenite inhibits glutamine metabolism and induces apoptosis by regulating GLS1 protein degradation via APC/C-CDH1 pathway in colorectal cancer cells. Oncotarget, 2017, 8(12), 18832-18847.
[http://dx.doi.org/10.18632/oncotarget.13600] [PMID: 27902968]
[63]
Sullivan, L.B.; Chandel, N.S. Mitochondrial reactive oxygen species and cancer. Cancer Metab., 2014, 2, 17.
[http://dx.doi.org/10.1186/2049-3002-2-17] [PMID: 25671107]
[64]
Suzuki, S.; Tanaka, T.; Poyurovsky, M.V.; Nagano, H.; Mayama, T.; Ohkubo, S.; Lokshin, M.; Hosokawa, H.; Nakayama, T.; Suzuki, Y.; Sugano, S.; Sato, E.; Nagao, T.; Yokote, K.; Tatsuno, I.; Prives, C. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. USA, 2010, 107(16), 7461-7466.
[http://dx.doi.org/10.1073/pnas.1002459107] [PMID: 20351271]
[65]
Rathore, M.G.; Saumet, A.; Rossi, J.F.; de Bettignies, C.; Tempé, D.; Lecellier, C.H.; Villalba, M. The NF-κB member p65 controls glutamine metabolism through miR-23a. Int. J. Biochem. Cell Biol., 2012, 44(9), 1448-1456.
[http://dx.doi.org/10.1016/j.biocel.2012.05.011] [PMID: 22634383]
[66]
Liu, Z.; Wang, J.; Li, Y.; Fan, J.; Chen, L.; Xu, R. MicroRNA-153 regulates glutamine metabolism in glioblastoma through targeting glutaminase. Tumour Biol., 2017, 39(2), 1010428317691429.
[http://dx.doi.org/10.1177/1010428317691429] [PMID: 28218035]
[67]
Xia, H.L.; Lv, Y.; Xu, C.W.; Fu, M.C.; Zhang, T.; Yan, X.M.; Dai, S.; Xiong, Q.W.; Zhou, Y.; Wang, J.; Cao, X. MiR-513c suppresses neuroblastoma cell migration, invasion, and proliferation through direct targeting glutaminase (GLS). Cancer Biomark., 2017, 20(4), 589-596.
[http://dx.doi.org/10.3233/CBM-170577] [PMID: 28800318]
[68]
Chang, X.; Zhu, W.; Zhang, H.; Lian, S. Sensitization of melanoma cells to temozolomide by overexpression of microRNA 203 through direct targeting of glutaminase-mediated glutamine metabolism. Clin. Exp. Dermatol., 2017, 42(6), 614-621.
[http://dx.doi.org/10.1111/ced.13119] [PMID: 28597996]
[69]
Song, Z.; Wei, B.; Lu, C.; Li, P.; Chen, L. Glutaminase sustains cell survival via the regulation of glycolysis and glutaminolysis in colorectal cancer. Oncol. Lett., 2017, 14(3), 3117-3123.
[http://dx.doi.org/10.3892/ol.2017.6538] [PMID: 28928849]
[70]
Alix-Panabières, C.; Cayrefourcq, L.; Mazard, T.; Maudelonde, T.; Assenat, E.; Assou, S. Molecular portrait of me-tastasis-competent circulating tumor cells in colon cancer reveals the crucial role of genes regulating energy metabolism and DNA repair. Clin. Chem., 2017, 63(3), 700-713.
[http://dx.doi.org/10.1373/clinchem.2016.263582] [PMID: 28007957]
[71]
Hudson, C.D.; Savadelis, A.; Nagaraj, A.B.; Joseph, P.; Avril, S.; DiFeo, A.; Avril, N. Altered glutamine metabolism in platinum resistant ovarian cancer. Oncotarget, 2016, 7(27), 41637-41649.
[http://dx.doi.org/10.18632/oncotarget.9317] [PMID: 27191653]
[72]
Li, H.J.; Li, X.; Pang, H.; Pan, J.J.; Xie, X.J.; Chen, W. Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer. Jpn. J. Clin. Oncol., 2015, 45(11), 1055-1063.
[http://dx.doi.org/10.1093/jjco/hyv132] [PMID: 26373319]
[73]
Lee, Y.M.; Lee, G.; Oh, T.I.; Kim, B.M.; Shim, D.W.; Lee, K.H.; Kim, Y.J.; Lim, B.O.; Lim, J.H. Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress. Int. J. Oncol., 2016, 48(1), 399-408.
[http://dx.doi.org/10.3892/ijo.2015.3243] [PMID: 26573871]
[74]
Fu, A.; Yu, Z.; Song, Y.; Zhang, E. Silencing of glutaminase 1 resensitizes Taxol-resistant breast cancer cells to Taxol. Mol. Med. Rep., 2015, 11(6), 4727-4733.
[http://dx.doi.org/10.3892/mmr.2015.3261] [PMID: 25625774]
[75]
Pérez-Gómez, C.; Campos-Sandoval, J.A.; Alonso, F.J.; Segura, J.A.; Manzanares, E.; Ruiz-Sánchez, P.; González, M.E.; Márquez, J.; Matés, J.M. Co-expression of glutaminase K and L isoenzymes in human tumour cells. Biochem. J., 2005, 386(Pt 3), 535-542.
[http://dx.doi.org/10.1042/BJ20040996] [PMID: 15496140]
[76]
Pasquali, C.C.; Islam, Z.; Adamoski, D.; Ferreira, I.M.; Righeto, R.D.; Bettini, J.; Portugal, R.V.; Yue, W.W.; Gonzalez, A.; Dias, S.M.G.; Ambrosio, A.L.B. The origin and evolution of human glutaminases and their atypical C-terminal ankyrin repeats. J. Biol. Chem., 2017, 292(27), 11572-11585.
[http://dx.doi.org/10.1074/jbc.M117.787291] [PMID: 28526749]
[77]
Campos-Sandoval, J.A.; López de la Oliva, A.R.; Lobo, C.; Segura, J.A.; Matés, J.M.; Alonso, F.J.; Márquez, J. Expression of functional human glutaminase in baculovirus system: affinity purification, kinetic and molecular characterization. Int. J. Biochem. Cell Biol., 2007, 39(4), 765-773.
[http://dx.doi.org/10.1016/j.biocel.2006.12.002] [PMID: 17267261]
[78]
Velletri, T.; Romeo, F.; Tucci, P.; Peschiaroli, A.; Annicchiarico-Petruzzelli, M.; Niklison-Chirou, M.V.; Amelio, I.; Knight, R.A.; Mak, T.W.; Melino, G.; Agostini, M. GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation. Cell Cycle, 2013, 12(22), 3564-3573.
[http://dx.doi.org/10.4161/cc.26771] [PMID: 24121663]
[79]
Amelio, I.; Markert, E.K.; Rufini, A.; Antonov, A.V.; Sayan, B.S.; Tucci, P.; Agostini, M.; Mineo, T.C.; Levine, A.J.; Melino, G. p73 regulates serine biosynthesis in cancer. Oncogene, 2014, 33(42), 5039-5046.
[http://dx.doi.org/10.1038/onc.2013.456] [PMID: 24186203]
[80]
Nemajerova, A.; Amelio, I.; Gebel, J.; Dötsch, V.; Melino, G.; Moll, U.M. Non-oncogenic roles of TAp73: from multiciliogenesis to metabolism. Cell Death Differ., 2018, 25(1), 144-153.
[http://dx.doi.org/10.1038/cdd.2017.178] [PMID: 29077094]
[81]
Lobo, C.; Ruiz-Bellido, M.A.; Aledo, J.C.; Márquez, J.; Núñez De Castro, I.; Alonso, F.J. Inhibition of glutaminase expression by antisense mRNA decreases growth and tumourigenicity of tumour cells. Biochem. J., 2000, 348(Pt 2), 257-261.
[http://dx.doi.org/10.1042/bj3480257] [PMID: 10816417]
[82]
Segura, J.A.; Ruiz-Bellido, M.A.; Arenas, M.; Lobo, C.; Márquez, J.; Alonso, F.J. Ehrlich ascites tumor cells expressing anti-sense glutaminase mRNA lose their capacity to evade the mouse immune system. Int. J. Cancer, 2001, 91(3), 379-384.
[http://dx.doi.org/10.1002/1097-0215(200002)9999:9999<:AID-IJC1046>3.3.CO;2-C] [PMID: 11169963]
[83]
Szeliga, M.; Obara-Michlewska, M.; Matyja, E.; Łazarczyk, M.; Lobo, C.; Hilgier, W.; Alonso, F.J.; Márquez, J.; Albrecht, J. Transfection with liver-type glutaminase cDNA alters gene expression and reduces survival, migration and proliferation of T98G glioma cells. Glia, 2009, 57(9), 1014-1023.
[http://dx.doi.org/10.1002/glia.20825] [PMID: 19062176]
[84]
Martín-Rufián, M.; Nascimento-Gomes, R.; Higuero, A.; Crisma, A.R.; Campos-Sandoval, J.A.; Gómez-García, M.C.; Cardona, C.; Cheng, T.; Lobo, C.; Segura, J.A.; Alonso, F.J.; Szeliga, M.; Albrecht, J.; Curi, R.; Márquez, J.; Colquhoun, A.; Deberardinis, R.J.; Matés, J.M. Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells. J. Mol. Med. (Berl.), 2014, 92(3), 277-290.
[http://dx.doi.org/10.1007/s00109-013-1105-2] [PMID: 24276018]
[85]
Cheng, T.; Sudderth, J.; Yang, C.; Mullen, A.R.; Jin, E.S.; Matés, J.M.; DeBerardinis, R.J. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc. Natl. Acad. Sci. USA, 2011, 108(21), 8674-8679.
[http://dx.doi.org/10.1073/pnas.1016627108] [PMID: 21555572]
[86]
Xiang, L.; Xie, G.; Liu, C.; Zhou, J.; Chen, J.; Yu, S.; Li, J.; Pang, X.; Shi, H.; Liang, H. Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Biochim. Biophys. Acta, 2013, 1833(12), 2996-3005.
[http://dx.doi.org/10.1016/j.bbamcr.2013.08.003] [PMID: 23954443]
[87]
Hu, W.; Zhang, C.; Wu, R.; Sun, Y.; Levine, A.; Feng, Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. USA, 2010, 107(16), 7455-7460.
[http://dx.doi.org/10.1073/pnas.1001006107] [PMID: 20378837]
[88]
Giacobbe, A.; Bongiorno-Borbone, L.; Bernassola, F.; Terrinoni, A.; Markert, E.K.; Levine, A.J.; Feng, Z.; Agostini, M.; Zolla, L.; Agrò, A.F.; Notterman, D.A.; Melino, G.; Peschiaroli, A. p63 regulates glutaminase 2 expression. Cell Cycle, 2013, 12(9), 1395-1405.
[http://dx.doi.org/10.4161/cc.24478] [PMID: 23574722]
[89]
Gómez-Fabre, P.M.; Aledo, J.C.; Del Castillo-Olivares, A.; Alonso, F.J.; Núñez De Castro, I.; Campos, J.A.; Márquez, J. Molecular cloning, sequencing and expression studies of the human breast cancer cell glutaminase. Biochem. J., 2000, 345(Pt 2), 365-375.
[http://dx.doi.org/10.1042/bj3450365] [PMID: 10620514]
[90]
Boroughs, L.K.; DeBerardinis, R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol., 2015, 17(4), 351-359.
[http://dx.doi.org/10.1038/ncb3124] [PMID: 25774832]
[91]
Teng, Y.; Cai, Y.; Pi, W.; Gao, L.; Shay, C. Augmentation of the anticancer activity of CYT997 in human prostate cancer by inhibiting Src activity. J. Hematol. Oncol., 2017, 10(1), 118.
[http://dx.doi.org/10.1186/s13045-017-0485-0] [PMID: 28606127]
[92]
Biancur, D.E.; Paulo, J.A.; Małachowska, B.; Quiles Del Rey, M.; Sousa, C.M.; Wang, X.; Sohn, A.S.W.; Chu, G.C.; Gygi, S.P.; Harper, J.W.; Fendler, W.; Mancias, J.D.; Kimmelman, A.C. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat. Commun., 2017, 8, 15965.
[http://dx.doi.org/10.1038/ncomms15965] [PMID: 28671190]
[93]
Gaude, E.; Schmidt, C.; Gammage, P.A.; Dugourd, A.; Blacker, T.; Chew, S.P.; Saez-Rodriguez, J.; O’Neill, J.S.; Szabadkai, G.; Minczuk, M.; Frezza, C. NADH shuttling couples cytosolic reductive carboxylation of glutamine with glycolysis in cells with mitochondrial dysfunction. Mol. Cell, 2018, 69(4), 581-593.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.01.034] [PMID: 29452638]
[94]
Olalla, L.; Gutiérrez, A.; Campos, J.A.; Khan, Z.U.; Alonso, F.J.; Segura, J.A.; Márquez, J.; Aledo, J.C. Nuclear localization of L-type glutaminase in mammalian brain. J. Biol. Chem., 2002, 277(41), 38939-38944.
[http://dx.doi.org/10.1074/jbc.C200373200] [PMID: 12163477]
[95]
Cardona, C.; Sánchez-Mejías, E.; Dávila, J.C.; Martín-Rufián, M.; Campos-Sandoval, J.A.; Vitorica, J.; Alonso, F.J.; Matés, J.M.; Segura, J.A.; Norenberg, M.D.; Rama Rao, K.V.; Jayakumar, A.R.; Gutiérrez, A.; Márquez, J. Expression of Gls and Gls2 glutaminase isoforms in astrocytes. Glia, 2015, 63(3), 365-382.
[http://dx.doi.org/10.1002/glia.22758] [PMID: 25297978]
[96]
Olalla, L.; Aledo, J.C.; Bannenberg, G.; Márquez, J. The C-terminus of human glutaminase L mediates association with PDZ domain-containing proteins. FEBS Lett., 2001, 488(3), 116-122.
[http://dx.doi.org/10.1016/S0014-5793(00)02373-5] [PMID: 11163757]
[97]
Márquez, J.; de la Oliva, A.R.; Matés, J.M.; Segura, J.A.; Alonso, F.J. Glutaminase: a multifaceted protein not only involved in generating glutamate. Neurochem. Int., 2006, 48(6-7), 465-471.
[http://dx.doi.org/10.1016/j.neuint.2005.10.015] [PMID: 16516349]
[98]
Biltz, R.M.; Letteri, J.M.; Pellegrino, E.D.; Palekar, A.; Pinkus, L.M. Glutamine metabolism in bone. Miner. Electrolyte Metab., 1983, 9(3), 125-131.
[PMID: 6135980]
[99]
Ahluwalia, G.S.; Grem, J.L.; Hao, Z.; Cooney, D.A. Metabolism and action of amino acid analog anti-cancer agents. Pharmacol. Ther., 1990, 46(2), 243-271.
[http://dx.doi.org/10.1016/0163-7258(90)90094-I] [PMID: 2108451]
[100]
Katt, W.P.; Lukey, M.J.; Cerione, R.A. A tale of two glutaminases: homologous enzymes with distinct roles in tumorigenesis. Future Med. Chem., 2017, 9(2), 223-243.
[http://dx.doi.org/10.4155/fmc-2016-0190] [PMID: 28111979]
[101]
Katt, W.P.; Ramachandran, S.; Erickson, J.W.; Cerione, R.A. Dibenzophenanthridines as inhibitors of glutaminase C and cancer cell proliferation. Mol. Cancer Ther., 2012, 11(6), 1269-1278.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0942] [PMID: 22496480]
[102]
Wilson, K.F.; Erickson, J.W.; Antonyak, M.A.; Cerione, R.A. Rho GTPases and their roles in cancer metabolism. Trends Mol. Med., 2013, 19(2), 74-82.
[http://dx.doi.org/10.1016/j.molmed.2012.10.011] [PMID: 23219172]
[103]
Simpson, N.E.; Tryndyak, V.P.; Pogribna, M.; Beland, F.A.; Pogribny, I.P. Modifying metabolically sensitive histone marks by inhibiting glutamine metabolism affects gene expression and alters cancer cell phenotype. Epigenetics, 2012, 7(12), 1413-1420.
[http://dx.doi.org/10.4161/epi.22713] [PMID: 23117580]
[104]
Huang, W.; Choi, W.; Chen, Y.; Zhang, Q.; Deng, H.; He, W.; Shi, Y. A proposed role for glutamine in cancer cell growth through acid resistance. Cell Res., 2013, 23(5), 724-727.
[http://dx.doi.org/10.1038/cr.2013.15] [PMID: 23357849]
[105]
Robinson, M.M.; McBryant, S.J.; Tsukamoto, T.; Rojas, C.; Ferraris, D.V.; Hamilton, S.K.; Hansen, J.C.; Curthoys, N.P. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem. J., 2007, 406(3), 407-414.
[http://dx.doi.org/10.1042/BJ20070039] [PMID: 17581113]
[106]
Jacque, N.; Ronchetti, A.M.; Larrue, C.; Meunier, G.; Birsen, R.; Willems, L.; Saland, E.; Decroocq, J.; Maciel, T.T.; Lambert, M.; Poulain, L.; Hospital, M.A.; Sujobert, P.; Joseph, L.; Chapuis, N.; Lacombe, C.; Moura, I.C.; Demo, S.; Sarry, J.E.; Recher, C.; Mayeux, P.; Tamburini, J.; Bouscary, D. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood, 2015, 126(11), 1346-1356.
[http://dx.doi.org/10.1182/blood-2015-01-621870] [PMID: 26186940]
[107]
Matre, P.; Velez, J.; Jacamo, R.; Qi, Y.; Su, X.; Cai, T.; Chan, S.M.; Lodi, A.; Sweeney, S.R.; Ma, H.; Davis, R.E.; Baran, N.; Haferlach, T.; Su, X.; Flores, E.R.; Gonzalez, D.; Konoplev, S.; Samudio, I.; DiNardo, C.; Majeti, R.; Schimmer, A.D.; Li, W.; Wang, T.; Tiziani, S.; Konopleva, M. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes. Oncotarget, 2016, 7(48), 79722-79735.
[http://dx.doi.org/10.18632/oncotarget.12944] [PMID: 27806325]
[108]
Gross, M.I.; Demo, S.D.; Dennison, J.B.; Chen, L.; Chernov-Rogan, T.; Goyal, B.; Janes, J.R.; Laidig, G.J.; Lewis, E.R.; Li, J.; Mackinnon, A.L.; Parlati, F.; Rodriguez, M.L.; Shwonek, P.J.; Sjogren, E.B.; Stanton, T.F.; Wang, T.; Yang, J.; Zhao, F.; Bennett, M.K. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther., 2014, 13(4), 890-901.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0870] [PMID: 24523301]
[109]
Huang, Q.; Stalnecker, C.; Zhang, C.; McDermott, L.A.; Iyer, P.; O’Neill, J.; Reimer, S.; Cerione, R.A.; Katt, W.P. Characterization of the interactions of potent allosteric inhibitors with glutaminase C, a key enzyme in cancer cell glutamine metabolism. J. Biol. Chem., 2018, 293(10), 3535-3545.
[http://dx.doi.org/10.1074/jbc.M117.810101] [PMID: 29317493]
[110]
Yeh, T.K.; Kuo, C.C.; Lee, Y.Z.; Ke, Y.Y.; Chu, K.F.; Hsu, H.Y.; Chang, H.Y.; Liu, Y.W.; Song, J.S.; Yang, C.W.; Lin, L.M.; Sun, M.; Wu, S.H.; Kuo, P.C.; Shih, C.; Chen, C.T.; Tsou, L.K.; Lee, S.J. Design, synthesis, and evaluation of thiazolidine-2,4-dione derivatives as a novel class of glutaminase inhibitors. J. Med. Chem., 2017, 60(13), 5599-5612.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00282] [PMID: 28609101]
[111]
Lukey, M.J.; Greene, K.S.; Erickson, J.W.; Wilson, K.F.; Cerione, R.A. The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy. Nat. Commun., 2016, 7, 11321.
[http://dx.doi.org/10.1038/ncomms11321] [PMID: 27089238]
[112]
Zimmermann, S.C.; Duvall, B.; Tsukamoto, T. Recent progress in the discovery of allosteric inhibitors of kidney-type glutaminase. J. Med. Chem., 2019, 62(1), 46-59.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00327] [PMID: 29969024]
[113]
Wu, C.; Zheng, M.; Gao, S.; Luan, S.; Cheng, L.; Wang, L.; Li, J.; Chen, L.; Li, H. A natural inhibitor of kidney-type glutaminase: a withanolide from Physalis pubescens with potent anti-tumor activity. Oncotarget, 2017, 8(69), 113516-113530.
[http://dx.doi.org/10.18632/oncotarget.23058] [PMID: 29371926]
[114]
Xu, X.; Meng, Y.; Li, L.; Xu, P.; Wang, J.; Li, Z.; Bian, J. Overview of the development of glutaminase inhibitors: achievements and future directions. J. Med. Chem., 2019, 62(3), 1096-1115.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00961] [PMID: 30148361]
[115]
Elhammali, A.; Ippolito, J.E.; Collins, L.; Crowley, J.; Marasa, J.; Piwnica-Worms, D. A high-throughput fluorimetric assay for 2-hydroxyglutarate identifies Zaprinast as a glutaminase inhibitor. Cancer Discov., 2014, 4(7), 828-839.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0572] [PMID: 24740997]
[116]
Yu, C.C.; Wu, P.J.; Hsu, J.L.; Ho, Y.F.; Hsu, L.C.; Chang, Y.J.; Chang, H.S.; Chen, I.S.; Guh, J.H. Ardisianone, a natural benzoquinone, efficiently induces apoptosis in human hormone-refractory prostate cancers through mitochondrial damage stress and survivin downregulation. Prostate, 2013, 73(2), 133-145.
[http://dx.doi.org/10.1002/pros.22548] [PMID: 22674285]
[117]
Liu, J.; Zhang, C.; Lin, M.; Zhu, W.; Liang, Y.; Hong, X.; Zhao, Y.; Young, K.H.; Hu, W.; Feng, Z. Glutaminase 2 negatively regulates the PI3K/AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma. Oncotarget, 2014, 5(9), 2635-2647.
[http://dx.doi.org/10.18632/oncotarget.1862] [PMID: 24797434]
[118]
Majewska, E.; Márquez, J.; Albrecht, J.; Szeliga, M. Transfection with GLS2 Glutaminase (GAB) sensitizes human glioblastoma cell lines to oxidative stress by a common mechanism involving suppression of the PI3K/AKT pathway. Cancers (Basel), 2019, 11(1), E115.
[http://dx.doi.org/10.3390/cancers11010115] [PMID: 30669455]
[119]
Szeliga, M.; Bogacińska-Karaś, M.; Kuźmicz, K.; Rola, R.; Albrecht, J. Downregulation of GLS2 in glioblastoma cells is related to DNA hypermethylation but not to the p53 status. Mol. Carcinog., 2016, 55(9), 1309-1316.
[http://dx.doi.org/10.1002/mc.22372] [PMID: 26258493]
[120]
Zhang, J.; Wang, C.; Chen, M.; Cao, J.; Zhong, Y.; Chen, L.; Shen, H.M.; Xia, D. Epigenetic silencing of glutaminase 2 in human liver and colon cancers. BMC Cancer, 2013, 13, 601.
[http://dx.doi.org/10.1186/1471-2407-13-601] [PMID: 24330717]
[121]
Kuo, T.C.; Chen, C.K.; Hua, K.T.; Yu, P.; Lee, W.J.; Chen, M.W.; Jeng, Y.M.; Chien, M.H.; Kuo, K.T.; Hsiao, M.; Kuo, M.L. Glutaminase 2 stabilizes Dicer to repress Snail and metastasis in hepatocellular carcinoma cells. Cancer Lett., 2016, 383(2), 282-294.
[http://dx.doi.org/10.1016/j.canlet.2016.10.012] [PMID: 27725225]
[122]
Nabi, S.; Kessler, E.R.; Bernard, B.; Flaig, T.W.; Lam, E.T. Renal cell carcinoma: a review of biology and pathophysiology. F1000 Res., 2018, 7, 307.
[http://dx.doi.org/10.12688/f1000research.13179.1] [PMID: 29568504]
[123]
Masamha, C.P.; LaFontaine, P. Molecular targeting of glutaminase sensitizes ovarian cancer cells to chemotherapy. J. Cell. Biochem., 2018, 119(7), 6136-6145.
[http://dx.doi.org/10.1002/jcb.26814] [PMID: 29633308]
[124]
Katt, W.P.; Cerione, R.A. Glutaminase regulation in cancer cells: a druggable chain of events. Drug Discov. Today, 2014, 19(4), 450-457.
[http://dx.doi.org/10.1016/j.drudis.2013.10.008] [PMID: 24140288]
[125]
Yu, D.; Shi, X.; Meng, G.; Chen, J.; Yan, C.; Jiang, Y.; Wei, J.; Ding, Y. Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma. Oncotarget, 2015, 6(10), 7619-7631.
[http://dx.doi.org/10.18632/oncotarget.3196] [PMID: 25844758]
[126]
Jin, L.; Alesi, G.N.; Kang, S. Glutaminolysis as a target for cancer therapy. Oncogene, 2016, 35(28), 3619-3625.
[http://dx.doi.org/10.1038/onc.2015.447] [PMID: 26592449]
[127]
Matés, J.M.; Segura, J.A.; Campos-Sandoval, J.A.; Lobo, C.; Alonso, L.; Alonso, F.J.; Márquez, J. Glutamine homeostasis and mitochondrial dynamics. Int. J. Biochem. Cell Biol., 2009, 41(10), 2051-2061.
[http://dx.doi.org/10.1016/j.biocel.2009.03.003] [PMID: 19703661]
[128]
Han, T.; Zhan, W.; Gan, M.; Liu, F.; Yu, B.; Chin, Y.E.; Wang, J.B. Phosphorylation of glutaminase by PKCε is essential for its enzymatic activity and critically contributes to tumorigenesis. Cell Res., 2018, 28(6), 655-669.
[http://dx.doi.org/10.1038/s41422-018-0021-y] [PMID: 29515166]
[129]
Abraham, S.A.; Hopcroft, L.E.; Carrick, E.; Drotar, M.E.; Dunn, K.; Williamson, A.J.; Korfi, K.; Baquero, P.; Park, L.E.; Scott, M.T.; Pellicano, F.; Pierce, A.; Copland, M.; Nourse, C.; Grimmond, S.M.; Vetrie, D.; Whetton, A.D.; Holyoake, T.L. Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature, 2016, 534(7607), 341-346.
[http://dx.doi.org/10.1038/nature18288] [PMID: 27281222]
[130]
Schulze, A.; Harris, A.L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature, 2012, 491(7424), 364-373.
[http://dx.doi.org/10.1038/nature11706] [PMID: 23151579]
[131]
DeBerardinis, R.J.; Thompson, C.B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell, 2012, 148(6), 1132-1144.
[http://dx.doi.org/10.1016/j.cell.2012.02.032] [PMID: 22424225]
[132]
Singh, B.; Sarli, V.N.; Washburn, L.J.; Raythatha, M.R.; Lucci, A. A usable model of “decathlon winner” cancer cells in triple-negative breast cancer: survival of resistant cancer cells in quiescence. Oncotarget, 2018, 9(13), 11071-11082.
[http://dx.doi.org/10.18632/oncotarget.24322] [PMID: 29541397]
[133]
Martinez-Outschoorn, U.E.; Peiris-Pagés, M.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol., 2017, 14(1), 11-31.
[http://dx.doi.org/10.1038/nrclinonc.2016.60] [PMID: 27141887]
[134]
Raj, L.; Ide, T.; Gurkar, A.U.; Foley, M.; Schenone, M.; Li, X.; Tolliday, N.J.; Golub, T.R.; Carr, S.A.; Shamji, A.F.; Stern, A.M.; Mandinova, A.; Schreiber, S.L.; Lee, S.W. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature, 2011, 475(7355), 231-234.
[http://dx.doi.org/10.1038/nature10167] [PMID: 21753854]
[135]
Marin, J.J.G.; Briz, O.; Herraez, E.; Lozano, E.; Asensio, M.; Di Giacomo, S.; Romero, M.R.; Osorio-Padilla, L.M.; Santos-Llamas, A.I.; Serrano, M.A.; Armengol, C.; Efferth, T.; Macias, R.I.R. Molecular bases of the poor response of liver cancer to chemotherapy. Clin. Res. Hepatol. Gastroenterol., 2018, 42(3), 182-192.
[http://dx.doi.org/10.1016/j.clinre.2017.12.006] [PMID: 29544679]
[136]
Chakrabarti, G.; Moore, Z.R.; Luo, X.; Ilcheva, M.; Ali, A.; Padanad, M.; Zhou, Y.; Xie, Y.; Burma, S.; Scaglioni, P.P.; Cantley, L.C.; DeBerardinis, R.J.; Kimmelman, A.C.; Lyssiotis, C.A.; Boothman, D.A. Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ß-lapachone. Cancer Metab., 2015, 3, 12.
[http://dx.doi.org/10.1186/s40170-015-0137-1] [PMID: 26462257]
[137]
Hu, M.; Liu, L.; Yao, W. Activation of p53 by costunolide blocks glutaminolysis and inhibits proliferation in human colorectal cancer cells. Gene, 2018, 678, 261-269.
[http://dx.doi.org/10.1016/j.gene.2018.08.048] [PMID: 30103008]
[138]
Cervantes-Madrid, D.; Dominguez-Gomez, G.; Gonzalez-Fierro, A.; Perez-Cardenas, E.; Taja-Chayeb, L.; Trejo-Becerril, C.; Duenas-Gonzalez, A. Feasibility and antitumor efficacy in vivo, of simultaneously targeting glycolysis, glutaminolysis and fatty acid synthesis using lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat in colon cancer. Oncol. Lett., 2017, 13(3), 1905-1910.
[http://dx.doi.org/10.3892/ol.2017.5615] [PMID: 28454342]
[139]
Ma, D.; Gilbert, T.; Pignanelli, C.; Tarade, D.; Noel, M.; Mansour, F.; Gupta, M.; Ma, S.; Ropat, J.; Curran, C.; Vshyvenko, S.; Hudlicky, T.; Pandey, S. Exploiting mitochondrial and oxidative vulnerabilities with a synthetic analog of pancratistatin in combination with piperlongumine for cancer therapy. FASEB J., 2018, 32(1), 417-430.
[http://dx.doi.org/10.1096/fj.201700275R] [PMID: 28928246]
[140]
Mohammad, R.M.; Muqbil, I.; Lowe, L.; Yedjou, C.; Hsu, H.Y.; Lin, L.T.; Siegelin, M.D.; Fimognari, C.; Kumar, N.B.; Dou, Q.P.; Yang, H.; Samadi, A.K.; Russo, G.L.; Spagnuolo, C.; Ray, S.K.; Chakrabarti, M.; Morre, J.D.; Coley, H.M.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, W.G.; Yang, X.; Boosani, C.S.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Mohammed, S.I.; Keith, W.N.; Bilsland, A.; Halicka, D.; Nowsheen, S.; Azmi, A.S. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol., 2015, 35(Suppl.), S78-S103.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.001] [PMID: 25936818]
[141]
Akins, N.S.; Nielson, T.C.; Le, H.V. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer. Curr. Top. Med. Chem., 2018, 18(6), 494-504.
[http://dx.doi.org/10.2174/1568026618666180523111351] [PMID: 29788892]
[142]
Wang, Q.; Beaumont, K.A.; Otte, N.J.; Font, J.; Bailey, C.G.; van Geldermalsen, M.; Sharp, D.M.; Tiffen, J.C.; Ryan, R.M.; Jormakka, M.; Haass, N.K.; Rasko, J.E.; Holst, J. Targeting glutamine transport to suppress melanoma cell growth. Int. J. Cancer, 2014, 135(5), 1060-1071.
[http://dx.doi.org/10.1002/ijc.28749] [PMID: 24531984]
[143]
Dornier, E.; Rabas, N.; Mitchell, L.; Novo, D.; Dhayade, S.; Marco, S.; Mackay, G.; Sumpton, D.; Pallares, M.; Nixon, C.; Blyth, K.; Macpherson, I.R.; Rainero, E.; Norman, J.C. Glutaminolysis drives membrane trafficking to promote invasiveness of breast cancer cells. Nat. Commun., 2017, 8(1), 2255.
[http://dx.doi.org/10.1038/s41467-017-02101-2] [PMID: 29269878]
[144]
Luan, W.; Zhou, Z.; Zhu, Y.; Xia, Y.; Wang, J.; Xu, B. miR-137 inhibits glutamine catabolism and growth of malignant melanoma by targeting glutaminase. Biochem. Biophys. Res. Commun., 2018, 495(1), 46-52.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.152] [PMID: 29097210]
[145]
Xu, P.; Oosterveer, M.H.; Stein, S.; Demagny, H.; Ryu, D.; Moullan, N.; Wang, X.; Can, E.; Zamboni, N.; Comment, A.; Auwerx, J.; Schoonjans, K. LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer. Genes Dev., 2016, 30(11), 1255-1260.
[http://dx.doi.org/10.1101/gad.277483.116] [PMID: 27298334]
[146]
Tardito, S.; Oudin, A.; Ahmed, S.U.; Fack, F.; Keunen, O.; Zheng, L.; Miletic, H.; Sakariassen, P.Ø.; Weinstock, A.; Wagner, A.; Lindsay, S.L.; Hock, A.K.; Barnett, S.C.; Ruppin, E.; Mørkve, S.H.; Lund-Johansen, M.; Chalmers, A.J.; Bjerkvig, R.; Niclou, S.P.; Gottlieb, E. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol., 2015, 17(12), 1556-1568.
[http://dx.doi.org/10.1038/ncb3272] [PMID: 26595383]
[147]
Zhu, M.; Fang, J.; Zhang, J.; Zhang, Z.; Xie, J.; Yu, Y.; Ruan, J.J.; Chen, Z.; Hou, W.; Yang, G.; Su, W.; Ruan, B.H. Biomolecular interaction assays identified dual inhibitors of glutaminase and glutamate dehydrogenase that disrupt mitochondrial function and prevent growth of cancer cells. Anal. Chem., 2017, 89(3), 1689-1696.
[http://dx.doi.org/10.1021/acs.analchem.6b03849] [PMID: 28208301]
[148]
Kitayama, K.; Yashiro, M.; Morisaki, T.; Miki, Y.; Okuno, T.; Kinoshita, H.; Fukuoka, T.; Kasashima, H.; Masuda, G.; Hasegawa, T.; Sakurai, K.; Kubo, N.; Hirakawa, K.; Ohira, M. Pyruvate kinase isozyme M2 and glutaminase might be promising molecular targets for the treatment of gastric cancer. Cancer Sci., 2017, 108(12), 2462-2469.
[http://dx.doi.org/10.1111/cas.13421] [PMID: 29032577]
[149]
Lu, W.Q.; Hu, Y.Y.; Lin, X.P.; Fan, W. Knockdown of PKM2 and GLS1 expression can significantly reverse oxaliplatin-resistance in colorectal cancer cells. Oncotarget, 2017, 8(27), 44171-44185.
[http://dx.doi.org/10.18632/oncotarget.17396] [PMID: 28498807]
[150]
Lampa, M.; Arlt, H.; He, T.; Ospina, B.; Reeves, J.; Zhang, B.; Murtie, J.; Deng, G.; Barberis, C.; Hoffmann, D.; Cheng, H.; Pollard, J.; Winter, C.; Richon, V.; Garcia-Escheverria, C.; Adrian, F.; Wiederschain, D.; Srinivasan, L. Glutaminase is essential for the growth of triple-negative breast cancer cells with a deregulated glutamine metabolism pathway and its suppression synergizes with mTOR inhibition. PLoS One, 2017, 12(9), e0185092.
[http://dx.doi.org/10.1371/journal.pone.0185092] [PMID: 28950000]
[151]
Momcilovic, M.; Bailey, S.T.; Lee, J.T.; Fishbein, M.C.; Braas, D.; Go, J.; Graeber, T.G.; Parlati, F.; Demo, S.; Li, R.; Walser, T.C.; Gricowski, M.; Shuman, R.; Ibarra, J.; Fridman, D.; Phelps, M.E.; Badran, K.; St John, M.; Bernthal, N.M.; Federman, N.; Yanagawa, J.; Dubinett, S.M.; Sadeghi, S.; Christofk, H.R.; Shackelford, D.B. The GSK3 signaling axis regulates adaptive glutamine metabolism in lung squamous cell carcinoma. Cancer Cell, 2018, 33(5), 905-921.e5.
[http://dx.doi.org/10.1016/j.ccell.2018.04.002] [PMID: 29763624]
[152]
Tanaka, K.; Sasayama, T.; Irino, Y.; Takata, K.; Nagashima, H.; Satoh, N.; Kyotani, K.; Mizowaki, T.; Imahori, T.; Ejima, Y.; Masui, K.; Gini, B.; Yang, H.; Hosoda, K.; Sasaki, R.; Mischel, P.S.; Kohmura, E. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J. Clin. Invest., 2015, 125(4), 1591-1602.
[http://dx.doi.org/10.1172/JCI78239] [PMID: 25798620]
[153]
Han, T.; Guo, M.; Zhang, T.; Gan, M.; Xie, C.; Wang, J.B. A novel glutaminase inhibitor-968 inhibits the migration and proliferation of non-small cell lung cancer cells by targeting EGFR/ERK signaling pathway. Oncotarget, 2017, 8(17), 28063-28073.
[http://dx.doi.org/10.18632/oncotarget.14188] [PMID: 28039459]
[154]
Wang, D.; Meng, G.; Zheng, M.; Zhang, Y.; Chen, A.; Wu, J.; Wei, J. The Glutaminase-1 inhibitor 968 enhances dihydroartemisinin-mediated antitumor efficacy in hepatocellular carcinoma cells. PLoS One, 2016, 11(11), e0166423.
[http://dx.doi.org/10.1371/journal.pone.0166423] [PMID: 27835669]
[155]
Matés, J.M.; Campos-Sandoval, J.A.; Márquez, J. Glutaminase isoenzymes in the metabolic therapy of cancer. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(2), 158-164.
[http://dx.doi.org/10.1016/j.bbcan.2018.07.007] [PMID: 30053497]
[156]
Song, M.; Kim, S.H.; Im, C.Y.; Hwang, H.J. Recent development of small molecule glutaminase inhibitors. Curr. Top. Med. Chem., 2018, 18(6), 432-443.
[http://dx.doi.org/10.2174/1568026618666180525100830] [PMID: 29793408]
[157]
Yu, Y.; Yu, X.; Fan, C.; Wang, H.; Wang, R.; Feng, C.; Guan, H. Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer. J. Mol. Med. (Berl.), 2018, 96(8), 777-790.
[http://dx.doi.org/10.1007/s00109-018-1659-0] [PMID: 29942976]
[158]
Wu, C.; Chen, L.; Jin, S.; Li, H. Glutaminase inhibitors: a patent review. Expert Opin. Ther. Pat., 2018, 28(11), 823-835.
[http://dx.doi.org/10.1080/13543776.2018.1530759] [PMID: 30273516]
[159]
Li, L.; Meng, Y.; Li, Z.; Dai, W.; Xu, X.; Bi, X.; Bian, J. Discovery and development of small molecule modulators targeting glutamine metabolism. Eur. J. Med. Chem., 2019, 163, 215-242.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.066] [PMID: 30522056]
[160]
Kaushik, A.K.; DeBerardinis, R.J. Applications of metabolomics to study cancer metabolism. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(1), 2-14.
[http://dx.doi.org/10.1016/j.bbcan.2018.04.009] [PMID: 29702206]
[161]
Jiang, Z.; Zhang, C.; Gan, L.; Jia, Y.; Xiong, Y.; Chen, Y.; Wang, Z.; Wang, L.; Luo, H.; Li, J.; Zhu, R.; Ji, X.; Yu, Q.; Wang, L. iTRAQ-based quantitative proteomics approach identifies novel diagnostic biomarkers that were essential for glutamine metabolism and redox homeostasis for gastric cancer. Proteomics Clin. Appl., 2018, 28, e1800038.
[http://dx.doi.org/10.1002/prca.201800038] [PMID: 30485682]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy