[1]
L. A. Piegl, and W. Tiller, , The NURBS Book., Berlin: Springer Berlin Heidelberg, 1997.
[2]
F. Yamaguchi, Curves and surfaces in computer aided geometric
design., Berlin, Heidelberg: Springer-Verlag, 1988.
[3]
H. Prautzsch, W. Boehm, and M. Paluszny, Bezier and B-Spline Techniques., Berlin, Heidelberg: Springer-Verlag, 2002.
[4]
X. Ye, T.R. Jackson, and N.M. Patrikalakis, "Geometric design of functional surfaces", Comput. Aided Des., vol. 28, pp. 741-752, 1998.
[5]
S.I. Gofuku, S. Tamura, and T. Maekawa, "Point-tangent/point-normal b-spline curve interpolation by geometric algorithms", Comput. Aided Des., vol. 41, pp. 412-422, 2009.
[6]
T. Maekawa, Y. Matsumoto, and K. Namiki, "Interpolation by geometric algorithm", Comput. Aided Des., vol. 39, pp. 313-323, 2007.
[7]
H. Lin, "The convergence of the geometric interpolation algorithm", Comput. Aided Des., vol. 42, pp. 505-508, 2010.
[8]
C.D. Boor, K. Höllig, and M. Sabin, "High accuracy geometric hermite interpolation", Comput. Aided Geom. Des., vol. 4, pp. 269-278, 1997.
[9]
A. Abbas, A. Nasri, and T. Maekawa, "Generating b-spline curves with points, normals and curvature constraints: a constructive approach", Vis. Comput., vol. 26, pp. 823-829, 2010.
[10]
K. Shi, X. Zhou, and Z.J. Ma, "A method and device for fitting data points based on b-spline curve", CN Patent 104517032 A, 2015.
[11]
G. Xu, L.S. Deng, and Y.G. Zhu, "A template based construction method of minimal energy B spline curve", CN Patent 104331916 A, 2015.
[12]
S. Okaniwa, A. Nasri, H. Lin, A. Abbas, Y. Kineri, and T. Maekawa, "Uniform b-spline curve interpolation with prescribed tangent and curvature vectors", IEEE Trans. Vis. Comput. Graph., vol. 18, pp. 1474-1487, 2012.
[13]
H.G. Burchard, "Splines (with optimal knots) are better", Appl. Anal., vol. 3, pp. 309-319, 2007.
[14]
D.L.B. Jupp,, "Approximation to data by splines with free knots", Siam J. Nume. Anal., vol. 15, pp. 328-343, 1978.
[15]
W. Li, S. Xu, G. Zhao, and P.G. Li, "Adaptive knot placement in b-spline curve approximation", Computer. Aided Des., vol. 37, pp. 791-797, 2005.
[16]
J. Peng, X. Liu, L. Si, and J. Liu, "A Novel Approach for NURBS Interpolation with Minimal Feed Rate Fluctuation Based on Improved Adams-Moulton Method", Math. Probl. Eng., vol. 2007, pp. 1-10, 2017.
[17]
B. Zhang, C.J. Li, L.P. Wang, H. Liu, X.L. Wang, and Q.Y. Wu, "A fast interpolation method and system for cubic b-spline curves", CN Patent 108537857 A, 2018.
[18]
X. Han, "Direction-consistent tangent vectors for generating interpolation curves", J. Computer. Appl. Math., vol. 346, pp. 237-246, 2019.
[19]
F. Yoshimoto, T. Harada, and Y. Yoshimoto, "Data fitting with a spline using a real-coded genetic algorithm", Comput. Aided Des., vol. 35, pp. 751-760, 2003.
[20]
E. Ülker, and A. Arslan, "Automatic knot adjustment using an artificial immune system for b-spline curve approximation", Inf. Sci., vol. 179, pp. 1483-1497, 2009.
[21]
A. Gálvez, A. Iglesias, and J. Puig-Pey, "Iterative two-step genetic-algorithm-based method for efficient polynomial b-spline surface reconstruction", Inf. Sci., vol. 182, pp. 56-76, 2012.
[22]
A. Gálvez, A. Gálvez, A. Iglesias, A. Avila, C. Otero, R. Arias, and C.
Manchado,, "Elitist clonal selection algorithm for optimal choice of
free knots in b-spline data fittin", Appl. Soft Comput., vol. 26, pp. 90-106, 2015.
[23]
Y. Zhang, J. Cao, Z. Chen, X. Li, and X.M. Zeng, "B-spline surface fitting with knot position optimization", Comput. Graph., vol. 58, pp. 73-83, 2016.
[24]
R. Mo, F. Ma, Y.W. Wang, Y. Yu, and N. Wan, "Closed non-uniform rational b-spline curve smoothing method based on genetic algorithm", CN Patent 103413175 A, 2013.
[25]
F. Kara, K. Aslantas, and A. Çicek, "Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network", Appl. Soft Comput., vol. 38, pp. 64-74, 2016.
[26]
F. Kara, K. Aslantas, and A. Çicek, "Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network", Appl. Soft Comput., vol. 26, pp. 237-250, 2015.
[27]
M. Grossman, "Parametric curve fitting", The Comput. J., vol. 14, pp. 169-172, 1971.
[28]
E.T.Y. Lee, "Choosing nodes in parametric curve interpolation", Comput. Aided Des., vol. 21, pp. 363-370, 1989.
[29]
T.A. Foley, and G.M. Nielson, "Knot selection for parametric spline interpolation", In: , L.L. Schumaker, Eds. Mathematical
methods in computer aided geometric design, San Diego, CA: Academic
Press Professional, 1989, pp. 261-271.
[30]
L. Hu, H. Shou, and J. Shen, "An adaptive configuration method of knots and data parameters for NURBS curve interpolation", In: 18th International Conference on Computational Science and Applications (ICCSA), Melbourne, Australia, 2018.