[1]
Nikhil, B.; Shikha, B.; Anil, P.; Prakash, N.B. Diverse pharmacological activities of 3-substituted coumarins: A review. Int. Res. J. Pharm., 2012, 3(7), 24-29.
[2]
Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem., 2009, 16(32), 4236-4260.
[3]
Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem., 2005, 12(8), 887-916.
[4]
Aoife, L. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811.
[5]
Bansal, Y.; Silakari, O. Multifunctional compounds: Smart molecules for multifactorial diseases. Eur. J. Med. Chem., 2014, 76, 31-42.
[6]
Geldenhuys, W.J.; Youdim, M.B.H.; Carroll, R.T.; Van der Schyf, C.J. The emergence of designed multiple ligands for neurodegenerative disorders. Prog. Neurobiol., 2011, 94(4), 347-359.
[7]
Zhang, H-Y. One-compound-multiple-targets strategy to combat Alzheimer’s disease. FEBS Lett., 2005, 579(24), 5260-5264.
[8]
Van der Schyf, C.J.; Geldenhuys, W.J. In: International Review of Neurobiology; Youdim, M.B.H.; Douce, P., Eds.; Academic Press, 2011; Vol. 100, pp. 107-125.
[9]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[10]
Claudio, V.J.; Amanda, D.; Vanderlan da Silva, B.; Eliezer, J.B.; Carlos, A.M.F. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[11]
Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem., 2014, 22(15), 3806-3814.
[12]
Barnard, E.A. In: The Peripheral Nervous System; Hubband, J.I., Ed.; Plenum Press: New York, 1974; pp. 201-224.
[13]
Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact., 2010, 187(1-3), 10-22.
[14]
Vanneri, A.; McGeown, W.J.; Shanks, M.F. Empirical evidence of neuroprotection by dual cholinesterase inhibition in Alzheimer’s disease. Neuroreport, 2008, 16(2), 107-110.
[15]
Lane, R.M.; Potkin, S.G.; Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia Int. J. Neurophyschop., 2006, 9(1), 101-124.
[16]
Mostert, S.; Petzer, A.; Petzer, J.P. Inhibition of monoamine oxidase by benzoxathiolone analogues. Bioorg. Med. Chem. Lett., 2016, 26, 1200-1204.
[17]
Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, K.; Sasao, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 23.
[18]
Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem., 2012, 20(3), 6.
[19]
Catto, M.; Pisani, L.; Leonetti, F.; Pesce, P.; Stefanachi, A.; Cellamare, S.; Carotti, A. Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorg. Med. Chem., 2013, 21(1), 7.
[20]
Sun, Q.; Peng, D.Y.; Yang, S.G.; Zhu, X.L.; Yang, W.C.; Yang, G.F. Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Ab aggregation, and b-secretase. Bioorg. Med. Chem., 2014, 22, 4784-4791.
[21]
Xie, S.S.; Wang, X.; Jiang, N.; Yu, W.; Kelvin, D.G. W.; Lan, J.S.; Li, Z.R.; Kong, L.Y., Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur. J. Med. Chem., 2015, 95, 153-165.
[22]
Piazzi, L.; Rampa, A.; Bisi, A.; Gobbi, S.; Belluti, F.; Cavalli, A.; Bartolini, M.; Andrisano, V.; Valenti, P.; Recantini, M. 3-(4-[Benzyl(methyl)amino]methyl-phenyl)-6,7-dimethoxy-2H-2-chromenone(AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced β-Amyloid aggregation: A dual function lead for Alzheimer’s disease therapy. J. Med. Chem., 2003, 46, 2279-2282.
[23]
Catto, M.; Nicolotti, O.; Leonetti, F.; Carotti, A.; Favia, A.D.; Soto-Otero, R.; Méndez-Alvarez, E.; Carotti, A. Structural insights into monoamine oxidase inhibitory potency and selectivity of 7-substituted coumarins from ligand- and target-based approaches. J. Med. Chem., 2006, 49(16), 4912-4925.
[24]
Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Bizzarri, B.; Granese, A.; Carradori, S.; Yanez, M.; Orallo, F.; Ortuso, F.; Alcaro, S. Synthesis, molecular modeling and selective inhibitory activity against human monoamine oxidases of 3-carboxamido-7-substituted coumarins. J. Med. Chem., 2009, 52(7), 1935-1942.
[25]
Hamulakova, S.; Janovec, L.; Soukup, O.; Jun, D.; Kuca, K. Synthesis, in vitro acetylcholinesterase inhibitory activity and molecular docking of new acridine-coumarin hybrids. Int. J. Biol. Macromol., 2017, 104, 333-338.
[26]
Pisani, L.; Farina, R.; Catto, M.; Iacobazzi, R.M.; Nicolloti, O.; Cellamare, S.; Mangiatordi, G.F.; Denora, N.; Soto-Otero, R.; Siragusa, L.; Altomare, C.D.; Carotti, A. Exploring basic tail modifications of coumarin-based dual Acetylcholinesterase-Monoamine Oxidase B inhibitors: Identification of water-soluble, brain-permeant neuroprotective multitarget agents. J. Med. Chem., 2016, 59, 6791-6806.
[27]
Joubert, J.; Foka, G.B.; Pepsold, B.P.; Oliver, D.W.; Kapp, E.; Malan, S.F. Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 853-864.
[28]
Ibrar, A.; Khan, A.; Ali, M.; Sarwar, R.; Mehsud, S.; Farooq, U.; Halimi, S.M.A.; Khan, I.; Al-Harrasi, A. Combined in vitro and in silico studies for the Anticholinesterase activity and pharmacokinetics of coumarinyl thiazoles and oxadiazoles. Front Chem., 2018, 6, 61.
[29]
Zhang, J.; Jiang, C-S. Synthesis and evaluation of coumarin/piperazine hybrids as acetylcholinesterase inhibitors. Med. Chem. Res., 2018, 27(6), 1717-1727.
[30]
Xie, S.S.; Lan, J-S.; Wang, X.; Wang, Z-M.; Jiang, N.; Li, F.; Wu, J-J.; Wang, J.; Kong, L-Y. Design, synthesis and biological evaluation of novel donepezil–coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(7), 1528-1539.
[31]
Wang, C.; Wu, Z.; Cai, H.; Xu, S.; Liu, J.; Jiang, J.; Yao, H.; Wu, X.; Xu, J. Design, synthesis, biological evaluation and docking study of 4-isochromanone hybrids bearing N-benzyl pyridinium moiety as dual binding site acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(22), 5212-5216.
[32]
Lan, J.S.; Ding, Y.; Liu, Y.; Kang, P.; Hou, J-W.; Zhang, X-Y.; Xie, S-S.; Zhang, T. Design, synthesis and biological evaluation of novel coumarin-N-benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 48-59.
[33]
Jalili-Baleh, L.; Nadri, H.; Forootanfar, H.; Samzadeh-Kermani, A.; Kucukkilinc, T.T.; Ayazgok, B.; Rahimifard, M.; Baeeri, M.; Doostmohammadi, M.; Firoozpour, L.; Bukhari, S.N.A.; Abdollahi, M.; Ganjali, M.R.; Emami, S.; Khoobi, M.; Foroumadi, A. Novel 3-phenylcoumarin–lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer’s disease. Bioorg. Chem., 2018, 79, 223-234.
[34]
Yang, H.L.; Cai, P.; Liu, C-H.; Yang, X-L.; Li, F.; Wang, J.; Wu, J-J.; Wang, X-B.; Kong, L-Y. Design, synthesis and evaluation of coumarin-pargyline hybrids as novel dual inhibitors of monoamine oxidases and amyloid-b aggregation for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 138(14), 715-728.
[35]
Jiang, N.; Huang, Q.; Liu, J.; Liang, N.; Lim, Q.; Li, Q.; Xie, S-S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 146(12), 287-298.
[36]
Duan, Y.C.; Ma, Y.C.; Zhang, E.; Shi, X-J.; Wang, M-M.; Ye, X-W.; Liu, H-M. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur. J. Med. Chem., 2013, 62, 11-19.
[37]
Kallitsakis, M.G.; Carotti, A.; Catto, M.; Peperidou, A.; Hadjipavlou-Litina, D.J.; Litinas, K.E. Synthesis and biological evaluation of novel hybrid molecules containing purine, coumarin and isoxazoline or isoxazole moieties. TOMCJ, 2017, 11(16), 196-211.
[38]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[39]
Zhang, H.; Burrows, F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J. Mol. Med. , 2004, 82(8), 488-499.
[40]
Zhao, H.; Yan, B.; Peterson, L.B.; Blagg, B.S.J. 3-Arylcoumarin derivatives manifest anti-proliferative activity through Hsp90 inhibition. ACS Med. Chem. Lett., 2012, 3(4), 327-331.
[41]
Stefanachi, A.; Favia, A.D.; Nicolotti, O.; Leonetti, F.; Pisani, L.; Catto, M.; Zimmer, C.; Hartmann, R.W.; Carotti, A. Design, synthesis, and biological evaluation of imidazolyl derivatives of 4,7-disubstituted coumarins as aromatase inhibitors selective over 17-α-Hydroxylase/C17−20 Lyase. J. Med. Chem., 2011, 54(6), 1613-1625.
[42]
Chen, H.; Li, S.; Yao, Y.; Zhou, L.; Zhao, J.; Gu, Y.; Wang, K.; Li, X. Design, synthesis, and anti-tumor activities of novel triphenylethylene-coumarin hybrids, and their interactions with Ct-DNA. Bioorg. Med. Chem. Lett., 2013, 23(17), 4785-4789.
[43]
Zhao, L.; Yao, Y.; Li, S.; Lv, M.; Chen, H.; Li, X. Cytotoxicity and DNA binding property of triphenylethylene-coumarin hybrids with two amino side chains. Bioorg. Med. Chem. Lett., 2014, 24(3), 900-904.
[44]
Terzioglu, N.; Gürsoy, A. Synthesis and anticancer evaluation of some new hydrazone derivatives of 2,6-dimethylimidazo[2,1-b][1,3,4]thiadiazole-5-carbohydrazide. Eur. J. Med. Chem., 2003, 38(7), 781-786.
[45]
Ahn, B.Z.; Sok, D.E. Michael acceptors as a tool for anticancer drug design. Curr. Pharm. Design., 1996, 2(3), 247-262.
[46]
Elshemy, H.A.H.; Zaki, M.A. Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorg. Med. Chem., 2017, 25(3), 1066-1075.
[47]
Xiao, C.F.; Tao, L.Y.; Sun, H.Y.; Wei, W.; Chen, Y.; Fu, L.W.; Zou, Y. Design, synthesis and antitumor activity of a series of novel coumarin–stilbenes hybrids, the 3-arylcoumarins. Chinese. Chem. Lett., 2010, 21(11), 1295-1298.
[48]
Simoni, D.; Roberti, M.; Invidiata, F.P.; Aiello, E.; Aiello, S.; Marchetti, P.; Baruchello, R.; Eleopra, M.; Di Cristina, A.; Grimaudo, S.; Gebbia, N.; Crosta, L.; Dieli, F.; Tolomeo, M. Stilbene-based anticancer agents: Resveratrol analogues active toward HL60 leukemic cells with a non-specific phase mechanism. Bioorg. Med. Chem. Lett., 2006, 16(12), 3245-3248.
[49]
Belluti, F.; Fontana, G.; Dal Bo, L.; Carenini, N.; Giommarelli, C.; Zunino, F. Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: Identification of novel proapoptotic agents. Bioorg. Med. Chem., 2010, 18(10), 3543-3550.
[50]
Klayman, D.L. Qinghaosu (artemisinin): An antimalarial drug from China. Science, 1985, 228(4703), 1049-1055.
[51]
Maresca, A.; Temperini, C.; Pochet, L.; Masereel, B.; Scozzafava, A.; Supuran, C.T. Correction to deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J. Med. Chem., 2015, 58(14), 5689-5689.
[52]
Maresca, A.; Scozzafava, A.; Supuran, C.T. 7,8-Disubstituted- but not 6,7-disubstituted coumarins selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II in the low nanomolar/subnanomolar range. Bioorg. Med. Chem. Lett., 2010, 20(24), 7255-7258.
[53]
Maresca, A.; Supuran, C.T. Coumarins incorporating hydroxy- and chloro-moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorg. Med. Chem. Lett., 2010, 20(15), 4511-4514.
[54]
Yu, H.; Hou, Z.; Tian, Y.; Mou, Y.; Guo, C. Design, synthesis, cytotoxicity and mechanism of novel dihydroartemisinin-coumarin hybrids as potential anti-cancer agents. Eur. J. Med. Chem., 2018, 151, 434-449.
[55]
Budman, D.R. Review: Tubulin function, action of antitubulin drugs, and new drug development. Cancer Invest., 2005, 23(3), 264-273.
[56]
Singh, H.; Singh, J.V.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Nepali, K.; Bedi, P.M.S. Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg. Med. Chem. Lett., 2017, 27(17), 3974-3979.
[57]
Haider, S.; Alam, M.S.; Hamid, H. 1,3,4-Thiadiazoles: A potent multi targeted pharmacological scaffold. Eur. J. Med. Chem., 2015, 92, 156-177.
[58]
Kamath, P.R.; Sunil, D.; Joseph, M.M.; Salam, A.A.A.; Sreelekha, T.T. Indole-coumarin-thiadiazole hybrids: An appraisal of their IMF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur. J. Med. Chem., 2017, 136, 442-451.
[59]
Hu, C.; Ma, S. Recent development of lipoxygenase inhibitors as anti-inflammatory agents. Med. Chem. Comm., 2018, 9(2), 212-225.
[60]
Steinbach, G.; Lynch, P.M.; Phillips, R.K.S.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; Su, L-K.; Levin, B.; Godio, L.; Patterson, S.; Rodriguez-Bigas, M.A.; Jester, S.L.; King, K.L.; Schumacher, M.; Abbruzzese, J.; DuBois, R.N.; Hittelman, W.N.; Zimmerman, S.; Sherman, J.W.; Kelloff, G. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in Familial Adenomatous Polyposis. New. Engl. J. Med., 2000, 342(26), 1946-1952.
[61]
Abouzid, K.A.M.; Khalil, N.A.; Ahmed, E.M.; El-Latif, H.A.A.; El-Araby, M.E. Structure-based molecular design, synthesis, and in vivo anti-inflammatory activity of pyridazinone derivatives as nonclassic COX-2 inhibitors. Med. Chem. Res., 2010, 19(7), 629-642.
[62]
Shen, F.Q.; Wang, Z.C.; Wu, S.Y.; Ren, S.Z.; Man, R.J.; Wang, B.Z.; Zhu, H.L. Synthesis of novel hybrids of pyrazole and coumarin as dual inhibitors of COX-2 and 5-LOX. Bioorg. Med. Chem. Lett., 2017, 27(16), 3653-3660.
[63]
Sarrouilhe, D.; Lalégerie, P.; Baudry, M. Endogenous phosphorylation and dephosphorylation of rat liver plasma membrane proteins, suggesting a 18 kDa phosphoprotein as a potential substrate for alkaline phosphatase. Biochim. Biophys. Acta, 1992, 1118(2), 116-122.
[64]
Li, M.; Ding, W.; Baruah, B.; Crans, D.C.; Wang, R. Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium (IV). J. Inorg. Biochem., 2008, 102(10), 1846-1853.
[65]
Mundy, G.R. Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat. Rev. Cancer, 2002, 2, 584-593.
[66]
Romagnoli, R.; Baraldi, P.G.; Salvador, M.K.; Camacho, M.E.; Preti, D.; Tabrizi, M.A.; Bassetto, M.; Brancale, A.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. Synthesis and biological evaluation of 2-substituted-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl thiazoles as anticancer agents. Bioorg. Med. Chem., 2012, 20(24), 7083-7094.
[67]
Ibrar, A.; Zaib, S.; Khan, I.; Jabeen, F.; Iqbal, J.; Saeed, A. Facile and expedient access to bis-coumarin–iminothiazole hybrids by molecular hybridization approach: Synthesis, molecular modelling and assessment of alkaline phosphatase inhibition, anticancer and antileishmanial potential. RSC Adv, 2015, 5(109), 89919-89931.
[68]
Sun, J.S.; Li, Y.Y.; Liu, M.H.; Sheu, S.Y. Effects of coumestrol on neonatal and adult mice osteoblasts activities. J. Biomed. Mater. Res. A, 2006, 81A(1), 214-223.
[69]
Tang, C.H.; Yang, R.S.; Chien, M.Y.; Chen, C.C.; Fu, W.M. Enhancement of bone morphogenetic protein-2 expression and bone formation by coumarin derivatives via p38 and ERK-dependent pathway in osteoblasts. Eur. J. Pharmacol., 2008, 579(1-3), 40-49.
[70]
Ming, L.G.; Zhou, J.; Cheng, G.Z.; Ma, H.P.; Chen, K.M. Osthol, a coumarin isolated from common Cnidium fruit, enhances the differentiation and maturation of osteoblasts in vitro. Pharmacology, 2011, 88, 11.
[71]
Allen, J.G.; Fotsch, C.; Babij, P. Emerging targets in osteoporosis disease modification. J. Med. Chem., 2010, 53(11), 4332-4353.
[72]
Sashidhara, K.V.; Modukuri, R.K.; Choudhary, D.; Rao, K.B.; Kumar, M.; Khedgikar, V.; Trivedi, R. Synthesis and evaluation of new coumarin-pyridine hybrids with promising anti-osteoporotic activities. Eur. J. Med. Chem., 2013, 70, 802-810.
[73]
Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone–coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem., 2014, 85, 65-76.
[74]
Bisi, A.; Cappadone, C.; Rampa, A.; Farruggia, G.; Sargenti, A.; Belluti, F.; Di Martino, R.M.C.; Malucelli, E.; Meluzzi, A.; Iotti, S.; Gobbi, S. Coumarin derivatives as potential antitumor agents: Growth inhibition, apoptosis induction and multidrug resistance reverting activity. Eur. J. Med. Chem., 2017, 127, 577-585.
[75]
Mokale, S.N.; Begum, A.; Sakle, N.S.; Shelke, V.R.; Bhavale, S.A. Design, synthesis and anticancer screening of 3-(3-(substituted phenyl) acryloyl)-2H-chromen-2ones as selective anti-breast cancer agent. Biomed. Pharmacother., 2017, 89, 966-972.
[76]
Guo, Y.; Wang, Y.; Li, H.; Wang, K.; Wan, Q.; Li, J.; Zhou, Y.; Chen, Y. Novel nitric oxide donors of phenylsulfonylfuroxan and 3-benzyl coumarin derivatives as potent antitumor agents. ACS Med. Chem. Lett., 2018, 9(5), 502-506.
[77]
Huerta, S. Nitric oxide for cancer therapy. Future Sci. OA, 2015, 1(1), FSO44.
[78]
Patil, P.O.; Bari, S.B.; Firke, S.D.; Deshmukh, P.K. Donda, S.T.; Patil, D.A. A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorg. Med. Chem., 2013, 21(9), 17.
[79]
Dutta, A.K.G. B.; Gogoi, S.; Ali, S.; Zhen, J.; Reith, M. The novel trisubstituted pyran derivative D-142 has triple monoamine reuptake inhibitory activity and exerts potent antidepressant-like activity in rodents. Eur. J. Pharmacol., 2011, 671(1-3), 39-44.
[80]
Sashidhara, K.V.; Modukuri, R.K.; Singh, S.; Rao, K.B.; Teja, G.A.; Gupta, S.; Shukla, S. Design and synthesis of new series of coumarin-aminopyran derivatives possessing potential anti-depressant-like activity. Bioorg. Med. Chem. Lett., 2015, 25(2), 337-341.
[81]
Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and biological evaluation of novel coumarin derivatives with a 7-azomethine linkage. Bioorg. Med. Chem. Lett., 2004, 14(3), 611-614.
[82]
Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and antiinflammatory activity of coumarin derivatives. J. Med. Chem., 2005, 48(20), 6400-6408.
[83]
Sashidhara, K.V.; Kumar, M.; Modukuri, R.K.; Sonkar, R.; Bhatia, G.; Khanna, A.K.; Rai, S.; Shukla, R. Synthesis and anti-inflammatory activity of novel biscoumarin-chalcone hybrids. Bioorg. Med. Chem. Lett., 2011, 20(24), 7205-7211.
[84]
Melagraki, G.; Afantitis, A.; Igglessi-Markopoulou, O.; Detsi, A.; Koufaki, M.; Kontogiorgis, C.; Hadjipavlou-Litina, D.J. Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts. Eur. J. Med. Chem., 2009, 44(7), 3020-3026.
[85]
Zygmunt, M.; Dudek, M.; Bilska-Wilkosz, A.; Bednarski, M.; Mogilski, S.; Knutelska, J.; Sapa, J. Anti-inflammatory activity of lipoic acid in mice peritonitis model. Acta Pol. Pharm., 2013, 70(5), 899-904.
[86]
Reddy, D.S.; Hosamani, K.M.; Devarajegowda, H.C. Design, synthesis of benzocoumarin-pyrimidine hybrids as novel class of antitubercular agents, their DNA cleavage and X-ray studies. Eur. J. Med. Chem., 2015, 101, 705-715.
[87]
Negi, B.; Rawat, D.S. Antituberculosis drug research: A critical overview. Med. Res. Rev., 2013, 33(4), 693-764.
[88]
Naik, R.J.; Kulkarni, M.V.; Sreedhara, R.P.K.; Nayak, P.G. Click chemistry approach for Bis-Chromenyl Triazole hybrids and their antitubercular activity. Chem. Biol. Drug Des., 2012, 80(4), 516-523.
[89]
Anand, A.; Naik, R.J.; Revankar, H.M.; Kulkarni, M.V.; Dixit, S.R.; Joshi, S.D. A click chemistry approach for the synthesis of mono and bis aryloxy linked coumarinyl triazoles as anti-tubercular agents. Eur. J. Med. Chem., 2015, 105, 194-207.
[90]
Ashok, D.; Gundu, S.; Aamate, V.K.; Devulapally, M.G.; Bathini, R.; Manga, V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J. Mol. Struct., 2018, 1157, 312-321.
[91]
Voynikov, Y.; Valcheva, V.; Momekov, G.; Peikov, P.; Stavrakov, G. Theophylline-7-acetic acid derivatives with amino acids as anti-tuberculosis agents. Bioorg. Med. Chem. Lett., 2014, 24(14), 3043-3045.
[92]
Bakkestuen, A.K.; Gundersen, L-L.; Utenova, B.T. Synthesis, biological activity, and SAR of antimycobacterial 9-aryl-, 9-arylsulfonyl-, and 9-benzyl-6-(2-furyl)purines. J. Med. Chem., 2005, 48(7), 2710-2723.
[93]
Mangasuli, S.N.; Hosamani, K.M.; Devarajegowda, H.C.; Kurjogi, M.M.; Joshi, S.D. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents. Eur. J. Med. Chem., 2018, 146, 747-756.
[94]
Gao, T.; Zeng, Z.; Wang, G.; Sun, S.; Liu, Y. Synthesis of ethylene tethered isatin-coumarin hybrids and evaluation of their in vitro antimycobacterial activities. J. Heterocyclic. Chem., 2018, 55(6), 1484-1488.
[95]
Liu, B.; Hu, G.; Tang, X.; Wang, G.; Xu, Z. 1H-1,2,3-triazole-tethered isatin–coumarin hybrids: Design, synthesis and in vitro anti-mycobacterial evaluation. J. Heterocyclic. Chem., 2018, 55(3), 775-780.
[96]
Yusufzai, S.K.; Osman, H.; Khan, M.S.; Razik, B.M.A.; Ezzat, M.O.; Mohamad, S.; Gansau, J.A.; Parumasivan, T. 4-Thiazoli-dinone coumarin derivatives as two-component NS2B/NS3 DENV flavivirus serine protease inhibitors: Synthesis, molecular docking, biological evaluation and structure-activity relationship studies. Chem. Cent. J., 2018, 12(1), 16.
[97]
Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem., 2016, 123, 236-255.
[98]
Arshad, A.; Osman, H.; Bagley, M.C.; Lam, C.K.; Mohamad, S.; Zahariluddin, A.S.M. Synthesis and antimicrobial properties of some new thiazolyl coumarin derivatives. Eur. J. Med. Chem., 2011, 46(9), 3788-3794.
[99]
Osman, H.; Yusufzai, S.K.; Khan, M.S.; Abd Razik, B.M.; Sulaiman, O.; Mohamad, S.; Gansau, J.A.; Ezzat, M.O.; Parumasivam, T.; Hassan, M.Z. New thiazolyl-coumarin hybrids: Design, synthesis, characterization, X-ray crystal structure, antibacterial and antiviral evaluation. J. Mol. Struct., 2018, 1166, 147-154.
[100]
Bassetto, M.; De Burghgraeve, T.; Delang, L.; Massarotti, A.; Coluccia, A.; Zonta, N.; Gatti, V.; Colombano, G.; Sorba, G.; Silvestri, R.; Tron, G.C.; Neyts, J.; Leyssen, P.; Brancale, A. Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antivir Res., 2013, 98(1), 12-18.
[101]
Scholte, F.E.M.; Tas, A.; Albulescu, I.C.; Žusinaite, E.; Merits, A.; Snijder, E.J.; van Hemert, M.J. Stress granule components G3BP1 and G3BP2 play a proviral role early in Chikungunya virus replication. J. Virol., 2015, 89(8), 4457-4469.
[102]
Wang, X.; Zhang, J.; Huang, Y.; Wang, R.; Zhang, L.; Qiao, K.; Li, L.; Liu, C.; Ouyang, Y.; Xu, W.; Zhang, Z.; Zhang, L.; Shao, Y.; Jiang, S.; Ma, L.; Liu, J. Design, Synthesis, and Biological Evaluation of 1-[(2-Benzyloxyl/alkoxyl)methyl]-5-halo-6-aryluracils as potent HIV-1 non-nucleoside reverse transcriptase inhibitors with an improved drug resistance profile. J. Med. Chem., 2012, 55(5), 2242-2250.
[103]
Kirkiacharian, S.; Thuy, D.T.; Sicsic, S.; Bakhchinian, R.; Kurkjian, R.; Tonnaire, T. Structure–activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease inhibitors. Il Farmaco, 2002, 57(9), 703-708.
[104]
Hwu, J.R.; Lin, S-Y.; Tsay, S-C.; De Clercq, E.; Leyssen, P.; Neyts, J. Coumarin−purine ribofuranoside conjugates as new agents against hepatitis C virus. J. Med. Chem., 2011, 54(7), 2114-2126.
[105]
Hwu, J.R.; Lin, S-Y.; Tsay, S-C.; Singha, R.; Pal, B.K.; Leyssen, P.; Neyts, J. Development of new sulfur-containing conjugated compounds as anti-HCV agents. Phosphorus Sulfur, 2011, 186(5), 1144-1152.
[106]
Shenai, B.R.; Lee, B.J.; Alvarez-Hernandez, A.; Chong, P.Y.; Emal, C.D.; Neitz, R.J.; Roush, W.R.; Rosenthal, P.J. Structure-activity relationships for inhibition of cysteine protease activity and development of Plasmodium falciparum by peptidyl vinyl sulfones. Antimicrob. Agents Ch., 2003, 47(1), 154-160.
[107]
Hwu, J.R.; Kapoor, M.; Tsay, S-C.; Lin, C-C.; Hwang, K.C.; Horng, J-C.; Chen, I.C.; Shieh, F-K.; Leyssen, P.; Neyts, J. Benzouracil–coumarin–arene conjugates as inhibiting agents for chikungunya virus. Antivir Res., 2015, 118, 103-109.
[108]
Chavan, R.R.; Hosamani, K.M. Microwave-assisted synthesis, computational studies and antibacterial/ anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. Roy. Soc. Open Sci., 2018, 5(5) 172435
[109]
Holiyachi, M.; Samundeeswari, S.; Chougala, B.M.; Naik, N.S.; Madar, J.; Shastri, L.A.; Joshi, S.D.; Dixit, S.R.; Dodamani, S.; Jalalpure, S.; Sunagar, V.A. Design and synthesis of coumarin–imidazole hybrid and phenyl-imidazoloacrylates as potent antimicrobial and antiinflammatory agents. Monatsh. Chem., 2018, 149(3), 595-609.
[110]
Singh, L.R.; Avula, S.R.; Raj, S.; Srivastava, A.; Palnati, G.R.; Tripathi, C.K.M.; Pasupuleti, M.; Sashidhara, K.V. Coumarin–benzimidazole hybrids as a potent antimicrobial agent: Synthesis and biological elevation. J. Antibiot. , 2017, 70, 954-961.
[111]
Zhao, X.L.; Chen, L.F.; Wang, Z. Aesculin modulates bone metabolism by suppressing receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and transduction signals. Biochem. Bioph. Res. Commun., 2017, 488(1), 15-21.
[112]
Baek, J.M.; Park, S.H.; Cheon, Y.H.; Ahn, S-J.; Lee, M.S.; Oh, J.; Kim, J-Y. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway. Biochem. Bioph. Res. Co., 2015, 461(2), 334-341.
[113]
Boddu, R.K.; Thummuri, D.; Naidu, V.G.M.; Sistla, R.; Uppuluri, V.M. Synthesis of some novel orcinol based coumarin triazole hybrids with capabilities to inhibit RANKL-induced osteoclastogenesis through NF-κB signaling pathway. Bioorg. Chem., 2018, 78(9), 94-102.
[114]
Margheri, F.; Ceruso, M.; Carta, F.; Laurenzana, A.; Maggi, L.; Lazzeri, S.; Simonini, G.; Annunziato, F.; Del Rosso, M.; Supuran, C.T.; Cimaz, R. Overexpression of the transmembrane carbonic anhydrase isoforms IX ad XII in the inflamed synovium. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 60-63.
[115]
Bua, S.; Mannelli, L.D.C.; Vullo, D.; Ghelardini, C.; Bartolucci, G.; Scozzafava, A.; Supuran, C.T.; Carta, F. Design and synthesis of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs–CAIs) for the treatment of Rheumatoid Arthritis. J. Med. Chem., 2017, 60(3), 12.
[116]
Kato, A.; Hayashi, E.; Miyauchi, S.; Adachi, I.; Imahori, T.; Natori, Y.; Yoshimura, Y.; Nash, R.J.; Shimaoka, H.; Nakagome, I.; Koseki, J.; Hirono, S.; Takahata, H. α-1-C-Butyl-1,4-dideoxy-1,4-imino-l-arabinitol as a Second-Generation iminosugar-based oral α-glucosidase inhibitor for improving postprandial hyperglycemia. J. Med. Chem., 2012, 55(23), 10347-10362.
[117]
Ghani, U. Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. Eur. J. Med. Chem., 2015, 103(30), 133-162.
[118]
Kazmi, M.; Zaib, S.; Ibrar, A.; Amjad, S.T.; Shafique, Z.; Mehsud, S.; Saeed, A.; Iqbal, J.; Khan, I. A new entry into the portfolio of a-glucosidase inhibitors as potent therapeutics for type 2 diabetes: Design, bioevaluation and one-pot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. Bioorg. Chem., 2018, 77(13), 190-202.
[119]
Taha, M.; Ismail, N.H.; Imran, S.; Wadood, A.; Rahim, F.; Saad, A.M.; Khan, K.M.; Nasir, A. Synthesis, molecular docking and α-glucosidase inhibition of 5-aryl-2-(6′-nitrobenzofuran-2′-yl)-1,3,4-oxadiazoles. Bioorg. Chem., 2016, 66(7), 117-123.
[120]
Zhao, D.G.; Zhou, A.Y.; Du, Z.; Zhang, Y.; Zhang, K.; Ma, Y-Y. Coumarins with α-glucosidase and α-amylase inhibitory activities from the flower of Edgeworthia gardneri. Fitoterapia, 2015, 107(6), 122-127.
[121]
Kobayashi, Y.; Nakano, Y.; Kizaki, M.; Hoskikuma, K.; Yokoo, Y.; Kamiya, T. Capsaicin-like anti-obese activities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptor agonist. Planta Medica., 2001, 67(7), 628-633.
[122]
Alapati, V.; Noolvi, M.N.; Manjula, S.N.; Pallavi, K.J.; Patel, H.M.; Tippeswamy, B.S.; Satyanarayana, S.V. In vivo anti-tumour activity of novel Quinazoline derivatives. Eur. Rev. Med. Pharmaco., 2012, 16(13), 1753-1764.
[123]
Mentese, E.; Karaali, N.; Akyuz, G.; Yilmaz, F.; Ulker, S.; Kahveci, B. Synthesis and evaluation of α-glucosidase and pancreatic lipase inhibition by quinazolinone-coumarin hybrids. Chem. Heterocycl. Compd., 2016, 52(12), 1017-1024.
[124]
Kim, D.H.; Jung, H.A.; Sohn, H.S.; Kim, J.W.; Choi, J.S. Potential of Icariin metabolites from Epimedium koreanum Nakai as antidiabetic therapeutic agents. Molecules, 2017, 22(6) E986
[125]
Sun, H.; Song, X.; Tao, Y.; Li, M.; Yang, K.; Zheng, H.; Jin, Z.; Dodd, R.H.; Pan, G.; Lu, K.; Yu, P. Synthesis & α-glucosidase inhibitory & glucose consumption-promoting activities of flavonoid–coumarin hybrids. Future Med. Chem., 2018, 10(9), 1055-1066.
[126]
Poulsen, S.A.; Quinn, R.J. Adenosine receptors: New opportunities for future drugs. Bioorg. Med. Chem., 1998, 6, 619-641.
[127]
Fredholm, B.B.; Arslan, G.; Halldner, L.; Kull, B.; Schulte, G.; Wasserman, W. Structure and function of adenosine receptors and their genes. N-S Arch. Pharmacol., 2000, 362(4-5), 364-374.
[128]
Feoktistov, I.; Wells, J.N.; Biaggioni, I. Adenosine A2B receptors as therapeutic targets. Drug Develop. Res., 1998, 45(3-4), 198-206.
[129]
Gessi, S.; Cattabriga, E.; Avitabile, A.; Gafa, R.; Lanza, G.; Cavazzini, L.; Bianchi, N.; Gambari, R.; Feo, C.; Liboni, A.; Gullini, S.; Leung, E.; Mac-Lennan, S.; Borea, P.A. Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin. Cancer Res., 2004, 10(17), 5895-5901.
[130]
Jacobson, K.A.; Gao, Z.G. Adenosine receptors as therapeutic targets. Nat. Rev. Drug Discov., 2006, 5(3), 247-264.
[131]
Vazquez-Rodriguez, S.; Matos, M.J.; Santana, L.; Uriarte, E.; Borges, F.; Kachler, S.; Klotz, K-N. Chalcone-based derivatives as new scaffolds for hA3 adenosine receptor antagonists. J. Pharm. Pharmacol., 2013, 65, 697-703.
[132]
Alacron de la Lastra, C.; Villegas, I. Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications. Mol. Nutr. Food Res., 2005, 49(5), 405-430.
[133]
Vilar, S.; Quezada, E.; Santana, L.; Uriarte, E.; Yanez, M.; Fraiz, N.; Alcaide, C.; Cano, E.; Orallo, F. Design, synthesis, and vasorelaxant and platelet antiaggregatory activities of coumarin–resveratrol hybrids. Bioorg. Med. Chem. Lett., 2006, 16(2), 257-261.
[134]
Enseleit, F.; Lüscher, T.F.; Ruschitzka, F. Darusentan, a selective endothelin a receptor antagonist, for the oral treatment of resistant hypertension. Ther. Adv. Cardiovasc. Dis., 2010, 4(4), 231-240.
[135]
Amin, K.M.; Awadalla, F.M.; Eissa, A.A.; Abou-Seri, S.M.; Hassan, G.S. Design, synthesis and vasorelaxant evaluation of novel coumarin–pyrimidine hybrids. Bioorg. Med. Chem., 2011, 19(20), 6087-6097.
[136]
Lee, M.J.; Chou, F.P.; Tseng, T.H.; Hsieh, M.H.; Lin, M.C.; Wang, C.J. Hibiscus protocatechuic acid or esculetin can inhibit oxidative LDL induced by either copper ion or nitric oxide donor. J. Agr. Food Chem., 2002, 50(7), 2130-2136.
[137]
Quan, H.Y.; Baek, N.I.; Chung, S.H. Licochalcone a prevents adipocyte differentiation and lipogenesis via suppression of peroxisome proliferator-activated receptor γ and sterol regulatory element-binding protein pathways. J. Agr. Food Chem., 2012, 60(20), 5112-5120.
[138]
Sashidhara, K.V.; Palnati, G.R.; Sonkar, R.; Avula, S.R.; Awasthi, C.; Bhatia, G. Coumarin chalcone fibrates: A new structural class of lipid lowering agents. Eur. J. Med. Chem., 2013, 64, 422-431.
[139]
Canner, P.L.; Berge, K.G.; Wenger, N.K.; Stamler, J.; Friedman, L.; Prineas, R.J.; Friedewald, W. Fifteen year mortality in coronary drug project patients: Long-term benefit with niacin. J. Am. Coll. Cardiol., 1986, 8(6), 1245-1255.
[140]
Wise, A.; Foord, S.M.; Fraser, N.J.; Barnes, A.A.; Elshourbagy, N.; Eilert, M.; Ignar, D.M.; Murdock, P.R.; Steplewski, K.; Green, A.; Brown, A.J.; Dowell, S.J.; Szekeres, P.G.; Hassall, D.G.; Marshall, F.H.; Wilson, S.; Pike, N.B. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem., 2003, 278(11), 9869-9874.
[141]
Qin, J.; Rao, A.; Chen, X.; Zhu, X.; Liu, Z.; Huang, X.; Degrado, S.; Huang, Y.; Xiao, D.; Aslanian, R.; Cheewatrakoolpong, B.; Zhang, H.; Greenfeder, S.; Farley, C.; Cook, J.; Kurowski, S.; Li, Q.; van Heek, M.; Chintala, M.; Wang, G.; Hsieh, Y.; Li, F.; Palani, A. Discovery of a potent nicotinic acid receptor agonist for the treatment of dyslipidemia. ACS Med. Chem. Lett., 2011, 2(2), 171-176.
[142]
Singh, L.R.; Kumar, A.; Upadhyay, A.; Gupta, S.; Palanati, G.R.; Sikka, K.; Siddiqi, M.I.; Yadav, P.N.; Sashidhara, K.V. Discovery of coumarin-dihydroquinazolinone analogs as niacin receptor 1 agonist with in-vivo anti-obesity efficacy. Eur. J. Med. Chem., 2018, 152, 208-222.
[143]
del Marmol, V.; Beermann, F. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett., 1996, 381(3), 165-168.
[144]
Asanuma, M.; Miyazaki, I.; Oqawa, N. Dopamine- or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox. Res., 2003, 5(3), 165-176.
[145]
Likhitwitayawuid, K. Stilbenes with tyrosinase inhibitory activity. Curr. Sci. India, 2008, 94(1), 9.
[146]
Fais, A.; Corda, M.; Era, B.; Fadda, M.B.; Matos, M.J.; Quezada, E.; Santana, L.; Picciau, C.; Podda, G.; Delogu, G. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids. Molecules, 2009, 14(7), 2514-2520.