Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Thoughtful Insights into the Therapeutic Armamentarium of Chalcones: 10 Years of Glorious Journey

Author(s): Swati Rathore, Shweta Mishra, Debarshi K. Mahapatra, Shailendra Patil and Asmita G. Patil*

Volume 16, Issue 6, 2020

Page: [747 - 808] Pages: 62

DOI: 10.2174/1573407215666190411150734

Price: $65

Abstract

Background: Naturally occurring chalcones afford diverse pharmacological activities such as anticancer, anti-malarial, anti-inflammatory, anti-tubercular, anti-hypertensive, anti-arrhythmic, antidiabetic, anti-angiogenic, anti-obesity, antiplatelet, anti-oxidant, hypolipidemic and anti-gout. They are frequently being used by the various researchers to design and develop new synthetic chalcones and many novel hybrid analogs as bioactive drugs. Many of these drugs are hybrid molecules, which are designed through molecular hybridization theory, and have displayed multiple pharmacological and medicinal aspects. This multi-effective feature of these hybrid derivatives makes them efficient and ideal drug entities for the treatment of various dreadful diseases.

Methods: A structured search of published research literature from recognized standard medical databases such as PubMed, Google Scholar, Google Patents, Scopus, etc., over the defined period of 10 years (January 2009 to December 2018) have been performed. Various reported heterocyclic chalcone hybrids, their synthesis methods, plausible mechanism(s) of action(s), and probable structure-activity relationships for the therapeutic applications in cancer, malaria, tuberculosis, leishmaniasis, inflammation, diabetes, microbial infection, and cardiovascular diseases remained the centre for attraction of this article.

Results: The present review article focuses on chalcone hybrids with different heterocyclic moieties and categorizing them on the basis of their pharmacology and therapeutic significance in the last ten years and has proposed their structure-activity relationships.

Conclusion: Chalcone and their hybrids have largely been targeted for their anticancer, anti-malarial, anti-inflammatory, anti-tubercular, antileishmaniasis, and anti-microbial activity. This comprehensive study may assist the medicinal chemist to design and develop innovative chalcone hybrids with significant therapeutic activity.

Keywords: Chalcone, scaffold, heterocyclic, pharmacological, natural, chemistry.

Graphical Abstract

[1]
Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225.
[http://dx.doi.org/10.2174/092986712803414132] [PMID: 22320299]
[2]
Gaonkar, S.L.; Vignesh, U.N. Res. Chem. Int., 2017, 43, 6043-6077.
[http://dx.doi.org/10.1007/s11164-017-2977-5]
[3]
Lawrence, N.J.; Patterson, R.P.; Ooi, L.L.; Cook, D.; Ducki, S. Effects of alpha-substitutions on structure and biological activity of anticancer chalcones. Bioorg. Med. Chem. Lett., 2006, 16(22), 5844-5848.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.065] [PMID: 16949281]
[4]
Patil, C.B.; Mahajan, S.K.; Katti, S.A. J. Pharm. Sci. Res., 2009, 1, 11.
[5]
Díaz-Tielas, C.; Graña, E.; Reigosa, M.J.; Sánchez-Moreiras, A.M. Planta Daninha, 2016, 34, 607-616.
[http://dx.doi.org/10.1590/s0100-83582016340300022]
[6]
Katsori, A.M.; Hadjipavlou-Litina, D. Recent progress in therapeutic applications of chalcones. Expert Opin. Ther. Pat., 2011, 21(10), 1575-1596.
[http://dx.doi.org/10.1517/13543776.2011.596529] [PMID: 21711087]
[7]
Sharma, V.; Kumar, V.; Kumar, P. Heterocyclic chalcone analogues as potential anticancer agents. Anticancer. Agents Med. Chem., 2013, 13(3), 422-432.
[http://dx.doi.org/10.2174/187152013804910424] [PMID: 22721390]
[8]
Syahri, J.; Yuanita, E.; Nurohmah, B.A.; Armunanto, R.; Purwono, B. Asian Pac. J. Trop. Biomed., 2017, 7, 675-679.
[http://dx.doi.org/10.1016/j.apjtb.2017.07.004]
[9]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem., 2017, 17(28), 3146-3169.
[http://dx.doi.org/10.2174/1568026617666170914160446] [PMID: 28914193]
[10]
Mangasuli, S.N.; Hosamani, K.M.; Devarajegowda, H.C.; Kurjogi, M.M.; Joshi, S.D. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents. Eur. J. Med. Chem., 2018, 146, 747-756.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.025] [PMID: 29407993]
[11]
Mahapatra, D.K.; Bharti, S.K. Therapeutic potential of chalcones as cardiovascular agents. Life Sci., 2016, 148, 154-172.
[http://dx.doi.org/10.1016/j.lfs.2016.02.048] [PMID: 26876916]
[12]
Yarishkin, O.V.; Ryu, H.W.; Park, J.Y.; Yang, M.S.; Hong, S.G.; Park, K.H. Sulfonate chalcone as new class voltage-dependent K+ channel blocker. Bioorg. Med. Chem. Lett., 2008, 18(1), 137-140.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.114] [PMID: 18032041]
[13]
Mahapatra, D.K.; Asati, V.; Bharti, S.K. Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. Eur. J. Med. Chem., 2015, 92, 839-865.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.051] [PMID: 25638569]
[14]
Nuti, E.; Bassani, B.; Camodeca, C.; Rosalia, L.; Cantelmo, A.; Gallo, C.; Baci, D.; Bruno, A.; Orlandini, E.; Nencetti, S.; Noonan, D.M.; Albini, A.; Rossello, A. Synthesis and antiangiogenic activity study of new hop chalcone Xanthohumol analogues. Eur. J. Med. Chem., 2017, 138, 890-899.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.024] [PMID: 28750311]
[15]
Birari, R.B.; Gupta, S.; Mohan, C.G.; Bhutani, K.K. Antiobesity and lipid lowering effects of Glycyrrhiza chalcones: Experimental and computational studies. Phytomedicine, 2011, 18(8-9), 795-801.
[http://dx.doi.org/10.1016/j.phymed.2011.01.002] [PMID: 21315569]
[16]
Ohkura, N.; Ohnishi, K.; Taniguchi, M.; Nakayama, A.; Usuba, Y.; Fujita, M.; Fujii, A.; Ishibashi, K.; Baba, K.; Atsumi, G. Anti-platelet effects of chalcones from Angelica keiskei Koidzumi (Ashitaba) in vivo. Pharmazie, 2016, 71(11), 651-654.
[http://dx.doi.org/10.1691/ph.2016.6678] [PMID: 29441970]
[17]
Reddy, L.; Rajkumar, T.; Mrudula, G.L.; Reddy, Y.S.R. Orient. J. Chem., 2015, 31, 189-199.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.23]
[18]
Sashidhara, K.V.; Dodda, R.P.; Sonkar, R.; Palnati, G.R.; Bhatia, G. Design and synthesis of novel indole-chalcone fibrates as lipid lowering agents. Eur. J. Med. Chem., 2014, 81, 499-509.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.085] [PMID: 24871900]
[19]
Kim, D.W.; Curtis-Long, M.J.; Yuk, H.J.; Wang, Y.; Song, Y.H.; Jeong, S.H.; Park, K.H. Quantitative analysis of phenolic metabolites from different parts of Angelica keiskei by HPLC-ESI MS/MS and their xanthine oxidase inhibition. Food Chem., 2014, 153, 20-27.
[http://dx.doi.org/10.1016/j.foodchem.2013.12.026] [PMID: 24491695]
[20]
Rizvi, S.U.F.; Siddiqui, H.L.; Johns, M.; Detorio, M.; Schinazi, R.F. Anti-HIV-1 and cytotoxicity studies of piperidyl-thienyl chalcones and their 2-pyrazoline derivatives. Med. Chem. Res., 2012, 21, 3741-3749.
[http://dx.doi.org/10.1007/s00044-011-9912-x]
[21]
Yamamoto, T.; Yoshimura, M.; Yamaguchi, F.; Kouchi, T.; Tsuji, R.; Saito, M.; Obata, A.; Kikuchi, M. Anti-allergic activity of naringenin chalcone from a tomato skin extract. Biosci. Biotechnol. Biochem., 2004, 68(8), 1706-1711.
[http://dx.doi.org/10.1271/bbb.68.1706] [PMID: 15322354]
[22]
Sashidhara, K.V.; Rao, K.B.; Kushwaha, V.; Modukuri, R.K.; Verma, R.; Murthy, P.K. Synthesis and antifilarial activity of chalcone-thiazole derivatives against a human lymphatic filarial parasite, Brugia malayi. Eur. J. Med. Chem., 2014, 81, 473-480.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.029] [PMID: 24863844]
[23]
Roman, B.I.; De Ryck, T.; Dierickx, L.; Vanhoecke, B.W.; Katritzky, A.R.; Bracke, M. Stevens. C.V. Exploration of the SAR of anti-invasive chalcones: Synthesis and biological evaluation of conformationally restricted analogues. Bioorg. Med. Chem., 2012, 20, 4812-4819.
[http://dx.doi.org/10.1016/j.bmc.2012.05.069] [PMID: 22743088]
[24]
Kar, S.; Mishra, R.K.; Pathak, A.; Dikshit, A.; Golakoti, N.R.J. In silico modeling and synthesis of phenyl and thienyl analogs of chalcones for potential leads as anti-bacterial agents. J. Mol. Str., 2018, 1156, 433-440.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.002]
[25]
Hayat, F.; Moseley, E.; Salahuddin, A.; Van Zyl, R.L.; Azam, A. Antiprotozoal activity of chloroquinoline based chalcones. Eur. J. Med. Chem., 2011, 46(5), 1897-1905.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.004] [PMID: 21377771]
[26]
Ahmad, A.; Wani, M.Y.; Patel, M.; Sobral, A.J.F.N.; Duse, A.G.; Aqlan, F.M.; Al-Bogami, A.S. Synergistic antifungal effect of cyclized chalcone derivatives and fluconazole against Candida albicans. MedChemComm, 2017, 8(12), 2195-2207.
[http://dx.doi.org/10.1039/C7MD00440K] [PMID: 30108736]
[27]
Le Bail, J.C.; Pouget, C.; Fagnere, C.; Basly, J.P.; Chulia, A.J.; Habrioux, G. Chalcones are potent inhibitors of aromatase and 17beta-hydroxysteroid dehydrogenase activities. Life Sci., 2001, 68(7), 751-761.
[http://dx.doi.org/10.1016/S0024-3205(00)00974-7] [PMID: 11205867]
[28]
Sashidhara, K.V.; Avula, S.R.; Mishra, V.; Palnati, G.R.; Singh, L.R.; Singh, N.; Chhonker, Y.S.; Swami, P.; Bhatta, R.S.; Palit, G. Identification of quinoline-chalcone hybrids as potential antiulcer agents. Eur. J. Med. Chem., 2015, 89, 638-653.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.068] [PMID: 25462272]
[29]
Luo, Y.; Song, R.; Li, Y.; Zhang, S.; Liu, Z.J.; Fu, J.; Zhu, H.L. Design, synthesis, and biological evaluation of chalcone oxime derivatives as potential immunosuppressive agents. Bioorg. Med. Chem. Lett., 2012, 22(9), 3039-3043.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.080] [PMID: 22494616]
[30]
Cho, S.; Kim, S.; Jin, Z.; Yang, H.; Han, D.; Baek, N.I.; Jo, J.; Cho, C.W.; Park, J.H.; Shimizu, M.; Jin, Y.H. Isoliquiritigenin, a chalcone compound, is a positive allosteric modulator of GABAA receptors and shows hypnotic effects. Biochem. Biophys. Res. Commun., 2011, 413(4), 637-642.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.026] [PMID: 21945440]
[31]
Jamal, H.; Ansari, W.H.; Rizvi, S.J. Evaluation of chalcones-A flavonoid subclass, for, their anxiolytic effects in rats using elevated plus maze and open field behaviour tests. Fundam. Clin. Pharmacol., 2008, 22(6), 673-681.
[http://dx.doi.org/10.1111/j.1472-8206.2008.00639.x] [PMID: 19049672]
[32]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 101, 496-524.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.052] [PMID: 26188621]
[33]
Park, J.H.; Lim, H.J.; Lee, K.S.; Lee, S.; Kwak, H.J.; Cha, J.H.; Park, H.Y. Anti-proliferative effect of licochalcone A on vascular smooth muscle cells. Biol. Pharm. Bull., 2008, 31(11), 1996-2000.
[http://dx.doi.org/10.1248/bpb.31.1996] [PMID: 18981562]
[34]
Mohamad, A.S.; Akhtar, M.N.; Zakaria, Z.A.; Perimal, E.K.; Khalid, S.; Mohd, P.A.; Khalid, M.H.; Israf, D.A.; Lajis, N.H.; Sulaiman, M.R. Antinociceptive activity of a synthetic chalcone, flavokawin B on chemical and thermal models of nociception in mice. Eur. J. Pharmacol., 2010, 647(1-3), 103-109.
[http://dx.doi.org/10.1016/j.ejphar.2010.08.030] [PMID: 20826146]
[35]
Ortolan, X.R.; Fenner, B.P.; Mezadri, T.J.; Tames, D.R.; Corrêa, R.; de Campos Buzzi, F. Osteogenic potential of a chalcone in a critical-size defect in rat calvaria bone. J. Craniomaxillofac. Surg., 2014, 42(5), 520-524.
[http://dx.doi.org/10.1016/j.jcms.2013.07.020] [PMID: 24041609]
[36]
Batovska, D.I.; Todorova, I.T. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol., 2010, 5(1), 1-29.
[http://dx.doi.org/10.2174/157488410790410579] [PMID: 19891604]
[37]
Zhou, B.; Xing, C. Diverse molecular targets for chalcones with varied bioactivities. Med. Chem., 2015, 5(8), 388-404.
[http://dx.doi.org/10.4172/2161-0444.1000291] [PMID: 26798565]
[38]
Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Potential pharmacological uses of chalcones: A patent review. Exp. Opin. Ther. Pat., 2015, 25, 351-366.
[http://dx.doi.org/10.1517/13543776.2014.995627] [PMID: 25598152]
[39]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C. Miao. Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117, 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[40]
Ni, L.; Meng, C.Q.; Sikorski, J.A. Recent advances in therapeutic chalcones. Exp. Opin. Ther. Pat., 2004, 14, 1669-1691.
[http://dx.doi.org/10.1517/13543776.14.12.1669]
[41]
Elias, D.; Beazely, M.; Kandepu, N. Bioactivities of chalcones. Curr. Med. Chem., 1999, 6, 1125-1149.
[PMID: 10519918]
[42]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
[43]
Viegas-Junior, C.; Danuello, V. da Silva Bolzani, A.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 18, 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[44]
Walsh, J.J.; Bell, A. Hybrid drugs for malaria. Curr. Pharm. Des., 2009, 15(25), 2970-2985.
[http://dx.doi.org/10.2174/138161209789058183] [PMID: 19754373]
[45]
Siddiqui, Z.N.; Musthafa, T.N.M.; Ahmad, A.; Khan, A.U. Thermal solvent-free synthesis of novel pyrazolyl chalcones and pyrazolines as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21(10), 2860-2865.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.080] [PMID: 21507638]
[46]
Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Smith, P.J.; Chibale, K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem., 2010, 18(23), 8243-8256.
[http://dx.doi.org/10.1016/j.bmc.2010.10.009] [PMID: 21044845]
[47]
Fadeyi, O.O.; Adamson, S.T.; Myles, E.L.; Okoro, C.O. Novel fluorinated acridone derivatives. Part 1: Synthesis and evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett., 2008, 18(14), 4172-4176.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.078] [PMID: 18541426]
[48]
Rostom, S.A.F. Synthesis and in vitro antitumor evaluation of some indeno[1,2-c]pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. Bioorg. Med. Chem., 2006, 14(19), 6475-6485.
[http://dx.doi.org/10.1016/j.bmc.2006.06.020] [PMID: 16806944]
[49]
Bode, A.M. Dong. Z. Cancer prevention research-Then and now. Nat. Rev. Cancer, 2009, 9, 508.
[http://dx.doi.org/10.1038/nrc2646]
[50]
Ugwu, D.I.; Ezema, B.E.; Okoro, U.C.; Eze, F.U.; Ekoh, O.C.; Egbujor, M.C.; Ugwuja, D.L. Chalcones and flavanones bearing hydroxyl and/or methoxyl groups: Synthesis and biological assessments. Int. J. Chem. Sci., 2015, 13, 459-500.
[51]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[52]
Custodio, J.M.F.; Michelini, L.J.; de Castro, M.R.C.; Vaz, W.F.; Neves, B.J.; Cravo, P.; Barreto, F.; de Moraes, M.O.; Perez, C.; Napolitano, H. Structural insights into a novel anticancer sulfonamide chalcone. New J. Chem., 2018, 42, 3426-3434.
[http://dx.doi.org/10.1039/C7NJ03523C]
[53]
Kandaswamy, N.; Raveendiran, N. A review on biological potential of chalcone hybrids. Indo. Am. J. Pharm. Res., 2014, 4, 3011-3022.
[54]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[55]
Burmaoglu, S.; Algul, O.; Anıl, D.A.; Gobek, A.; Duran, G.G.; Ersan, R.H.; Duran, N. Synthesis and anti-proliferative activity of fluoro-substituted chalcones. Bioorg. Med. Chem. Lett., 2016, 26(13), 3172-3176.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.096] [PMID: 27217001]
[56]
Venkateswararao, E.; Sharma, V.K.; Yun, J.; Kim, Y.; Jung, S.H. Anti-proliferative effect of chalcone derivatives through inactivation of NF-κB in human cancer cells. Bioorg. Med. Chem., 2014, 22(13), 3386-3392.
[http://dx.doi.org/10.1016/j.bmc.2014.04.045] [PMID: 24835787]
[57]
Do, T.H.; Nguyen, D.M.; Truong, V.D.; Do, T.H.T.; Le, M.T.; Pham, T.Q.; Thai, K.M.; Tran, T.D. Synthesis and selective cytotoxic activities on rhabdomyosarcoma and noncancerous cells of some heterocyclic chalcones. Molecules, 2016, 21(3), 329.
[http://dx.doi.org/10.3390/molecules21030329] [PMID: 27005608]
[58]
Schobert, R.; Biersack, B.; Dietrich, A.; Knauer, S.; Zoldakova, M.; Fruehauf, A.; Mueller, T. Pt(II) complexes of a combretastatin A-4 analogous chalcone: Effects of conjugation on cytotoxicity, tumor specificity, and long-term tumor growth suppression. J. Med. Chem., 2009, 52(2), 241-246.
[http://dx.doi.org/10.1021/jm801001d] [PMID: 19102652]
[59]
Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Cruz-Lopez, O.; Cara, C.L.; Balzarini, J.; Hamel, E.; Canella, A.; Fabbri, E.; Gambari, R.; Basso, G.; Viola, G. Hybrid alpha-bromoacryloylamido chalcones. Design, synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2009, 19(7), 2022-2028.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.038] [PMID: 19250822]
[60]
Dalla Via, L.; Gia, O.; Chiarelotto, G.; Ferlin, M.G. DNA-targeting pyrroloquinoline-linked butenone and chalcones: Synthesis and biological evaluation. Eur. J. Med. Chem., 2009, 44(7), 2854-2861.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.011] [PMID: 19155103]
[61]
Meng, Y.; Zhang, H.; Liu, Z.; Zeng, S.; Sun, C.; Zhang, L.; Zhao, M.; Wang, G.; Jiang, M.; Shi, W.; Song, H. Design, synthesis and antitumor activity of pyrrolopyrazinone-chalcone hybrids. Chem. J. Chin. Univ., 2014, 30, 624-631.
[http://dx.doi.org/10.1007/s40242-014-3542-z]
[62]
Lawrence, N.J.; McGown, A.T. The chemistry and biology of antimitotic chalcones and related enone systems. Curr. Pharm. Des., 2005, 11(13), 1679-1693.
[http://dx.doi.org/10.2174/1381612053764733] [PMID: 15892668]
[63]
Mizuno, C.S.; Paul, S.; Suh, N.; Rimando, A.M. Synthesis and biological evaluation of retinoid-chalcones as inhibitors of colon cancer cell growth. Bioorg. Med. Chem. Lett., 2010, 20(24), 7385-7387.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.038] [PMID: 21041085]
[64]
Shi, H.B.; Zhang, S.J.; Ge, Q.F.; Guo, D.W.; Cai, C.M.; Hu, W.X. Synthesis and anticancer evaluation of thiazolyl-chalcones. Bioorg. Med. Chem. Lett., 2010, 20(22), 6555-6559.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.041] [PMID: 20888764]
[65]
Kamal, A.; Mallareddy, A.; Suresh, P.; Shaik, T.B.; Lakshma Nayak, V.; Kishor, C.; Shetti, R.V.; Sankara Rao, N.; Tamboli, J.R.; Ramakrishna, S.; Addlagatta, A. Synthesis of chalcone-amidobenzothiazole conjugates as antimitotic and apoptotic inducing agents. Bioorg. Med. Chem., 2012, 20(11), 3480-3492.
[http://dx.doi.org/10.1016/j.bmc.2012.04.010] [PMID: 22543234]
[66]
Sashidhara, K.V.; Kumar, A.; Kumar, M.; Sarkar, J.; Sinha, S. Synthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2010, 20(24), 7205-7211.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.116] [PMID: 21071221]
[67]
Elshemy, H.A.H.; Zaki, M.A. Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorg. Med. Chem., 2017, 25(3), 1066-1075.
[http://dx.doi.org/10.1016/j.bmc.2016.12.019] [PMID: 28038941]
[68]
El-Sherief, H.A.; Abuo-Rahma, G.E.D.A.; Shoman, M.E.; Beshr, E.A.; Abdel-baky, R.M. Design and synthesis of new coumarin–chalcone/NO hybrids of potential biological activity. Med. Chem. Res., 2017, 26, 3077-3090.
[http://dx.doi.org/10.1007/s00044-017-2004-9]
[69]
Mokale, S.N.; Begum, A. Sakle, Shelke, V.R. ‎Design, synthesis and anticancer screening of 3-(3-(substituted phenyl) acryloyl)-2H-chromen-2ones as selective anti-breast cancer agent. Biomed. Pharmacother., 2017, 89, 966-972.
[http://dx.doi.org/10.1016/j.biopha.2017.02.089] [PMID: 28292025]
[70]
Kurt, B.Z.; Kandas, N.O.; Dag, A.; Sonmez, F.; Kucukislamoglu, M. Synthesis and biological evaluation of novel coumarin-chalcone derivatives containing urea moiety as potential anticancer agents. Arab. J. Chem., 2017, 13(1), 1120-1129.
[http://dx.doi.org/10.1016/j.arabjc.2017.10.001]
[71]
Kumar, D.; Kumar, N.M.; Akamatsu, K.; Kusaka, E.; Harada, H.; Ito, T. Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorg. Med. Chem. Lett., 2010, 20(13), 3916-3919.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.016] [PMID: 20627724]
[72]
Park, S.; Kim, E.H.; Kim, J.; Kim, S.H.; Kim, I. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents. Eur. J. Med. Chem., 2018, 144, 435-443.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.056] [PMID: 29288944]
[73]
Gupta, S.; Maurya, P.; Upadhyay, A.; Kushwaha, P.; Krishna, S.; Siddiqi, M.I.; Sashidhara, K.V.; Banerjee, D. Synthesis and bio-evaluation of indole-chalcone based benzopyrans as promising antiligase and antiproliferative agents. Eur. J. Med. Chem., 2018, 143, 1981-1996.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.015] [PMID: 29146133]
[74]
Ciupa, A.; Griffiths, N.J.; Light, S.K.; Wood, P.J.; Caggiano, L. Design, synthesis and antiproliferative activity of urocanic-chalcone hybrid derivatives. MedChemComm, 2011, 2, 1011-1015.
[http://dx.doi.org/10.1039/c1md00155h]
[75]
Xie, L.; Zhai, X.; Liu, C.; Li, P.; Li, Y.; Guo, G.; Gong, P. Anti-tumor activity of new artemisinin-chalcone hybrids. Arch. Pharm. (Weinheim), 2011, 344(10), 639-647.
[http://dx.doi.org/10.1002/ardp.201000391] [PMID: 21984014]
[76]
Gaur, R.; Pathania, A.S.; Malik, F.A.; Bhakuni, R.S.; Verma, R.K. Synthesis of a series of novel dihydroartemisinin monomers and dimers containing chalcone as a linker and their anticancer activity. Eur. J. Med. Chem., 2016, 122, 232-246.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.035] [PMID: 27371926]
[77]
Nagaraju, M.; Deepthi, E.G.; Ashwini, C.; Vishnuvardhan, M.V.; Nayak, V.L.; Chandra, R.; Ramakrishna, S.; Gawali, B.B. Synthesis and selective cytotoxic activity of novel hybrid chalcones against prostate cancer cells. Bioorg. Med. Chem. Lett., 2012, 22, 4314-4317.
[78]
Bagul, C.; Rao, G.K.; Makani, V.K.K.; Tamboli, J.R.; Pal-Bhadra, M.; Kamal, A. Synthesis and biological evaluation of chalcone-linked pyrazolo[1,5-a]pyrimidines as potential anticancer agents. MedChemComm, 2017, 8(9), 1810-1816.
[http://dx.doi.org/10.1039/C7MD00193B] [PMID: 30108891]
[79]
Firoozpour, L.; Edraki, N.; Nakhjiri, M.; Emami, S.; Safavi, M.; Ardestani, S.K.; Khoshneviszadeh, M.; Shafiee, A.; Foroumadi, A. Cytotoxic activity evaluation and QSAR study of chromene-based chalcones. Arch. Pharm. Res., 2012, 35(12), 2117-2125.
[http://dx.doi.org/10.1007/s12272-012-1208-2] [PMID: 23263805]
[80]
Mourad, M.A.E.; Abdel-Aziz, M. Abuo-Rahma, Gel-D.; Farag, H.H. Design, synthesis and anticancer activity of nitric oxide donating/chalcone hybrids. Eur. J. Med. Chem., 2012, 54, 907-913.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.030] [PMID: 22703846]
[81]
Karthikeyan, C.; Solomon, V.R.; Lee, H.; Trivedi, P. Design, synthesis and biological evaluation of some isatin-linked chalcones as novel anti-breast cancer agents: A molecular hybridization approach. Biomed. Prev. Nutr., 2013, 3, 325-330.
[http://dx.doi.org/10.1016/j.bionut.2013.04.001]
[82]
Ammar, Y.A.; Fayed, E.A.; Bayoumi, A.H.; Ezz, R.R.; Alsaid, M.S.; Soliman, A.M.; Ghorab, M.M. Res. Chem. Intermed., 2017, 43, 6765-6786.
[http://dx.doi.org/10.1007/s11164-017-3019-z]
[83]
Ibrahim, S.A.; Elsaman, T. Cytotoxic and anticancer activities of indoline-2,3- dione (Isatin) and its derivatives. Br. J. Pharm. Res., 2018, 21, 1-19.
[84]
Ranjit, P.M.; Rahaman, S.A.; Kumar, K.P.; Prasad, Y.R.; Santhipriya, T.; Manikanta, G.C. Synthesis, screening and in vitro anticancer activity of piperazine nucleus containing novel chalcones on different cell lines. Int. J. Pharm. Tech. Res., 2013, 5, 284-293.
[85]
Mao, Z.; Zheng, X.; Qi, Y.; Zhang, M.; Huang, Y.; Wan, C.; Rao, G. Synthesis and biological evaluation of novel hybrid compounds between chalcone and piperazine as potential antitumor agents RSC Adv., 2016, 6, 7723-7727.
[http://dx.doi.org/10.1039/C5RA20197G]
[86]
Nikalje, P.G.; Tiwari, S.V.; Tupe, J.G.; Vyas, V.K.; Qureshi, G. Ultrasound assisted-synthesis and biological evaluation of piperazinylprop- 1-en-2-yloxy-2H-chromen-2-ones as cytotoxic agents. Lett. Drug Des. Discov., 2017, 14, 1195-1205.
[http://dx.doi.org/10.2174/1570180814666170322154750]
[87]
Banday, A.H.; Kulkarni, V.V.; Hruby, V.J. Design, synthesis, and biological and docking studies of novel epipodophyllotoxin–Chalcone hybrids as potential anticancer agents. MedChemComm, 2015, 6, 94-104.
[http://dx.doi.org/10.1039/C4MD00325J]
[88]
Gu, X.; Ren, Z.; Peng, H.; Peng, S.; Zhang, Y. Bifendate-chalcone hybrids: a new class of potential dual inhibitors of P-glycoprotein and breast cancer resistance protein. Biochem. Biophys. Res. Commun., 2014, 455(3-4), 318-322.
[http://dx.doi.org/10.1016/j.bbrc.2014.11.016] [PMID: 25446092]
[89]
Kommidi, D.R.; Pagadala, R.; Rana, S.; Singh, P.; Shintre, S.A.; Koorbanally, N.A.; Jonnalagadda, S.B.; Moodley, B. Novel carbapenem chalcone derivatives: Synthesis, cytotoxicity and molecular docking studies. Org. Biomol. Chem., 2015, 13(14), 4344-4350.
[http://dx.doi.org/10.1039/C5OB00197H] [PMID: 25767041]
[90]
Loch-Neckel, G.; Bicca, M.A.; Leal, P.C.; Mascarello, A.; Siqueira, J.M.; Calixto, J.B. In vitro and in vivo anti-glioma activity of a chalcone-quinoxaline hybrid. Eur. J. Med. Chem., 2015, 90, 93-100.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.014] [PMID: 25461314]
[91]
Jardim, G.A.M.; Guimaraes, T.T.; Maria do Carmo, F.R.; Cavalcanti, B.C.; de Farias, K.M.; Pessoa, C.; Gatto, C.C.; Nair, D.K.; Namboothiri, I.N.; da Silva Júnior, E.N. Naphthoquinone-based chalcone hybrids and derivatives: Synthesis and potent activity against cancer cell lines. MedChemComm, 2015, 6, 120-130.
[http://dx.doi.org/10.1039/C4MD00371C]
[92]
Wang, G.; Qiu, J.; Xiao, X.; Cao, A.; Zhou, F. Synthesis, biological evaluation and molecular docking studies of a new series of chalcones containing naphthalene moiety as anticancer agents. Bioorg. Chem., 2018, 76, 249-257.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.017] [PMID: 29197743]
[93]
Zhang, J.; Yang, F.; Qiao, Z.; Zhu, M.; Zhou, H. Chalcone-benzoxaborole hybrids as novel anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(23), 5797-5801.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.024] [PMID: 28327308]
[94]
Lei, Q.; Zhang, S.; Liu, M.; Li, J.; Zhang, X.; Long, Y. Synthesis and biological evaluation of glycosides containing triazene-chalcones. Mol. Divers., 2017, 21(4), 957-966.
[http://dx.doi.org/10.1007/s11030-017-9768-1] [PMID: 28791568]
[95]
Mohamed, M.F.A.; Shaykoon, M.S.A.; Abdelrahman, M.H.; Elsadek, B.E.M.; Aboraia, A.S.; Abuo-Rahma, G.E.A.A. Design, synthesis, docking studies and biological evaluation of novel chalcone derivatives as potential histone deacetylase inhibitors. Bioorg. Chem., 2017, 72, 32-41.
[http://dx.doi.org/10.1016/j.bioorg.2017.03.005] [PMID: 28346873]
[96]
Singh, P.; Raj, R.; Kumar, V.; Mahajan, M.P.; Bedi, P.M.; Kaur, T.; Saxena, A.K. 1,2,3-Triazole tethered β-lactam-chalcone bifunctional hybrids: Synthesis and anticancer evaluation. Eur. J. Med. Chem., 2012, 47(1), 594-600.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.033] [PMID: 22071256]
[97]
Fu, D.J.; Zhang, S.Y.; Liu, Y.C.; Yue, X.X.; Liu, J.J.; Song, J.; Zhao, R.H.; Li, F.; Sun, H.H.; Zhang, Y.B.; Liu, H.M. Design, synthesis and antiproliferative activity studies of 1,2,3-triazole–chalcones. MedChemComm, 2016, 7, 1664-1671.
[http://dx.doi.org/10.1039/C6MD00169F]
[98]
Evangelista, F.C.G.; Bandeira, M.O.; Silva, G.D.; Silva, M.G.; Andrade, S.N.; Marques, D.R.; Silva, L.M.; Castro, W.V.; Santos, F.V.; Viana, G.H. Villar. Synthesis and in vitro evaluation of novel triazole/azide chalcones. J.A. Med. Chem. Res., 2017, 26, 27-43.
[http://dx.doi.org/10.1007/s00044-016-1705-9]
[99]
Yadav, P.; Lal, K.; Kumar, A.; Guru, S.K.; Jaglan, S.; Bhushan, S. Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles. Eur. J. Med. Chem., 2017, 126, 944-953.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.030] [PMID: 28011424]
[100]
Mohamed, M.F.; Hassaneen, H.M.; Abdelhamid, I.A. Cytotoxicity, molecular modeling, cell cycle arrest, and apoptotic induction induced by novel tetrahydro-[1,2,4]triazolo[3,4-a]isoquinoline chalcones. Eur. J. Med. Chem., 2018, 143, 532-541.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.045] [PMID: 29207336]
[101]
Marković, V.; Debeljak, N.; Stanojković, T.; Kolundžija, B.; Sladić, D.; Vujčić, M.; Janović, B.; Tanić, N.; Perović, M.; Tešić, V.; Antić, J.; Joksović, M.D. Anthraquinone-chalcone hybrids: Synthesis, preliminary antiproliferative evaluation and DNA-interaction studies. Eur. J. Med. Chem., 2015, 89, 401-410.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.055] [PMID: 25462255]
[102]
Shankaraiah, N.; Siraj, K.P.; Nekkanti, S.; Srinivasulu, V.; Sharma, P.; Senwar, K.R.; Sathish, M.; Vishnuvardhan, M.V.; Ramakrishna, S.; Jadala, C.; Nagesh, N.; Kamal, A. DNA-binding affinity and anticancer activity of β-carboline-chalcone conjugates as potential DNA intercalators: Molecular modelling and synthesis. Bioorg. Chem., 2015, 59, 130-139.
[http://dx.doi.org/10.1016/j.bioorg.2015.02.007] [PMID: 25771335]
[103]
Kamal, A.; Ramakrishna, G.; Raju, P.; Viswanath, A.; Ramaiah, M.J.; Balakishan, G.; Pal-Bhadra, M. Synthesis and anti-cancer activity of chalcone linked imidazolones. Bioorg. Med. Chem. Lett., 2010, 20(16), 4865-4869.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.097] [PMID: 20637611]
[104]
Kalalbandi, V.K.; Seetharamappa, J. MedChemComm, 2015, 6, 1942-1953.
[http://dx.doi.org/10.1039/C5MD00293A]
[105]
Bonakdar, A.P.S.; Vafaei, F.; Farokhpou, M.; Esfahani, M.H.; Massah, A.R. Synthesis and anticancer activity assay of novel chalcone-sulfonamide derivatives. Iran. J. Pharm. Res., 2017, 16, 565-568.
[PMID: 28979310]
[106]
de Castro, M.R.C.; Aragão, A.Q.; Silva, C.C.; Perez, C.N.; Queiroz, D.P.; Queiroz Júnior, L.H.; Barreto, S.; Moraes, M.O.; Martins, F.T.J. Conformational variability in sulfonamide chalcone hybrids: Crystal structure and cytotoxicity. Br. Chem. Soc., 2016, 27, 884-898.
[108]
Singh, C.; Malik, H.; Puri, S.K. New orally active spiro 1,2,4-trioxanes with high antimalarial potency. Bioorg. Med. Chem. Lett., 2005, 15(20), 4484-4487.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.013] [PMID: 16105737]
[109]
Chen, M.; Theander, T.G.; Christensen, S.B.; Hviid, L.; Zhai, L.; Kharazmi, A. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob. Agents Chemother., 1994, 38(7), 1470-1475.
[http://dx.doi.org/10.1128/AAC.38.7.1470] [PMID: 7979274]
[110]
Liu, M.; Wilairat, P.; Go, M.L. Antimalarial alkoxylated and hydroxylated chalcones: Structure-activity relationship analysis. J. Med. Chem., 2001, 44(25), 4443-4452.
[http://dx.doi.org/10.1021/jm0101747] [PMID: 11728189]
[111]
Kumar, R.; Mohanakrishnan, D.; Sharma, A.; Kaushik, N.K.; Kalia, K.; Sinha, A.K.; Sahal, D. Reinvestigation of structure-activity relationship of methoxylated chalcones as antimalarials: Synthesis and evaluation of 2,4,5-trimethoxy substituted patterns as lead candidates derived from abundantly available natural β-asarone. Eur. J. Med. Chem., 2010, 45(11), 5292-5301.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.049] [PMID: 20863599]
[112]
Kumar, A.; Srivastava, K.; Kumar, S.R.; Siddiqi, M.I.; Puri, S.K.; Sexana, J.K.; Chauhan, P.M. 4-anilinoquinoline triazines: A novel class of hybrid antimalarial agents. Eur. J. Med. Chem., 2011, 46(2), 676-690.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.003] [PMID: 21194812]
[113]
Tadigoppula, N.; Korthikunta, V.; Gupta, S.; Kancharla, P.; Khaliq, T.; Soni, A.; Srivastava, R.K.; Srivastava, K.; Puri, S.K.; Raju, K.S. Wahajuddin; Sijwali, P.S.; Kumar, V.; Mohammad, I.S. Synthesis and insight into the structure-activity relationships of chalcones as antimalarial agents. J. Med. Chem., 2013, 56(1), 31-45.
[http://dx.doi.org/10.1021/jm300588j] [PMID: 23270565]
[114]
Hans, R.H.; Gut, J.; Rosenthal, P.J.; Chibale, K. Comparison of the antiplasmodial and falcipain-2 inhibitory activity of beta-amino alcohol thiolactone-chalcone and isatin-chalcone hybrids. Bioorg. Med. Chem. Lett., 2010, 20(7), 2234-2237.
[http://dx.doi.org/10.1016/j.bmcl.2010.02.017] [PMID: 20206517]
[115]
Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Bhampidipati, R.; Kopinathan, A.; Smith, P.J.; Chibale, K. Enone and chalcone-chloroquinoline hybrid analogues: In silico guided design, synthesis, antiplasmodial activity, in vitro metabolism, and mechanistic studies. J. Med. Chem., 2011, 54(10), 3637-3649.
[http://dx.doi.org/10.1021/jm200149e] [PMID: 21500839]
[116]
Sashidhara, K.V.; Avula, S.R.; Palnati, G.R.; Singh, S.V.; Srivastava, K.; Puri, S.K.; Saxena, J.K. Synthesis and in vitro evaluation of new chloroquine-chalcone hybrids against chloroquine-resistant strain of Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2012, 22(17), 5455-5459.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.028] [PMID: 22850213]
[117]
Raj, R.; Saini, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. Synthesis and in vitro antiplasmodial evaluation of 7-chloroquinoline-chalcone and 7-chloroquinoline-ferrocenylchalcone conjugates. Eur. J. Med. Chem., 2015, 95, 230-239.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.045] [PMID: 25817773]
[118]
Domínguez, J.N.; de Domínguez, N.G.; Rodrigues, J.; Acosta, M.E.; Caraballo, N.; León, C. Synthesis and antimalarial activity of urenyl Bis-chalcone in vitro and in vivo. J. Enzyme Inhib. Med. Chem., 2013, 28(6), 1267-1273.
[http://dx.doi.org/10.3109/14756366.2012.733383] [PMID: 23094691]
[119]
Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem., 2014, 85, 65-76.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.087] [PMID: 25078311]
[120]
Smit, F.J.; N’da, D.D. Synthesis, in vitro antimalarial activity and cytotoxicity of novel 4-aminoquinolinyl-chalcone amides. Bioorg. Med. Chem., 2014, 22(3), 1128-1138.
[http://dx.doi.org/10.1016/j.bmc.2013.12.032] [PMID: 24411478]
[121]
Singh, A.; Rani, A.; Gut, J.; Rosenthal, P.J.; Kumar, V. Piperazine linked 4-aminoquinoline-chalcone/ferrocenyl-chalcone conjugates: Synthesis and antiplasmodial evaluation. Chem. Biol. Drug Des., 2017, 90(4), 590-595.
[http://dx.doi.org/10.1111/cbdd.12982] [PMID: 28332319]
[122]
Smit, F.J.; van Biljon, R.A.; Birkholtz, L.M.; N’Da, D.D. Synthesis and in vitro biological evaluation of dihydroartemisinyl-chalcone esters. Eur. J. Med. Chem., 2015, 90, 33-44.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.016] [PMID: 25461309]
[123]
Smit, F.J.; Bezuidenhout, J.J.; Bezuidenhout, C.C.; N’Da, D.D. Med. Chem. Res., 2016, 25, 568-584.
[http://dx.doi.org/10.1007/s00044-016-1509-y]
[124]
Bhale, P.S.; Dongare, S.B.; Chanshetti, U.B. Res. J. Chem. Sci., 2013, 606X
[125]
Drebes, J.; Künz, M.; Pereira, C.A.; Betzel, C.; Wrenger, C. MRSA infections: from classical treatment to suicide drugs. Curr. Med. Chem., 2014, 21(15), 1809-1819.
[http://dx.doi.org/10.2174/0929867320666131119122520] [PMID: 24251575]
[126]
Butler, M.S.; Blaskovich, M.A.; Cooper, M.A. Antibiotics in the clinical pipeline in 2013. J. Antibiot. (Tokyo), 2013, 66(10), 571-591.
[http://dx.doi.org/10.1038/ja.2013.86] [PMID: 24002361]
[127]
Rennie, R.P. In: Antibiotic Resistance.Springer: Berlin, Heidelberg, 2012, pp. 45-65.
[128]
Selvakumar, N.; Kumar, G.S.; Azhagan, A.M.; Rajulu, G.G.; Sharma, S.; Kumar, M.S.; Das, J.; Iqbal, J.; Trehan, S. Synthesis, SAR and antibacterial studies on novel chalcone oxazolidinone hybrids. Eur. J. Med. Chem., 2007, 42(4), 538-543.
[http://dx.doi.org/10.1016/j.ejmech.2006.10.013] [PMID: 17150281]
[129]
Ávila, H.P. Smânia, Ede.F.; Monache, F.D.; Smânia, A., Jr Structure-activity relationship of antibacterial chalcones. Bioorg. Med. Chem., 2008, 16(22), 9790-9794.
[http://dx.doi.org/10.1016/j.bmc.2008.09.064] [PMID: 18951808]
[130]
Budhiraja, A.; Kadian, K.; Kaur, M.; Aggarwal, V.; Garg, A.; Sapra, S.; Nepali, K.; Suri, O.P.; Dhar, K.L. Synthesis and biological evaluation of naphthalene, furan and pyrrole based chalcones as cytotoxic and antimicrobial agents. Med. Chem. Res., 2012, 21, 2133-2140.
[http://dx.doi.org/10.1007/s00044-011-9733-y]
[131]
Burmaoglu, S.; Algul, O.; Gobek, A.; Aktas Anil, D.; Ulger, M.; Erturk, B.G.; Kaplan, E.; Dogen, A.; Aslan, G. Design of potent fluoro-substituted chalcones as antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 490-495.
[http://dx.doi.org/10.1080/14756366.2016.1265517] [PMID: 28118738]
[132]
Shah, D.R.; Lakum, H.P.; Chikhalia, K.H. Synthesis and in vitro antimicrobial evaluation of amine substituted S-triazine based thiazolidinone/chalcone hybrids. Int. Lett. Chem. Phys. Astronom., 2014, 17, 207-219.
[http://dx.doi.org/10.18052/www.scipress.com/ILCPA.36.207]
[133]
Yin, B.T.; Yan, C.Y.; Peng, X.M.; Zhang, S.L.; Rasheed, S.; Geng, R.X.; Zhou, C.H. Synthesis and biological evaluation of α-triazolyl chalcones as a new type of potential antimicrobial agents and their interaction with calf thymus DNA and human serum albumin. Eur. J. Med. Chem., 2014, 71, 148-159.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.003] [PMID: 24291568]
[134]
Singh, G.; Arora, A.; Rani, S.; Maurya, I.K.; Aulakh, D.; Wriedt, M. Heteroaryl chalcone allied triazole conjugated organosilatranes: synthesis, spectral analysis, antimicrobial screening, photophysical and theoretical investigations. RSC Advances, 2016, 6, 82057-82081.
[http://dx.doi.org/10.1039/C6RA13949C]
[135]
Liu, H.; Gopala, L.; Avula, S.R.; Jeyakkumar, P.; Peng, X.; Zhou, C.; Geng, R. Chalcone‐benzotriazole conjugates as new potential antimicrobial agents: Design, synthesis, biological evaluation and synergism with clinical drugs. Chin. J. Chem., 2017, 35, 483-496.
[http://dx.doi.org/10.1002/cjoc.201600639]
[136]
Lal, K.; Yadav, P.; Kumar, A.; Kumar, A.; Paul, A.K. Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1,2,3-triazole hybrids. Bioorg. Chem., 2018, 77, 236-244.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.016] [PMID: 29421698]
[137]
Vazquez-Rodriguez, S.; Lama López, R.; Matos, M.J.; Armesto-Quintas, G.; Serra, S.; Uriarte, E.; Santana, L.; Borges, F.; Muñoz Crego, A.; Santos, Y. Design, synthesis and antibacterial study of new potent and selective coumarin-chalcone derivatives for the treatment of tenacibaculosis. Bioorg. Med. Chem., 2015, 23(21), 7045-7052.
[http://dx.doi.org/10.1016/j.bmc.2015.09.028] [PMID: 26433630]
[138]
Moodley, T.; Momin, M.; Mocktar, C.; Kannigadu, C.; Koorbanally, N.A. The synthesis, structural elucidation and antimicrobial activity of 2- and 4-substituted-coumarinyl chalcones. Magn. Reson. Chem., 2016, 54(7), 610-617.
[http://dx.doi.org/10.1002/mrc.4414] [PMID: 26867972]
[139]
Thaker, B.; Vyas, K.; Shukla, J.; Patel, R.; Nimavat, K. Int. J. Sci. Res. Sci. Eng. Technol., 2017, 3, 643-645.
[140]
Shaik, A.B.; Yejella, R.P.; Shaik, S. Synthesis, antimicrobial, and computational evaluation of novel isobutylchalcones as antimicrobial agents. Int. J. Med. Chem., 2017.20176873924
[http://dx.doi.org/10.1155/2017/6873924] [PMID: 29441207]
[141]
De León, E.J.; Alcaraz, M.J.; Dominguez, J.N.; Charris, J.; Terencio, M.C. 1-(2,3,4-trimethoxyphenyl)-3-(3-(2-chloroquinolinyl))-2-propen-1-one, a chalcone derivative with analgesic, anti-inflammatory and immunomodulatory properties. Inflamm. Res., 2003, 52(6), 246-257.
[http://dx.doi.org/10.1007/s00011-003-1164-x] [PMID: 12835896]
[142]
Yang, H.M.; Shin, H.R.; Cho, S.H.; Song, G.Y.; Lee, I.J.; Kim, M.K.; Lee, S.H.; Ryu, J.C.; Kim, Y.; Jung, S.H. The role of the hydrophobic group on ring A of chalcones in the inhibition of interleukin-5. Arch. Pharm. Res., 2006, 29(11), 969-976.
[http://dx.doi.org/10.1007/BF02969280] [PMID: 17146965]
[143]
Rullah, K.; Mohd Aluwi, M.F.; Yamin, B.M.; Abdul Bahari, M.N.; Wei, L.S.; Ahmad, S.; Abas, F.; Ismail, N.H.; Jantan, I.; Wai, L.K.; Abas, F.; Ismail, N.H.; Jantan, I.; Wai, L.K. Inhibition of prostaglandin E(2) production by synthetic minor prenylated chalcones and flavonoids: Synthesis, biological activity, crystal structure, and in silico evaluation. Bioorg. Med. Chem. Lett., 2014, 24(16), 3826-3834.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.061] [PMID: 25027933]
[144]
Patel, N.K.; Bhutani, K.K. Pinostrobin and Cajanus lactone isolated from Cajanus cajan (L.) leaves inhibits TNF-α and IL-1β production: in vitro and in vivo experimentation. Phytomedicine, 2014, 21(7), 946-953.
[http://dx.doi.org/10.1016/j.phymed.2014.02.011] [PMID: 24680612]
[145]
Bano, S.; Javed, K.; Ahmad, S.; Rathish, I.G.; Singh, S.; Chaitanya, M.; Arunasree, K.M.; Alam, M.S. Synthesis of some novel chalcones, flavanones and flavones and evaluation of their anti-inflammatory activity. Eur. J. Med. Chem., 2013, 65, 51-59.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.056] [PMID: 23693150]
[146]
Wu, J.; Li, J.; Cai, Y.; Pan, Y.; Ye, F.; Zhang, Y.; Zhao, Y.; Yang, S.; Li, X.; Liang, G. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J. Med. Chem., 2011, 54(23), 8110-8123.
[http://dx.doi.org/10.1021/jm200946h] [PMID: 21988173]
[147]
Nasir Abbas Bukhari, S.; Jantan, I.; Jasamai, M. Anti-inflammatory trends of 1, 3-diphenyl-2-propen-1-one derivatives. Mini Rev. Med. Chem., 2013, 13, 87-94.
[http://dx.doi.org/10.2174/138955713804484767] [PMID: 22876943]
[148]
Feng, L.; Maddox, M.M.; Alam, M.Z.; Tsutsumi, L.S.; Narula, G.; Bruhn, D.F.; Wu, X.; Sandhaus, S.; Lee, R.B.; Simmons, C.J.; Tse-Dinh, Y.C.; Hurdle, J.G.; Lee, R.E.; Sun, D. Synthesis, structure-activity relationship studies, and antibacterial evaluation of 4-chromanones and chalcones, as well as olympicin A and derivatives. J. Med. Chem., 2014, 57(20), 8398-8420.
[http://dx.doi.org/10.1021/jm500853v] [PMID: 25238443]
[149]
Araico, A.; Terencio, M.C.; Alcaraz, M.J.; Domínguez, J.N.; León, C.; Ferrándiz, M.L. Phenylsulphonyl urenyl chalcone derivatives as dual inhibitors of cyclo-oxygenase-2 and 5-lipoxygenase. Life Sci., 2006, 78(25), 2911-2918.
[http://dx.doi.org/10.1016/j.lfs.2005.11.017] [PMID: 16360707]
[150]
Sashidhara, K.V.; Kumar, M.; Modukuri, R.K.; Sonkar, R.; Bhatia, G.; Khanna, A.K.; Rai, S.; Shukla, R. Synthesis and anti-inflammatory activity of novel biscoumarin-chalcone hybrids. Bioorg. Med. Chem. Lett., 2011, 21(15), 4480-4484.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.002] [PMID: 21723119]
[151]
Bukhari, S.N.A.; Ahmad, W.; Butt, A.M.; Ahmad, N.; Amjad, M.W.; Hussain, M.A.; Shah, V.H.; Trivedi, A.R. Synthesis and evaluation of chalcone analogues and pyrimidines as cyclooxygenase (COX) inhibitors. Afr. J. Pharm. Pharmacol., 2012, 6, 1064-1068.
[http://dx.doi.org/10.5897/AJPP12.022]
[152]
Lam, K.W.; Uddin, R.; Liew, C.Y.; Tham, C.L.; Israf, D.A.; Syahida, A.; Rahman, M.B.; Ul-Haq, Z.; Lajis, N.H. Synthesis and QSAR analysis of chalcone derivatives as nitric oxide inhibitory agent. Med. Chem. Res., 2012, 21, 1953-1966.
[http://dx.doi.org/10.1007/s00044-011-9706-1]
[153]
Bugata, B.K.; Dowluru, S.V.G.K.K.; Avupati, V.R.; Gavalapu, V.R.; Nori, D.L.; Barla, S. Synthesis, characterization and in vitro biological evaluation of some new diarylsulfonylurea-chalcone hybrids as potential 5-lipoxygenase inhibitors. Eur. J. Chem., 2013, 4, 396-401.
[http://dx.doi.org/10.5155/eurjchem.4.4.396-401.878]
[154]
Hara, H.; Ikeda, R.; Ninomiya, M.; Kamiya, T.; Koketsu, M.; Adachi, T. Newly synthesized ‘hidabeni’ chalcone derivatives potently suppress LPS-induced NO production via inhibition of STAT1, but not NF-κB, JNK, and p38, pathways in microglia. Biol. Pharm. Bull., 2014, 37(6), 1042-1049.
[http://dx.doi.org/10.1248/bpb.b14-00116] [PMID: 24882415]
[155]
Özdemir, A.; Altintop, M.D.; Turan-Zitouni, G.; Çiftçi, G.A.; Ertorun, İ.; Alataş, Ö.; Kaplancikli, Z.A. Synthesis and evaluation of new indole-based chalcones as potential antiinflammatory agents. Eur. J. Med. Chem., 2015, 89, 304-309.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.056] [PMID: 25462246]
[156]
Chen, W.; Ge, X.; Xu, F.; Zhang, Y.; Liu, Z.; Pan, J.; Song, J.; Dai, Y.; Zhou, J.; Feng, J.; Liang, G. Design, synthesis and biological evaluation of paralleled Aza resveratrol-chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury. Bioorg. Med. Chem. Lett., 2015, 25(15), 2998-3004.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.030] [PMID: 26048788]
[157]
Damodar, K.; Kim, J.K.; Jun, J.G. Synthesis and pharmacological properties of naturally occurring prenylated and pyranochalcones as potent anti-inflammatory agents. Chin. Chem. Lett., 2016, 27, 698-702.
[http://dx.doi.org/10.1016/j.cclet.2016.01.043]
[158]
Li, J.; Li, D.; Xu, Y.; Guo, Z.; Liu, X.; Yang, H.; Wu, L.; Wang, L. Design, synthesis, biological evaluation, and molecular docking of chalcone derivatives as anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2017, 27(3), 602-606.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.008] [PMID: 28011213]
[159]
Russell, D.G.; Barry, C.E., III; Flynn, J.L. Tuberculosis: What we don’t know can, and does, hurt us. Science, 2010, 328(5980), 852-856.
[http://dx.doi.org/10.1126/science.1184784] [PMID: 20466922]
[160]
Global Tuberculosis Report 2016, 2016.(WHO/HTM/TB/2016.10).
[161]
Hans, R.H.; Guantai, E.M.; Lategan, C.; Smith, P.J.; Wan, B.; Franzblau, S.G.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorg. Med. Chem. Lett., 2010, 20(3), 942-944.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.062] [PMID: 20045640]
[162]
Macaev, F.; Boldescu, V.; Pogrebnoi, S.; Duca, G. Chalcone scaffold based antimycobacterial agents. Med. Chem., 2014, 4, 487-493.
[http://dx.doi.org/10.4172/2161-0444.1000183]
[163]
Nasir Abbas Bukhari, S.; Franzblau, G.S.; Jantan, I.; Jasamai, M. Current prospects of synthetic curcumin analogs and chalcone derivatives against Mycobacterium tuberculosis. Med. Chem., 2013, 9, 897-903.
[164]
Anand, N.; Singh, P.; Sharma, A.; Tiwari, S.; Singh, V.; Singh, D.K.; Srivastava, K.K.; Singh, B.N.; Tripathi, R.P. Synthesis and evaluation of small libraries of triazolylmethoxy chalcones, flavanones and 2-aminopyrimidines as inhibitors of mycobacterial FAS-II and PknG. Bioorg. Med. Chem., 2012, 20(17), 5150-5163.
[http://dx.doi.org/10.1016/j.bmc.2012.07.009] [PMID: 22854194]
[165]
Dwarampudi, S.R.; Dannana, G.S.; Avupati, V.R.; Bendi, V.S.M. Synthesis, characterization and in vitro biological evaluation of some new 1,3,5-triazine-chalcone hybrid molecules as Mycobacterium tuberculosis H37Rv inhibitors. Eur. J. Chem., 2014, 5, 570-576.
[http://dx.doi.org/10.5155/eurjchem.5.4.570-576.1098]
[166]
Ahmad, I.; Thakur, J.P.; Chanda, D.; Saikia, D.; Khan, F.; Dixit, S.; Kumar, A.; Konwar, R.; Negi, A.S.; Gupta, A. Syntheses of lipophilic chalcones and their conformationally restricted analogues as antitubercular agents. Bioorg. Med. Chem. Lett., 2013, 23(5), 1322-1325.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.096] [PMID: 23369537]
[167]
Singh, A.; Biot, C.; Viljoen, A.; Dupont, C.; Kremer, L.; Kumar, K.; Kumar, V. 1H-1,2,3-triazole-tethered uracil-ferrocene and uracil-ferrocenylchalcone conjugates: Synthesis and antitubercular evaluation. Chem. Biol. Drug Des., 2017, 89(6), 856-861.
[http://dx.doi.org/10.1111/cbdd.12908] [PMID: 27860285]
[168]
Pandey, A.K.; Sharma, R.; Purohit, P.; Dwivedi, R.; Chatursvedi, V.; Chauhan, P. Optimization of surface roughness of a drilled hole on sup 11a by taguchi’s optimization. FTESHT-16, 2016, 6, 142.
[169]
Killick-Kendrick, R. The biology and control of phlebotomine sand flies. Clin. Dermatol., 1999, 17(3), 279-289.
[http://dx.doi.org/10.1016/S0738-081X(99)00046-2] [PMID: 10384867]
[170]
Seifert, K. Structures, targets and recent approaches in anti-leishmanial drug discovery and development. Open Med. Chem. J., 2011, 5, 31-39.
[http://dx.doi.org/10.2174/1874104501105010031] [PMID: 21629509]
[171]
Barat, C.; Zhao, C.; Ouellette, M.; Tremblay, M.J. HIV-1 replication is stimulated by sodium stibogluconate, the therapeutic mainstay in the treatment of leishmaniasis. J. Infect. Dis., 2007, 195(2), 236-245.
[http://dx.doi.org/10.1086/510398] [PMID: 17191169]
[172]
de Souza, R.O.M.A.; Pereira, V.L.P.; Muzitano, M.F.; Falcão, C.A.B.; Rossi-Bergmann, B.; Filho, E.B.; Vasconcellos, M.L. High selective leishmanicidal activity of 3-hydroxy-2-methylene-3-(4-bromophenyl)propanenitrile and analogous compounds. Eur. J. Med. Chem., 2007, 42(1), 99-102.
[http://dx.doi.org/10.1016/j.ejmech.2006.07.013] [PMID: 17010481]
[173]
Alvar, J.; Croft, S.; Olliaro, P. Chemotherapy in the treatment and control of leishmaniasis. Adv. Parasitol., 2006, 61, 223-274.
[http://dx.doi.org/10.1016/S0065-308X(05)61006-8] [PMID: 16735166]
[174]
Valderrama, J.A.; Zamorano, C.; González, M.F.; Prina, E.; Fournet, A. Studies on quinones. Part 39: Synthesis and leishmanicidal activity of acylchloroquinones and hydroquinones. Bioorg. Med. Chem., 2005, 13(13), 4153-4159.
[http://dx.doi.org/10.1016/j.bmc.2005.04.041] [PMID: 15876538]
[175]
Olliaro, P.L.; Guerin, P.J.; Gerstl, S.; Haaskjold, A.A.; Rottingen, J.A.; Sundar, S. Treatment options for visceral leishmaniasis: A systematic review of clinical studies done in India, 1980-2004. Lancet Infect. Dis., 2005, 5(12), 763-774.
[http://dx.doi.org/10.1016/S1473-3099(05)70296-6] [PMID: 16310148]
[176]
Tajuddeen, N.; Isah, M.B.; Suleiman, M.A.; van Heerden, F.R.; Ibrahim, M.A. The chemotherapeutic potential of chalcones against leishmaniases: A review. Int. J. Antimicrob. Agents, 2018, 51(3), 311-318.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.06.010] [PMID: 28668673]
[177]
de Mello, M.V.P.; Abrahim-Vieira, B.A.; Domingos, T.F.S.; de Jesus, J.B.; de Sousa, A.C.C.; Rodrigues, C.R.; Souza, A.M.T. A comprehensive review of chalcone derivatives as antileishmanial agents. Eur. J. Med. Chem., 2018, 150, 920-929.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.047] [PMID: 29602038]
[178]
Roussaki, M.; Hall, B.; Lima, S.C.; da Silva, A.C.; Wilkinson, S.; Detsi, A. Synthesis and anti-parasitic activity of a novel quinolinone-chalcone series. Bioorg. Med. Chem. Lett., 2013, 23(23), 6436-6441.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.047] [PMID: 24119553]
[179]
Shivahare, R.; Korthikunta, V.; Chandasana, H.; Suthar, M.K.; Agnihotri, P.; Vishwakarma, P.; Chaitanya, T.K.; Kancharla, P.; Khaliq, T.; Gupta, S.; Bhatta, R.S.; Pratap, J.V.; Saxena, J.K.; Gupta, S.; Tadigoppula, N. Synthesis, structure-activity relationships, and biological studies of chromenochalcones as potential antileishmanial agents. J. Med. Chem., 2014, 57(8), 3342-3357.
[http://dx.doi.org/10.1021/jm401893j] [PMID: 24635539]
[180]
Otero, E.; Vergara, S.; Robledo, S.M.; Cardona, W.; Carda, M.; Vélez, I.D.; Rojas, C.; Otálvaro, F. Synthesis, leishmanicidal and cytotoxic activity of triclosan-chalcone, triclosan-chromone and triclosan-coumarin hybrids. Molecules, 2014, 19(9), 13251-13266.
[http://dx.doi.org/10.3390/molecules190913251] [PMID: 25170948]
[181]
Gupta, S.; Shivahare, R.; Korthikunta, V.; Singh, R.; Gupta, S.; Tadigoppula, N. Synthesis and biological evaluation of chalcones as potential antileishmanial agents. Eur. J. Med. Chem., 2014, 81, 359-366.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.034] [PMID: 24858541]
[182]
Rashid, U.; Sultana, R.; Shaheen, N.; Hassan, S.F.; Yaqoob, F.; Ahmad, M.J.; Iftikhar, F.; Sultana, N.; Asghar, S.; Yasinzai, M.; Ansari, F.L. Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents. Eur. J. Med. Chem., 115, 230-244.
[183]
Passalacqua, T.G.; Dutra, L.A.; de Almeida, L.; Velásquez, A.M.A.; Torres, F.A.E.; Yamasaki, P.R.; dos Santos, M.B.; Regasini, L.O.; Michels, P.A. Bolzani, Vda.S.; Graminha, M.A. Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds. Bioorg. Med. Chem. Lett., 2015, 25(16), 3342-3345.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.072] [PMID: 26055530]
[184]
Chinthala, Y.; Thakur, S.; Tirunagari, S.; Chinde, S.; Domatti, A.K.; Arigari, N.K. K v N S, S.; Alam, S.; Jonnala, K.K.; Khan, F.; Tiwari, A.; Grover, P. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity. Eur. J. Med. Chem., 2015, 93, 564-573.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.027] [PMID: 25743216]
[185]
Sadula, A.; Peddaboina, U.R. Indo Am. An efficient synthesis of 9-aryl-5,9-dihydropyrimido[4,5-d][1,2,4]triazolo[1,5-a]pyrimidine-6,8(4h,7h)-dione derivatives using iodine as a catalyst. J. Pharm. Res., 2015, 5, 2276-2283.
[186]
Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem., 2016, 113, 34-49.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.041] [PMID: 26922227]
[187]
Desai, V.; Desai, S.; Gaonkar, S.N.; Palyekar, U.; Joshi, S.D.; Dixit, S.K. Novel quinoxalinyl chalcone hybrid scaffolds as enoyl ACP reductase inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg. Med. Chem. Lett., 2017, 27(10), 2174-2180.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.059] [PMID: 28372908]
[188]
Bhale, P.S.; Chavan, H.V.; Dongare, S.B.; Shringare, S.N.; Mule, Y.B.; Nagane, S.S.; Bandgar, B.P. Synthesis of extended conjugated indolyl chalcones as potent anti-breast cancer, anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. Lett., 2017, 27(7), 1502-1507.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.052] [PMID: 28258796]
[189]
Niu, H.; Wang, W.; Li, J.; Lei, Y.; Zhao, Y.; Yang, W.; Zhao, C.; Lin, B.; Song, S.; Wang, S. A novel structural class of coumarin-chalcone fibrates as PPARα/γ agonists with potent antioxidant activities: Design, synthesis, biological evaluation and molecular docking studies. Eur. J. Med. Chem., 2017, 138, 212-220.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.033] [PMID: 28667876]
[190]
Dong, X.; Du, L.; Pan, Z.; Liu, T.; Yang, B.; Hu, Y. Synthesis and biological evaluation of novel hybrid chalcone derivatives as vasorelaxant agents. Eur. J. Med. Chem., 2010, 45(9), 3986-3992.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.054] [PMID: 20566231]
[191]
Ouattara, M.; Sissouma, D.; Koné, M.W.; Menan, H.E.; Touré, S.A.; Ouattara, L. Synthesis and anthelmintic activity of some hybrid Benzimidazolyl-chalcone derivatives. Trop. J. Pharm. Res., 2011, 10, 767-775.
[http://dx.doi.org/10.4314/tjpr.v10i6.10]
[192]
Qiao, Z.; Wang, Q.; Zhang, F.; Wang, Z.; Bowling, T.; Nare, B.; Jacobs, R.T.; Zhang, J.; Ding, D.; Liu, Y.; Zhou, H. Chalcone-benzoxaborole hybrid molecules as potent antitrypanosomal agents. J. Med. Chem., 2012, 55(7), 3553-3557.
[http://dx.doi.org/10.1021/jm2012408] [PMID: 22360533]
[193]
Sashidhara, K.V.; Palnati, G.R.; Sonkar, R.; Avula, S.R.; Awasthi, C.; Bhatia, G. Coumarin chalcone fibrates: A new structural class of lipid lowering agents. Eur. J. Med. Chem., 2013, 64, 422-431.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.026] [PMID: 23665798]
[194]
Singh, H.P.; Chauhan, C.S.; Pandeya, S.N.; Sharma, C.S. Chalconsemicarbazone: A new scaffold for antiepileptic drug discovery. J. Chil. Chem. Soc., 2010, 55, 103-106.
[http://dx.doi.org/10.4067/S0717-97072010000100024]
[195]
Anthwal, A.; Rajesh, U.C.; Rawat, M.S.M.; Kushwaha, B.; Maikhuri, J.P.; Sharma, V.L.; Gupta, G.; Rawat, D.S. Novel metronidazole-chalcone conjugates with potential to counter drug resistance in Trichomonas vaginalis. Eur. J. Med. Chem., 2014, 79, 89-94.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.076] [PMID: 24727243]
[196]
Wang, L.; Wang, Y.; Tian, Y.; Shang, J.; Sun, X.; Chen, H.; Wang, H.; Tan, W. Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors. Bioorg. Med. Chem., 2017, 25(1), 360-371.
[http://dx.doi.org/10.1016/j.bmc.2016.11.002] [PMID: 27856236]
[197]
Maurya, S.W.; Dev, K.; Prakash, R.; John, A.A.; Siddiqui, I.R.; Singh, D.; Maurya, R. Design and synthesis of indolyl chalcone analogues and evaluation of their osteogenic activity. J. Pharmacol. Pharm. Res., 2018, 1, 1-6.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy