[1]
Werner FM, Coveñas R. Classical neurotransmitters and neuropeptides involved in major depression: A review. Int J Neurosci 2010; 120(7): 455-70.
[2]
Werner FM, Coveñas R. Classical neurotransmitters and neuropeptides involved in major depression in a multi-neurotransmitter system: A focus on antidepressant drugs. Curr Med Chem 2013; 20(38): 4853-8.
[3]
DeLucia V, Kelsberg G, Safranek S. Which SSRIs most effectively treat depression in adolescents? J Fam Pract 2016; 65(9): 632-4.
[4]
Soini E, Hallinen T, Brignone M, et al. Cost-utility analysis of vortioxetine versus agomelatine, bupropion SR, sertraline and venlafaxine XR after treatment switch in major depressive disorder in Finland. Expert Rev Pharmacoecon Outcomes Res 2017; 17(3): 293-302.
[5]
Wohleb ES, Wu M, Gerhard DM, et al. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine. J Clin Invest 2016; 126(7): 2482-94.
[6]
Jacobsen JPR, Krystal AD, Krishnan KRR, Caron MG. Adjunctive 5-hydroxytryptophan slow-release for treatment-resistant depression: clinical and preclinical rationale. Trends Pharmacol Sci 2016; 37(11): 933-44.
[7]
De Berardis D, Marini S, Serroni N, et al. S-Adenosyl-L-Methionine augmentation in patients with stage II treatment-resistant major depressive disorder: An open label, fixed dose, single-blind study. Sci World J 2013; 2013: 204649.
[8]
Pérez-Olmos I, Bustamante D, Ibáñez-Pinilla M. Serotonin transporter gene (5-HTT) polymorphism and major depressive disorder in patients in Bogotá, Colombia. Biomedica 2016; 36(2): 285-94.
[9]
Hatherall L, Sánchez C, Morilak DA. Chronic vortioxetine treatment reduces exaggerated expression of conditioned fear memory and restores active coping behavior in chronically stressed rats. Int J Neuropsychopharmacol 2017; 20(4): 316-23.
[10]
Orsolini L, Tomasetti C, Valchera A, et al. Current and future perspectives on the major depressive disorder: focus on the new multimodal antidepressant vortioxetine. CNS Neurol Disord Drug Targets 2017; 16(1): 65-92.
[11]
Orsolini L, Tomasetti C, Valchera A, et al. New advances in the treatment of generalized anxiety disorder: the multimodal antidepressant vortioxetine. Expert Rev Neurother 2016; 16(5): 483-95.
[12]
Chumboatong W, Thummayot S, Govitrapong P, Tocharus C, Jittiwat J, Tocharus J. Neuroprotection of agomelatine against cerebral ischemia/reperfusion injury through an antiapoptotic pathway in rat. Neurochem Int 2017; 102: 114-22.
[13]
De Berardis D, Fornaro M, Orsolini L, et al. Effect of agomelatine treatment on C-reactive protein levels in patients with major depressive disorder: An exploratory study in “real-world,” everyday clinical practice. CNS Spectr 2017; 22(4): 342-7.
[14]
De Berardis D, Fornaro M, Serroni N, et al. Agomelatine beyond borders: current evidences of its efficacy in disorders other than major depression. Int J Mol Sci 2015; 16(1): 1111-30.
[15]
Werner FM, Coveñas R. Novel antidepressant drugs in comparison to coventional antidepressant drugs. J Clin Case Rep 2014; 4: 11.
[16]
Castellano S, Ventimiglia A, Salomone S, et al. Selective serotonin reuptake inhibitors and serotonin and noradrenaline reuptake inhibitors improve cognitive function in partial responders depressed patients: results from a prospective observational cohort study. CNS Neurol Disord Drug Targets 2016; 15(10): 1290-8.
[17]
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, et al. Locus coeruleus norepinephrine release: A central regulator of CNS spatio-temporal activation. Front Synaptic Neurosci 2016; 8: 25.
[18]
Li QS, Tian C, Seabrook GR, Drevets WC, Narayan VA. Analysis of 23andMe antidepressant efficacy survey data: implication of circadian rhythm and neuroplasticity in bupropion response. Transl Psychiatry 2016; 6(9): e889.
[19]
Stauffer VL, Liu P, Goldberger C, et al. Is the noradrenergic symptom cluster a valid construct in adjunctive treatment of major depressive disorder? J Clin Psychiatry 2017; 78(3): 317-23.
[20]
Werner FM, Coveñas R. Additional antidepressant pharmacotherapies according to a neural network. Brain Disord Ther 2016; 5: 1.
[21]
Mischoulon D, Hylek L, Yeung AS, et al. Randomized, proof-of-concept trial of low dose naltrexone for patients with breakthrough symptoms of major depressive disorder on antidepressants. J Affect Disord 2017; 208: 6-14.
[22]
Cornelissen JC, Obeng S, Rice KC, Zhang Y, Negus SS, Banks ML. Application of receptor theory to the design and use of fixed-proportion of mu-opioid agonist and antagonist mixtures in Rhesus monkeys. J Pharmacol Exp Ther 2018; 365(1): 37-47.
[23]
Demontis F, Serra F, Serra G. Antidepressant-induced dopamine receptor dysregulation: A valid animal model of manic-depressive illness. Curr Neuropharmacol 2017; 15(3): 417-23.
[24]
McIntyre RS, Weiller E, Zhang P, Weiss C. Brexpiprazole as adjunctive treatment of major depressive disorder with anxious distress: Results from a post-hoc analysis of two randomised controlled trials. J Affect Disord 2016; 201: 116-23.
[25]
Sugama S, Kakinuma Y. Loss of dopaminergic neurons occurs in the ventral tegmental area and hypothalamus of rats following chronic stress: Possible pathogenetic loci for depression involved in Parkinson’s disease. Neurosci Res 2016; 111: 48-55.
[26]
Wohleb ES, Gerhard D, Thomas A, Duman RS. Molecular and cellular mechanisms of rapid-acting antidepressants ketamine and scopolamine. Curr Neuropharmacol 2017; 15(1): 11-20.
[27]
Petryshen TL, Lewis MC, Dennehy KA, Garza JC, Fava M. Antidepressant-like effect of low dose ketamine and scopolamine co-treatment in mice. Neurosci Lett 2016; 620: 70-3.
[28]
Han J, Wang DS, Liu SB, Zhao MG. Cytisine, a partial agonist of alpha4beta2 nicotinic acetylcholine receptors reduced unpredictable chronic mild stress-induced depression-like behaviors. Biomol Ther (Seoul) 2016; 24(3): 291-7.
[29]
Wang HR, Woo YS, Bahk WM. Ineffectiveness of nicotinic acetylcholine receptor antagonists for treatment-resistant depression: A meta-analysis. Int Clin Psychopharmacol 2016; 31(5): 241-8.
[30]
Ma K, Xu A, Cui S, Sun MR, Xue YC, Wang JH. Impaired GABA synthesis, uptake and release are associated with depression-like behaviors induced by chronic mild stress. Transl Psychiatry 2016; 6(10): e910.
[31]
Douillard-Guilloux G, Lewis D, Seney ML, Sibille E. Decrease in somatostatin-positive cell density in the amygdala of females with major depression. Depress Anxiety 2017; 34(1): 68-78.
[32]
Nowak G, Partyka A, Pałucha A, et al. Antidepressant-like activity of CGP 36742 and CGP 51176, selective GABAB receptor antagonists, in rodents. Br J Pharmacol 2006; 149(5): 581-90.
[33]
Ghose S, Winter MK, McCarson KE, Tamminga CA, Enna SJ. The GABAB; receptor as a target for antidepressant drug action. Br J Pharmacol 2011; 162(1): 1-17.
[34]
Kavalali ET, Monteggia LM. Synaptic mechanisms underlying rapid antidepressant action of ketamine. Am J Psychiatry 2012; 169(11): 1150-6.
[35]
Du Jardin KG, Müller HK, Sanchez C, Wegener G, Elfving B. Gene expression related to serotonergic and glutamatergic neurotransmission is altered in the flinders sensitive line rat model of depression: Effect of ketamine. Synapse 2017; 71(1): 37-45.
[36]
Can A, Zanos P, Moaddel R, et al. Effects of ketamine and ketamine metabolites on evoked striatal dopamine release, dopamine receptors, and monamine transporters. J Pharmacol Exp Ther 2016; 359(1): 159-70.
[37]
Pomierny-Chamioło L, Poleszak E, Pilc A, Nowak G. NMDA but not AMPA glutamatergic receptors are involved in the antidepressant-like activity of MTEP during the forced swim test in mice. Pharmacol Rep 2010; 62(6): 1186-90.
[38]
Lu X, Barr AM, Kinney JW, et al. A role for galanin in antidepressant actions with a focus on the dorsal raphe nucleus. Proc Natl Acad Sci USA 2005; 102(3): 874-9.
[39]
Flores-Burgess A, Millón C, Gago B, et al. Galanin (1-15) enhancement of the behavioral effects of Fluoxetine in the forced swimming test gives a new therapeutic strategy against depression. Neuropharmacology 2017; 118: 233-41.
[40]
Millón C, Flores-Burgess A, Narváez M, et al. The neuropeptides Galanin and Galanin(1-15) in depression-like behaviours. Neuropeptides 2017; 64: 39-45.
[41]
Wang YJ, Li H, Yang YT, et al. Association of galanin and major depressive disorder in the Chinese Han population. PLoS One 2013; 8(5): e64617.
[42]
Nikisch G, Agren H, Eap CB, Czernik A, Baumann P, Mathé AA. Neuropeptide Y and corticotropin-releasing hormone in CSF mark response to antidepressive treatment with citalopram. Int J Neuropsychopharmacol 2005; 8(3): 403-10.
[43]
Chen C, Wilcoxen KM, Huang CQ, et al. Design of 2,5-dimethyl-3-(6-dimethyl-4-methylpyridin-3-yl)-7-dipropylaminopyrazolo [1,5-a]pyrimidine (NBI 30775/R121919) and structure--activity relationships of a series of potent and orally active corticotropin-releasing factor receptor antagonists. J Med Chem 2004; 47(19): 4787-98.
[44]
Holsboer F, Ising M. Central CRH system in depression and anxiety--evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 2008; 583(2-3): 350-7.
[45]
Treutlein J, Strohmaier J, Frank J, et al. Association between neuropeptide Y receptor Y2 promoter variant rs6857715 and major depressive disorder. Psychiatr Genet 2017; 27(1): 34-7.
[46]
Nakhate KT, Yedke SU, Bharne AP, Subhedar NK, Kokare DM. Evidence for the involvement of neuropeptide Y in the antidepressant effect of imipramine in type 2 diabetes. Brain Res 2016; 1646: 1-11.
[47]
Keller M, Montgomery S, Ball W, et al. Lack of efficacy of the substance p (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry 2006; 59(3): 216-23.
[48]
Di Fabio R, Alvaro G, Braggio S, et al. Identification, biological characterization and pharmacophoric analysis of a new potent and selective NK1 receptor antagonist clinical candidate. Bioorg Med Chem 2013; 21(21): 6264-73.
[49]
Ratti E, Bettica P, Alexander R, et al. Full central neurokinin-1 receptor blockade is required for efficacy in depression: Evidence from orvepitant clinical studies. J Psychopharmacol 2013; 27(5): 424-34.
[50]
Isogawa K, Nagayama H, Tsutsumi T, Kiyota A, Akiyoshi J, Hieda K. Simultaneous use of thyrotropin-releasing hormone test and combined dexamethasone/corticotropine-releasing hormone test for severity evaluation and outcome prediction in patients with major depressive disorder. J Psychiatr Res 2005; 39(5): 467-73.
[51]
Kose S, Cetin M. Triple reuptake inhibitors (TRIs): do they promise us a rose garden? Psych Clin Psychopharmacol 2018; 28: 119-22.
[52]
Sharma H, Santra S, Dutta A. Triple reuptake inhibitors as potential next-generation antidepressants: A new hope? Future Med Chem 2015; 7(17): 2385-406.
[53]
Grady SE, Marsh TA, Tenhouse A, Klein K. Ketamine for the treatment of major depressive disorder and bipolar depression: A review of the literature. Ment Health Clin 2018; 7(1): 16-23.
[54]
Palucha-Poniewiera A, Podkowa K, Lenda T, Pilc A. The involvement of monoaminergic neurotransmission in the antidepressant-like action of scopolamine in the tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79: 155-61.