Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

New Insights in Design and Development of Antitubercular Drugs

Author(s): Snehlata Yadav and Balasubramanian Narasimhan*

Volume 16, Issue 1, 2020

Page: [13 - 23] Pages: 11

DOI: 10.2174/1573407215666190409153756

Price: $65

Abstract

Background: Tuberculosis, an infectious disease caused mainly by the Mycobacterium tuberculosis accounts for the highest number of deaths worldwide. Despite curing millions, the currently used drug regimens are bounded by various limitations such as long course of therapy, emergence of resistance and permanent tissue damage. The treatment of multidrug-resistant and extremely drugresistant tuberculosis is a challenging task due to its reliance on second-line drugs which are less potent and more toxic than those used in the clinical management of drug-susceptible tuberculosis. Therefore, the major challenges in the upcoming years are to overcome the emergence of increased number of multidrug-resistant as well as extensively drug-resistant strains and the ineptness of the current treatment regimens against latent tuberculosis. Bedaquiline and Delamanid are the only new anti-TB drugs that have been currently approved since more than 40 years after discovery of isoniazid. Bedaquiline is the first diarylquinoline derivative that has showed resilient culture conversion at 24 weeks in phase IIb trials.

Methods: Extensive literature search on the topic was undergone using a focused question.

Results: Fifty-eight research articles from journals of repute are included in the review. The vaccine and peptide-based conjugates are recent developments against Mycobacterium for selective and specific targeting to the desired tissues.

Conclusion: In this review, we have focused on the different classes of chemical as well as plant based compounds as potent antitubercular agents against multidrug-resistant tuberculosis strains. This review falls light on the importance of research been undergoing in different parts of the world to combat the ever increasing problem of mycobacterial resistance and the various treatment options available for the treatment of tuberculosis.

Keywords: Adamantane, conjugate, isocitrate lyase, pharmacophore, therapy, vaccine.

Graphical Abstract

[1]
Ahmad, T.; Khan, M.; Khan, M.M.; Ejeta, E.; Karami, M.; Ohia, C.Haroon Treatment outcome of tuberculosis patients under directly observed treatment short course and its determinants in Shangla, Khyber-Pakhtunkhwa, Pakistan: A retrospective study. Int. J. Mycobacteriol., 2017, 6(4), 360-364.
[http://dx.doi.org/10.4103/ijmy.ijmy_69_17] [PMID: 29171450]
[2]
World Health Organization. Global tuberculosis report, 2017.http://www.who.int/tb/publications/global_report/en/ www.who.int/tb/
[3]
Dong, Z.; Xu, L.; Yang, J.; He, Y.; She, Q.; Wang, J.; Zhang, Z.; Feng, X.; Li, D.; Yang, C. Primary application of PPE68 of Mycobacterium tuberculosis. Hum. Immunol., 2014, 75(5), 428-432.
[http://dx.doi.org/10.1016/j.humimm.2014.02.017] [PMID: 24530747]
[4]
Ufimtseva, E.G.; Eremeeva, N.I.; Petrunina, E.M.; Umpeleva, T.V.; Bayborodin, S.I.; Vakhrusheva, D.V.; Skornyakov, S.N. Mycobacterium tuberculosis cording in alveolar macrophages of patients with pulmonary tuberculosis is likely associated with increased mycobacterial virulence. Tuberculosis (Edinb.), 2018, 112, 1-10.
[http://dx.doi.org/10.1016/j.tube.2018.07.001] [PMID: 30205961]
[5]
Mora, S.A.; Awosan, K.J.; Oche, M.O.; Liman, H.M.; Makusidi, M.A.; Arisegi, S.A. Knowledge of tuberculosis and prevalence of return after default and treatment failure among patients on directly observed treatment short course therapy at Specialist Hospital, Sokoto, Nigeria. Asia-Pac. J. Health Sci., 2018, 5(1), 42-46.
[http://dx.doi.org/10.21276/apjhs.2018.5.1.10]
[6]
Schweon, S.J. Tuberculosis update. J. Radiol. Nurs., 2009, 28(1), 12-19.
[http://dx.doi.org/10.1016/j.jradnu.2008.11.001]
[7]
Deng, Y.; Li, X.; Xiang, Y.; Li, H.; Lu, P.; Yu, W. Application of 18FFDG PET/CT in the diagnosis of extrapulmonary tuberculosis. Radiol. Infect. Dis., 2018.http://dx.doi.org/https://doi.org/10.1016/j.jrid.2018.11.003
[8]
Burke, K.A.; Patel, A.; Jayaratnam, A.; Thiruppathy, K.; Snooks, S.J. Diagnosing abdominal tuberculosis in the acute abdomen. Int. J. Surg., 2014, 12(5), 494-499.
[http://dx.doi.org/10.1016/j.ijsu.2014.02.006] [PMID: 24560849]
[9]
Figueiredo, A.A.; Lucon, A.M.; Junior, R.F.; Srougi, M. Epidemiology of urogenital tuberculosis worldwide. Int. J. Urol., 2008, 15(9), 827-832.
[http://dx.doi.org/10.1111/j.1442-2042.2008.02099.x] [PMID: 18637157]
[10]
Kager, L.M.; Runge, J.H.; Nederveen, A.J.; Roelofs, J.J.; Stoker, J.; Maas, M.; van der Poll, T. A new murine model to study musculoskeletal tuberculosis (short communication). Tuberculosis (Edinb.), 2014, 94(3), 306-310.
[http://dx.doi.org/10.1016/j.tube.2014.01.002] [PMID: 24572169]
[11]
Oliveira, S.B.V.; Passos, A.F.; Hadad, D.J.; Zbyszynski, L.; de Almeida Júnior, P.S.; Castellani, L.G.S.; Dietze, R.; Palaci, M. The impact of ocular tuberculosis on vision after two months of intensive therapy. Braz. J. Infect. Dis., 2018, 22(3), 159-165.
[http://dx.doi.org/10.1016/j.bjid.2018.03.005] [PMID: 29679545]
[12]
Rexiti, P.; Abudurexiti, T.; Abuduwali, N.; Deng, Q.; Guo, H. Debridement and internal fixation from a single posterior approach for the treatment of lumbosacral tuberculosis. World Neurosurg., 2018, 120, e392-e399.
[http://dx.doi.org/10.1016/j.wneu.2018.08.081] [PMID: 30144601]
[13]
Bleibtreua, A.; Grall, N. Laissy, J.-P.; Rioux, C.; Strukov, A.; Lariven, S.; Yenia, P.; Yazdanpanah, Y.; Joly, V. Contribution of brain imaging to the diagnosis of intracranial tuberculoma and other brain lesions in patients presenting with miliary tuberculosis. Med. Mal. Infect., 2017, 48(8), 533-539.
[http://dx.doi.org/10.1016/j.medmal.2018.06.006]
[14]
Faustini, A.; Hall, A.J.; Perucci, C.A. Risk factors for multidrug resistant tuberculosis in Europe: a systematic review. Thorax, 2006, 61(2), 158-163.
[http://dx.doi.org/10.1136/thx.2005.045963] [PMID: 16254056]
[15]
Post, F.A.; Grint, D.; Werlinrud, A.M.; Panteleev, A.; Riekstina, V.; Malashenkov, E.A.; Skrahina, A.; Duiculescu, D.; Podlekareva, D.; Karpov, I.; Bondarenko, V.; Chentsova, N.; Lundgren, J.; Mocroft, A.; Kirk, O.; Miro, J.M. HIV-TB Study Group. Multi-drug-resistant tuberculosis in HIV positive patients in Eastern Europe. J. Infect., 2014, 68(3), 259-263.
[http://dx.doi.org/10.1016/j.jinf.2013.09.034] [PMID: 24247067]
[16]
Harris, K.K.; Fay, A.; Yan, H.G.; Kunwar, P.; Socci, N.D.; Pottabathini, N.; Juventhala, R.R.; Djaballah, H.; Glickman, M.S. Novel imidazoline antimicrobial scaffold that inhibits DNA replication with activity against mycobacteria and drug resistant Gram-positive cocci. ACS Chem. Biol., 2014, 9(11), 2572-2583.
[http://dx.doi.org/10.1021/cb500573z] [PMID: 25222597]
[17]
Seung, K.J.; Keshavjee, S.; Rich, M.L. multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb. Perspect. Med., 2015, 5(9)a017863
[http://dx.doi.org/10.1101/cshperspect.a017863] [PMID: 25918181]
[18]
Prasad, R.; Gupta, N.; Banka, A. Multidrug-resistant tuberculosis/rifampicin-resistant tuberculosis: Principles of management. Lung India, 2018, 35(1), 78-81.
[http://dx.doi.org/10.4103/lungindia.lungindia_98_17] [PMID: 29319042]
[19]
Lange, C.; Abubakar, I.; Alffenaar, J.W.; Bothamley, G.; Caminero, J.A.; Carvalho, A.C.; Chang, K.C.; Codecasa, L.; Correia, A.; Crudu, V.; Davies, P.; Dedicoat, M.; Drobniewski, F.; Duarte, R.; Ehlers, C.; Erkens, C.; Goletti, D.; Günther, G.; Ibraim, E.; Kampmann, B.; Kuksa, L.; de Lange, W.; van Leth, F.; van Lunzen, J.; Matteelli, A.; Menzies, D.; Monedero, I.; Richter, E.; Rüsch-Gerdes, S.; Sandgren, A.; Scardigli, A.; Skrahina, A.; Tortoli, E.; Volchenkov, G.; Wagner, D.; van der Werf, M.J.; Williams, B.; Yew, W.W.; Zellweger, J.P.; Cirillo, D.M. TBNET. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. Eur. Respir. J., 2014, 44(1), 23-63.
[http://dx.doi.org/10.1183/09031936.00188313] [PMID: 24659544]
[20]
Diacon, A.H.; Pym, A.; Grobusch, M.; Patientia, R.; Rustomjee, R.; Page-Shipp, L.; Pistorius, C.; Krause, R.; Bogoshi, M.; Churchyard, G.; Venter, A.; Allen, J.; Palomino, J.C.; De Marez, T.; van Heeswijk, R.P.G.; Lounis, N.; Meyvisch, P.; Verbeeck, J.; Parys, W.; de Beule, K.; Andries, K.; Mc Neeley, D.F. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med., 2009, 360(23), 2397-2405.
[http://dx.doi.org/10.1056/NEJMoa0808427] [PMID: 19494215]
[21]
Abuhammad, A.; Fullam, E.; Bhakta, S.; Russell, A.J.; Morris, G.M.; Finn, P.W.; Sim, E. Exploration of piperidinols as potential antitubercular agents. Molecules, 2014, 19(10), 16274-16290.
[http://dx.doi.org/10.3390/molecules191016274] [PMID: 25310152]
[22]
Patterson, S.; Wyllie, S.; Norval, S.; Stojanovski, L.; RC, Simeons, R.; Auer, J.L.; Osuna-Cabello, M.; Read, K.D.; Fairlamb, A.H. The anti-tubercular drug delamanid as a potential oral treatment for visceral leishmaniasis. Microbiol. Infect. Dis., 2016, 5 e09744
[http://dx.doi.org/10.7554/eLife.09744]
[23]
Gualano, G.; Capone, S.; Matteelli, A.; Palmieri, F. New antituberculosis drugs: From clinical trial to programmatic use. Infect. Dis. Rep., 2016, 8(2), 6569.
[http://dx.doi.org/10.4081/idr.2016.6569] [PMID: 27403268]
[24]
Tiberi, S.; Muñoz-Torrico, M.; Duarte, R.; Dalcolmo, M.; D’Ambrosio, L.; Migliori, G.B. New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology, 2018, 24(2), 86-98.
[http://dx.doi.org/10.1016/j.rppnen.2017.10.009] [PMID: 29487031]
[25]
Awasthi, D.; Freundlich, J.S. Antimycobacterial metabolism: Illuminating Mycobacterium tuberculosis biology and drug discovery. Trends Microbiol., 2017, 25(9), 756-767.
[http://dx.doi.org/10.1016/j.tim.2017.05.007] [PMID: 28622844]
[26]
Ganihigama, D.U.; Sureram, S.; Sangher, S.; Hongmanee, P.; Aree, T.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Antimycobacterial activity of natural products and synthetic agents: pyrrolodiquinolines and vermelhotin as anti-tubercular leads against clinical multidrug resistant isolates of Mycobacterium tuberculosis. Eur. J. Med. Chem., 2014, 89, 1-12.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.026] [PMID: 25462220]
[27]
Pezzella, A.T. History of pulmonary tuberculosis. Thorac. Surg. Clin., 2019, 29(1), 1-17.
[http://dx.doi.org/10.1016/j.thorsurg.2018.09.002] [PMID: 30454916]
[28]
Manning, T.; Mikula, R.; Lee, H.; Calvin, A.; Darrah, J.; Wylie, G.; Phillips, D.; Bythell, B.J. The copper (II) ion as a carrier for the antibiotic capreomycin against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2014, 24(3), 976-982.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.053] [PMID: 24424129]
[29]
M y, L.; H L, W.; J, H.; G C, S.; y G, W.; J X, W.; X e, X. Curcumin inhibits 19-kDa lipoprotein of Mycobacterium tuberculosis induced macrophage apoptosis via regulation of the JNK pathway. Biochem. Biophys. Res. Commun., 2014, 446(2), 626-632.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.023] [PMID: 24631908]
[30]
Joshi, J.M. Tuberculosis chemotherapy in the 21 century: Back to the basics. Lung India, 2011, 28(3), 193-200.
[http://dx.doi.org/10.4103/0970-2113.83977] [PMID: 21886955]
[31]
Nguyen, L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch. Toxicol., 2016, 90(7), 1585-1604.
[http://dx.doi.org/10.1007/s00204-016-1727-6] [PMID: 27161440]
[32]
Bocanegra-García, V.; García, A.; Palma-Nicolás, J.P.; Palos, I.; Rivera, G. Antitubercular drugs development: Recent Advances in Se-lected Therapeutic Targets and Rational Drug Design. In: Drug Discovery Drug Development - A Case Study Based Insight into Modern Strategies; Chris, Rundfeldt., Ed.; IntechOpen: Vienna, Austria, 2011; pp. 207-242.
[33]
Yadav, S.; Narasimhan, B.; Lim, S.M.; Ramasamy, K.; Vasudevan, M.; Shah, S.A.A.; Mathur, A. Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of benzimidazole derivatives. EJBAS, 2018, 5, 100-109.
[http://dx.doi.org/10.1016/j.ejbas.2017.11.001]
[34]
Gobis, K.; Foks, H.; Serocki, M.; Augustynowicz-Kopeć, E.; Napiórkowska, A. Synthesis and evaluation of in vitro antimycobacterial activity of novel 1H-benzo[d]imidazole derivatives and analogues. Eur. J. Med. Chem., 2015, 89, 13-20.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.031] [PMID: 25462221]
[35]
Angelova, V.T.; Valcheva, V.; Vassilev, N.G.; Buyukliev, R.; Momekov, G.; Dimitrov, I.; Saso, L.; Djukic, M.; Shivachev, B. Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2H-chromene and coumarin scaffold. Bioorg. Med. Chem. Lett., 2017, 27(2), 223-227.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.071] [PMID: 27914798]
[36]
Addla, D.; Jallapally, A.; Gurram, D.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Design, synthesis and evaluation of 1,2,3-triazole-adamantylacetamide hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2014, 24(8), 1974-1979.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.061] [PMID: 24679703]
[37]
Arancibia, R.; Klahn, A.H.; Lapier, M.; Maya, J.D.; Ibanez, A.; Garland, T.; Carrere-Kremer, S.; Kremer, L.; Biot, C. Synthesis, characterization and in vitro anti-Trypanosoma cruzi and anti- Mycobacterium tuberculosis evaluations of cyrhetrenyl and ferrocenyl thiosemicarbazones. J. Organomet. Chem., 2014, 755, 1-6.
[http://dx.doi.org/10.1016/j.jorganchem.2013.12.049]
[38]
Avalos-Alanís, F.G.; Hernández-Fernández, E.; Carranza-Rosales, P.; López-Cortina, S.; Hernández-Fernández, J.; Ordóñez, M.; Guzmán-Delgado, N.E.; Morales-Vargas, A.; Velázquez-Moreno, V.M.; Santiago-Mauricio, M.G. Synthesis, antimycobacterial and cytotoxic activity of α,β-unsaturated amides and 2,4-disubstituted oxazoline derivatives. Bioorg. Med. Chem. Lett., 2017, 27(4), 821-825.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.024] [PMID: 28117200]
[39]
Angelova, V.T.; Valcheva, V.; Pencheva, T.; Voynikov, Y.; Vassilev, N.; Mihaylova, R.; Momekov, G.; Shivachev, B. Synthesis, antimycobacterial activity and docking study of 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives and related hydrazide-hydrazones. Bioorg. Med. Chem. Lett., 2017, 27(13), 2996-3002.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.011] [PMID: 28512022]
[40]
Bharkavi, C.; Vivek Kumar, S.; Ashraf Ali, M.; Osman, H.; Muthusubramanian, S.; Perumal, S. One-pot microwave assisted stereoselective synthesis of novel dihydro-2‘H-spiro[indene-2,1’-pyrrolo-[3,4-c]pyrrole]-tetraones and evaluation of their antimycobacterial activity and inhibition of AChE. Bioorg. Med. Chem. Lett., 2017, 27(14), 3071-3075.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.050] [PMID: 28552337]
[41]
Reyes-Melo, K.; García, A.; Romo-Mancillas, A.; Garza-González, E.; Rivas-Galindo, V.M.; Miranda, L.D.; Vargas-Villarreal, J.; Favela-Hernández, J.M.J.; Camacho-Corona, M.D.R. meso-Dihydroguaiaretic acid derivatives with antibacterial and antimycobacterial activity. Bioorg. Med. Chem., 2017, 25(20), 5247-5259.
[http://dx.doi.org/10.1016/j.bmc.2017.07.047] [PMID: 28844400]
[42]
Huang, J.; Liu, H.; Liu, M.; Zhang, R.; Li, L.; Wang, B.; Wang, M.; Wang, C.; Lu, Y. Synthesis, antimycobacterial and antibacterial activity of l-[(1R,2S)-2-fluorocyclopropyl]naphthyridone derivatives containing an oxime-functionalized pyrrolidine moiety. Bioorg. Med. Chem. Lett., 2015, 25(22), 5058-5063.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.027] [PMID: 26476970]
[43]
Zhang, T.; Shen, W.; Liu, M.; Zhang, R.; Wang, M.; Li, L.; Wang, B.; Guo, H.; Lu, Y. Synthesis, antimycobacterial and antibacterial activity of fluoroquinolone derivatives containing an 3-alkoxyimino-4-(cyclopropylanimo)methylpyrrolidine moiety. Eur. J. Med. Chem., 2015, 104, 73-85.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.030] [PMID: 26435513]
[44]
Huang, J.; Wang, M.; Wang, B.; Wu, Z.; Liu, M.; Feng, L.; Zhang, J.; Li, X.; Yang, Y.; Lu, Y. Synthesis, antimycobacterial and antibacterial activity of 1-(6-amino-3,5-difluoropyridin-2-yl)fluoroquinolone derivatives containing an oxime functional moiety. Bioorg. Med. Chem. Lett., 2016, 26(9), 2262-2267.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.050] [PMID: 27020299]
[45]
Jose, G.; Suresha Kumara, T.H.; Sowmya, H.B.V.; Sriram, D.; Guru Row, T.N.; Hosamani, A.A.; More, S.S.; Janardhan, B.; Harish, B.G.; Telkar, S.; Ravikumar, Y.S. Synthesis, molecular docking, antimycobacterial and antimicrobial evaluation of new pyrrolo[3,2-c]pyridine Mannich bases. Eur. J. Med. Chem., 2017, 131, 275-288.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.015] [PMID: 28340368]
[46]
Rajkhowa, S.; Jha, A.N.; Deka, R.C. Anti-tubercular drug development: computational strategies to identify potential compounds. J. Mol. Graph. Model., 2015, 62, 56-68.
[http://dx.doi.org/10.1016/j.jmgm.2015.09.007] [PMID: 26386453]
[47]
Coronado-Aceves, E.W.; Gigliarelli, G.; Garibay-Escobar, A.; Zepeda, R.E.R.; Curini, M.; López Cervantes, J.; Inés Espitia-Pinzón, C.I.; Superchi, S.; Vergura, S.; Marcotullio, M.C. New Isoflavonoids from the extract of Rhynchosia precatoria (Humb. & Bonpl. ex Willd.) DC. and their antimycobacterial activity. J. Ethnopharmacol., 2017, 206, 92-100.
[http://dx.doi.org/10.1016/j.jep.2017.05.019] [PMID: 28506901]
[48]
Hans, S.; Sharma, S.; Hameed, S.; Fatima, Z. Sesamol exhibits potent antimycobacterial activity: Underlying mechanisms and impact on virulence traits. J. Glob. Antimicrob. Resist., 2017, 10, 228-237.
[http://dx.doi.org/10.1016/j.jgar.2017.06.007] [PMID: 28735047]
[49]
Madikizela, B.; Ndhlala, A.R.; Finnie, J.F.; Van Staden, J. Antimycobacterial, anti-inflammatory and genotoxicity evaluation of plants used for the treatment of tuberculosis and related symptoms in South Africa. J. Ethnopharmacol., 2014, 153(2), 386-391.
[http://dx.doi.org/10.1016/j.jep.2014.02.034] [PMID: 24576406]
[50]
Aanandhi, M.V.; Bhattacherjee, D.; George, P.S.G.; Ray, A. Natural polyphenols down-regulate universal stress protein in Mycobacterium tuberculosis: An in-silico approach. J. Adv. Pharm. Technol. Res., 2014, 5(4), 171-178.
[http://dx.doi.org/10.4103/2231-4040.143036] [PMID: 25364695]
[51]
do Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; Vieira, M.D.C.; Góis Ruiz, A.L.T.; Ann Foglio, M.; de Carvalho, J.E.; Formagio, A.S.N. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol., 2018, 210, 351-358.
[http://dx.doi.org/10.1016/j.jep.2017.08.030] [PMID: 28844678]
[52]
Baranyai, Z.; Krátký, M.; Vosátka, R.; Szabó, E.; Senoner, Z.; Dávid, S.; Stolaříková, J.; Vinšová, J.; Bősze, S. In vitro biological evaluation of new antimycobacterial salicylanilide-tuftsin conjugates. Eur. J. Med. Chem., 2017, 133, 152-173.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.047] [PMID: 28384546]
[53]
Horváti, K.; Bacsa, B.; Szabó, N.; Dávid, S.; Mező, G.; Grolmusz, V.; Vértessy, B.; Hudecz, F.; Bősze, S. Enhanced cellular uptake of a new, in silico identified antitubercular candidate by peptide conjugation. Bioconjug. Chem., 2012, 23(5), 900-907.
[http://dx.doi.org/10.1021/bc200221t] [PMID: 22515329]
[54]
Horváti, K.; Bacsa, B.; Szabó, N.; Fodor, K.; Balka, G.; Rusvai, M.; Kiss, É.; Mező, G.; Grolmusz, V.; Vértessy, B.; Hudecz, F.; Bősze, S. Antimycobacterial activity of peptide conjugate of pyridopyrimidine derivative against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Tuberculosis (Edinb.), 2015, 95(Suppl. 1), S207-S211.
[http://dx.doi.org/10.1016/j.tube.2015.02.026] [PMID: 25728610]
[55]
Hu, D.; Wu, J.; Zhang, R.; Chen, L.; Chen, Z.; Wang, X.; Xu, L.; Xiao, J.; Hu, F.; Wu, C. Autophagy-targeted vaccine of LC3-LpqH DNA and its protective immunity in a murine model of tuberculosis. Vaccine, 2014, 32(20), 2308-2314.
[http://dx.doi.org/10.1016/j.vaccine.2014.02.069] [PMID: 24631071]
[56]
Sullivan, T.; Ben Amor, Y. Global introduction of new multidrug-resistant tuberculosis drugs-balancing regulation with urgent patient needs. Emerg. Infect. Dis., 2016, 22(3)e151228
[http://dx.doi.org/10.3201/eid2203.151228] [PMID: 26889711]
[57]
Xavier, A.S.; Lakshmanan, M. Delamanid: A new armor in combating drug-resistant tuberculosis. J. Pharmacol. Pharmacother., 2014, 5(3), 222-224.
[http://dx.doi.org/10.4103/0976-500X.136121] [PMID: 25210407]
[58]
Karekar, S.R.; Marathe, P.A. Current status of delamanid in the management of MDR tuberculosis. J. Assoc. Physicians India, 2018, 66(7), 72-75.
[PMID: 31325268]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy