[1]
A. Kumar, and A. Abraham, "Opinion mining to assist user acceptance testing for open-beta versions", J. Information Assurance Security, vol. 12, pp. 146-153, 2017.
[2]
A. Kumar, and T.M. Sebastian, "Machine learning assisted sentiment analysis", In: Proceedings of International Conference on Computer Science & Engineering (ICCSE’2012), 2012, pp. 123-130.
[3]
A. Kumar, P. Dogra, and V. Dabas, "Emotion analysis of Twitter using opinion mining", In: Eighth International Conference on Contemporary Computing (IC3), (IEEE 2015), 2015, pp. 285-290.
[4]
Kumar A., and Joshi A., "Ontology driven sentiment analysis on social web for government intelligence", In: Proceedings of the Special Collection on eGovernment Innovations in India. ACM, 2017, pp. 134-139.
[5]
M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E.D. Trippe, J.B. Gutierrez, and K. Kochut, "A brief survey of text mining: Classification, clustering and extraction techniques", , arXiv preprint arXiv:1707.02919, 2017.
[6]
A. Kumar, and A. Jaiswal, "Empirical Study of twitter and tumblr for sentiment analysis using soft computing techniques", In: Proceedings of the World Congress on Engineering and Computer Science, vol. 1. pp. 1-5. 2017
[7]
A. Kumar, and T.M. Sebastian, "Sentiment analysis: A perspective on its past, present and future", Int. J. Intelligent Systems & Appl., vol. 4, no. 10, pp. 1-14, 2012.
[8]
B. Pang, and L. Lee, "Opinion mining and sentiment analysis (Foundations and Trends (R)", in Information. Retrieval, , vol. 2, no. 1-2, 2008, pp. 1-135, .
[9]
A. Kumar, R. Khorwal, and S. Chaudhary, "A survey on sentiment analysis using swarm intelligence", Indian J. Sci. & Tech., vol. 9, no. 39, . 2016
[10]
A. Kumar, and R. Khorwal, "Firefly algorithm for feature selection in sentiment analysis", In: Computational Intelligence in Data Mining., Springer, 2017, pp. 693-703.
[11]
A. Kumar, and R. Rani, "Sentiment analysis using neural network", In: 2nd International Conference on Next Generation Computing Technologies (NGCT), IEEE, 2016., 17848391.
[12]
A. Kumar, and A. Jaiswal, "Image sentiment analysis using convolutional neural network", In: International Conference on Intelligent Systems Design and Applications, Springer: Cham, 2017, pp. 464-473.
[13]
S.N. Sivanandam, and S.N. Deepa, Principles of Soft Computing (With CD)., John Wiley & Sons, 2007.
[14]
Y. Kim, "Convolutional neural networks for sentence classification", arXiv preprint arXiv:1408.5882, 2014.
[15]
A. Severyn, and A. Moschitti, "Twitter sentiment analysis with deep convolutional neural networks", In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, 2015, pp. 959-962.
[16]
J. Pennington, R. Socher, and C. Manning, "Glove: Global vectors for word representation", In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1532-1543.
[17]
D. Stojanovski, G. Strezoski, G. Madjarov, and I. Dimitrovski, "Twitter sentiment analysis using deep convolutional neural network", In: International Conference on Hybrid Artificial Intelligence Systems, Springer : Cham, 2015, pp. 726-737.
[18]
K. Dave, S. Lawrence, and D.M. Pennock, "Mining the peanut gallery: Opinion extraction and semantic classification of product reviews", In: Proceedings of the 12th international conference on World Wide Web, ACM, 2003, pp. 519-528.
[19]
W. Ouyang, and X. Wang, "Joint deep learning for pedestrian detection", In: Proceedings of the IEEE International Conference on Computer Vision, Sydney, NSW, 2013, pp. 2056-2063.
[20]
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, "Learning deep features for scene recognition using places database", Advances in neural Information processing systems, 2014.
[21]
A.S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: an astounding baseline for recognition", In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 512-519.
[22]
D. Stojanovski, G. Strezoski, G. Madjarov, and I. Dimitrovski, "Twitter sentiment analysis using deep convolutional neural network", In: International Conference on Hybrid Artificial Intelligence Systems, Springer, Cham, 2015, pp. 726-737.
[23]
X. Ouyang, P. Zhou, C.H. Li, and L. Liu, "Sentiment analysis using convolutional neural network", In: International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM) , IEEE, 2015, pp. 2359-2364.
[24]
A. Chachra, P. Mehndiratta, and M. Gupta, "Sentiment analysis of text using deep convolution neural networks", In: Tenth International Conference on Contemporary Computing (IC3), IEEE, 2017, pp. 1-6.
[25]
A. Salinca, "Convolutional Neural Networks for Sentiment Classification on Business Reviews", ArXiv Preprint, ArXiv:1710.05978, 2017.
[26]
A. Kumar, and T. M. Sebastian, "Sentiment analysis on twitter", Int. J. Comp. Sci. Issues (IJCSI), vol. 9, no. issue 4, no. 3,, pp. 372-378. 2012
[27]
M.R. Huq, A. Ali, and A. Rahman, "Sentiment analysis on Twitter data using KNN and SVM", Int. J. Adv. Comp. Sci. Appl., vol. 8, no. 6, pp. 19-25, 2017.
[28]
G. Sidorov, S. Miranda-Jiménez, F. Viveros-Jiménez, A. Gelbukh, N. Castro-Sánchez, F. Velásquez, I. Díaz-Rangel, S. Suárez-Guerra, A. Trevino, and J. Gordon, "Empirical study of machine learning based approach for opinion mining in tweets", In: Mexican International Conference on Artificial Intelligence, Springer, Berlin, Heidelberg, 2012, pp. 1-14.
[29]
M.S. Neethu, and R. Rajasree, "Sentiment analysis in twitter using machine learning techniques", In: Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), IEEE, 2013, pp. 1-5.
[30]
Z. Wang, V.J. Tong, and H.C. Chin, "Enhancing machine-learning methods for sentiment classification of web data", Asia Information Retrieval Symposium, Springer, Cham, 2014
[31]
B. Duncan, and Y. Zhang, "Neural networks for sentiment analysis on Twitter", In: 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), IEEE, 2015, pp. 275-278.
[32]
A.K. Dash, J.K. Rout, and S.K. Jena, "Harnessing twitter for automatic sentiment identification using machine learning techniques", In: Proceedings of 3rd International Conference on Advanced Computing, Networking and Informatics. Springer, New Delhi, 2016, pp. 507-514.
[33]
C. dos Santos, and M. Gatti, "Deep convolutional neural networks for sentiment analysis of short texts", In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, 2014, pp. 69-78.
[34]
A. Severyn A and A. Moschitti, "Unitn: Training deep convolutional neural network for twitter sentiment classification", In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), 2015, pp. 464-469.
[35]
S. Liao, J. Wang, R. Yu, K. Sato, and Z. Cheng, "CNN for situations understanding based on sentiment analysis of twitter data", In: Procedia Computer. Science., vol. 111. pp. 376-381. 2017
[36]
Y. Lu, K. Sakamoto, H. Shibuki, and T. Mori, "Are deep learning methods better for twitter sentiment analysis?", In: Proceedings of The 23rd Annual Meeting of Natural Language Processing (Japan), 2017, pp. 787-790.
[37]
Z. Jianqiang, G. Xiaolin, and Z. Xuejun, "Deep convolution neural networks for twitter sentiment analysis", IEEE Access, vol. 6, pp. 23253-23260, 2018.
[38]
R. Rajput, and A. Solanki, "Review of sentimental analysis methods using lexicon based approach", Int. J. Comp. Sci. and Mob. Computing, vol. 5, no. 2, pp. 159-166, 2016.
[39]
S. Rosenthal, N. Farra, and P. Nakov, "SemEval-2017 Task 4: Sentiment analysis in Twitter", In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 2017, pp. 502-518.
[40]
http://alt.qcri.org/semeval2017/task4/ , [Online]. Accessed on: Jan. 2, 2018.
[42]
A. Kumar, A. Jaiswal, S. Garg, S. Verma, and S. Kumar, "Sentiment analysis using cuckoo search for optimized feature selection on kaggle tweets", Intorm. J. Inf. Retrieval. Res., vol. 9, pp. 1-15, 2019.
[43]
J.S. Teja, G.K. Sai, M.D. Kumar, and R. Manikandan, "Sentiment analysis of movie reviews using machine learning algorithms - A Survey", Int. J. Pure Appl. Math., vol. 118, no. 21, pp. 3277-3284, 2018.
[44]
Z. Jianqiang, and G. Xiaolin, "Comparison research on text pre-processing methods on twitter sentiment analysis", IEEE Access, vol. 5, pp. 2870-2879, 2017.
[45]
"Internet & Text Slang Dictionary. [Online]. Available: ", https://www.noslang.com/dictionary , Accessed on: Jan. 2, 2018.
[46]
"List of emoticons, Wikipedia, [Online]. Available:", http://en.wikipedia.org/wiki/Listof emoticons , Accessed on: Jan. 2, 2018.
[47]
"Brendano, GitHub.com, [Online]. Available: ", https://github.com/ brendano/ark-tweet-nlp/tree/master/src/cmu/arktweetnlp , Accessed on: Jan 2, 2018.