Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Phytochemical Analysis and Evaluation of Antimicrobial Activity of Peumus boldus, Psidium guajava, Vernonia polysphaera, Persea Americana, Eucalyptus citriodora Leaf Extracts and Jatropha multifida Raw Sap

Author(s): Jhonatas Emílio Ribeiro da Cruz, Joyce Ferreira da Costa Guerra, Marcos de Souza Gomes, Guilherme Ramos Oliveira e Freitas and Enyara Rezende Morais*

Volume 20, Issue 5, 2019

Page: [433 - 444] Pages: 12

DOI: 10.2174/1389201020666190409104910

Price: $65

Abstract

Background: Currently, the treatment of infectious diseases has not always been successful due to the emergence of microbial resistance worldwide.

Objectives: This study aimed to evaluate the antioxidant activity, content of total phenolic compounds and flavonoids, antifungal potential and antibacterial action of six medicinal plants found in the Cerrado, leaf extracts of Boldo (Peumus boldus), Goiaba (Psidium guajava), Assa-Peixe (Vernonia polysphaera), Abacate (Persea americana), Eucalipto (Eucalyptus citriodora) and raw sap of Bálsamo (Jatropha multifida).

Methods: The antioxidant activity was also determined through the DPPH, ABTS and phosphomolybdenum assays. In addition, the total phenolic content and flavonoid dosage were analyzed using the Folin- Ciocalteu method and the aluminum chloride test, respectively.

Results: All extracts, except from Assa-Peixe, showed promising values against Staphylococcus aureus, with halos varying from 13-20 mm. Analysis of the minimum inhibitory concentration (MIC) values of the six medicinal plants revealed inhibitory activity of S. aureus, with concentrations varying from 3.12-12.5 mg/mL, which is a significant result considering that S. aureus is one of the main causes of hospital infections.

Conclusion: In the analysis of the phytochemical profile, Goiaba contained the best yield of phenolic compounds and total flavonoids, as well as higher antioxidant activity by DPPH and phosphomolybdenum, demonstrating that this species contains antioxidant components that can sequester free radicals under in vitro conditions. Therefore, the crude extracts investigated are promising and their antibacterial and antioxidant actions should be thoroughly studied.

Keywords: Antioxidants, flavonoids, infectious diseases, natural products, secondary metabolites, new antibiotics.

« Previous
Graphical Abstract

[1]
Guschin, A.; Ryzhikh, P.; Rumyantseva, T.; Gomberg, M.; Unemo, M. Treatment efficacy, treatment failures and selection of macrolide resistance in patients with high load of Mycoplasma genitalium during treatment of male urethritis with josamycin. BMC Infect. Dis., 2015, 15, 40.
[2]
Bassetti, M.; Bouza, E. Invasive mould infections in the ICU setting: complexities and solutions. J. Antimicrobial Chemother, 2017, 72 (suppl_1). , i39-i47.
[3]
Wurster, J.I.; Bispo, P.J.M.; Van Tyne, D.; Cadorette, J.J.; Boody, R.; Gilmore, M.S. Staphylococcus aureus from ocular and otolaryngology infections are frequently resistant to clinically important antibiotics and are associated with lineages of community and hospital origins. PLoS One, 2018, 13(12)e0208518
[4]
Pupo, M.T.; Gallo, M.B.C.; Vieira, P.C. Chemical biology: A modern strategy for the natural products research. Quim. Nova, 2007, 30(6), 1446-1455.
[5]
Ramos, R.S.; Sarmento, P.A.; Lins, T.H.; Lúcio, I.M.L.; Conserva, L.M.; Bastos, M.L.A. In vitro antimicrobial activity of hexane and ethanol extracts of Zeyheria tuberculosa leaves. Ver. da Rede de Enfermagem do Nordeste, 2012, 13(5), 1015-1024.
[6]
Bérdy, J. Bioactive microbial metabolites. J. Antibiot. (Tokyo), 2005, 58(1), 1-26.
[7]
Barbosa-Filho, J.M.; Nascimento Júnior, F.A.D.; Tomaz, A.C.D.A.; Athayde-Filho, P.F.D.; Silva, M.S.D.; Cunha, E.V.; Souza, M.D.F.; Batista, L.M.; Diniz, M.F. Natural products with antileprotic activity. Rev. Bras. Farmacogn., 2007, 17(1), 141-148.
[8]
Hickl, J.; Argyropoulou, A.; Sakavitsi, M.E.; Halabalaki, M.; Al-Ahmad, A.; Hellwig, E.; Aligiannis, N.; Skaltsounis, A.L.; Wittmer, A.; Vach, K.; Karygianni, L. Mediterranean herb extracts inhibit microbial growth of representative oral microorganisms and biofilm formation of Streptococcus mutans. PLoS One, 2018, 13(12)e0207574
[9]
Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16(3), 144-158.
[10]
Hossain, M.A.; Rahman, S.M. Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res. Int., 2011, 44(3), 672-676.
[11]
Guimarães, L.G.D.L.; Cardoso, M.D.G.; Sousa, P.E.D.; Andrade, J.D.; Vieira, S.S. Antioxidant and fungitoxic activities of the lemongrass essential oil and citral. Rev Cienc. Agron., 2011, 42(2), 464-472.
[12]
Antunes, M.D.; Dandlen, S.; Cavaco, A.M.; Miguel, G. Effects of postharvest application of 1-MCP and postcutting dip treatment on the quality and nutritional properties of fresh-cut kiwifruit. J. Agric. Food Chem., 2010, 58(10), 6173-6181.
[13]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[14]
Alves, T.M.; Silva, A.F.; Brandao, M.; Grandi, T.S.; Smania, E.; Smania Junior, A.; Zani, C.L. Biological screening of Brazilian medicinal plants. Mem. Inst. Oswaldo Cruz, 2000, 95(3), 367-373.
[15]
CLSI Clinical and Laboratory Standards Institute. 27 ed.; Wayne, PA, USA,; , 2017. Vol. Approved standard M100.
[16]
Chen, H.Y.; Yen, G.C. Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chem., 2007, 101(2), 686-694.
[17]
Sá, P.G.S.; Guimarães, A.L.; Oliveira, A.P.; Siqueira Filho, J.A.; Fontana, A.P.; Damasceno, F.; Kauanna, P.; Branco, C.R.C.; Branco, A.; Almeida, J.R.G.S. Total phenols, total flavonoids and antioxidant activity of Selaginella convoluta (Arn.) spring (Selaginellaceae). Rev. Cienc. Farm. Basica Apl., 2012, 33(4), 561-566.
[18]
Rocha, E.; Sartori, R.; Navarro, F. The application of antioxidant foods in the prevention of skin aging. Revista Científica da FHO-UNIARARAS, 2016, 4(1), 19-26.
[19]
Nascimento, K.S.; Sattler, J.A.G.; Macedo, L.F.L.; González, C.V.S.; Melo, I.L.P.; Araújo, E.S.; Granato, D.; Sattler, A.; Almeida-Muradian, L.B. Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys. Lwt-Food Sci Technol., 2018, 91, 85-94.
[20]
Silva, C.M.; Santos, R.A.; Cavalcante, C.F.E. The benefits of preventing skin aging. Revista Conexão Eletrônica, 2016, 13(1), 1-10.
[21]
Li, S.; Chen, G.; Zhang, C.; Wu, M.; Wu, S.; Liu, Q. Research progress of natural antioxidants in foods for the treatment of diseases. Food Sci. Hum. Wellness, 2014, 3(3-4), 110-116.
[22]
Falcão, H.R.D.C. Synthesis and characterization of a new phenolic antioxidant derived from cashew nut biomass (LCC-technical) for biodiesel by electroanalytical method; Universidade Federal do Rio Grande do Norte, 2016.
[23]
Ojan, H.; Nihorimbere, V. Antioxidant power of phytochemicals from Psidium guajava. J. Zhejiang Univ. Sci., 2004, 5, 676-683.
[24]
Chen, H.Y.; Lin, Y.C.; Hsieh, C.L. Evaluation of antioxidant activity of aqueous extract of some selected nutraceutical herbs. Food Chem., 2007, 104(4), 1418-1424.
[25]
Gobbo-Neto, L.; Lopes, N.P. Medicinal plants: Factors of influence on the content of secondary metabolites. Quim. Nova, 2007, 30(2), 374-381.
[26]
Thenmozhi, S.; Rajan, S. GC-MS analysis of bioactive compounds in Psidium guajava leaves. J. Pharmacog. Phytochem., 2015, 3(5), 162-166.
[27]
Simões, C.M.O.; Schenkel, E.P.; Gosmann, G.; Mello, J.C.P.; Mentz, L.A.; Petrovick, P.R. Farmacognosia: da Planta ao Medicamento.5 ed.; Porto Alegre, RS; , 2005.
[28]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[29]
Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J., 2013, 21, 143-152.
[30]
Melo, E.A.; Maciel, M.I.S.; Lima, V.L.A.G.; Nascimento, R.J. Antioxidant capacity of the fruits. Braz. J. Pharm. Sci., 2008, 44(2), 193-201.
[31]
Lozoya, X.; Meckes, M.; Abou-Zaid, M.; Tortoriello, J.; Nozzolillo, C.; Arnason, J.T. Quercetin glycosides in Psidium guajava L. leaves and determination of a spasmolytic principle. Arch. Med. Res., 1994, 25(1), 11-15.
[32]
Ravi, K.; Divyashree, P. Psidium guajava: A review on its potential as an adjunct in treating periodontal disease. Pharmacogn. Rev., 2014, 8(16), 96-100.
[33]
Asaolu, M.; Asaolu, S.; Fakunle, J.; Emman-Okon, B.; Ajayi, E.; Togun, R. Evaluation of in vitro antioxidant activities of methanol extracts of Persea americana and Cnidosculus aconitifolius. Pak. J. Nutr., 2010, 9(11), 1074-1077.
[34]
Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 2005, 53(10), 4290-4302.
[35]
Balestrin, L.; Dias, J.F.G.; Miguel, O.G.; Dall’Stella, D.S.; Miguel, M.D. Contribution to the phytochemical study of Dorstenia multiformis Miquel (Moraceae) with approach in antioxidant activity. Brazil. J. Pharmacol., 2008, 18(2), 230-235.
[36]
Campos, R.; Oliveira, V.B.; Paula, C.D.S.; Pontarolo, R.; Dias, J.D.F.G.; Miguel, M.D.; Warumby, S.M.; Zanin, O.G.M. Multivariate analysis between the phytochemical features and antioxidant properties of the stems of Bauhinia glabra jacq.(FABACEAE). Int. J. Pharm. Pharm. Sci., 2014, 6(8), 151-155.
[37]
Veber, J.; Petrini, L.; Andrade, L.; Siviero, J. Determination of phenolic compounds and antioxidant capacity of aqueous and ethanolic extracts of Jambul (Syzygium cumini). Brazil. J. Med. Plants, 2015, 17(2), 267-273.
[38]
Suwanmanee, S.; Kitisin, T.; Luplertlop, N. In vitro screening of 10 edible Thai plants for potential antifungal properties. Evid. Based Complement. Alternat. Med., 2014, 2014138587
[39]
Elansary, H.O.; Salem, M.Z.M.; Ashmawy, N.A.; Yessoufou, K.; El-Settawy, A.A.A. In vitro antibacterial, antifungal and antioxidant activities of Eucalyptus spp. leaf extracts related to phenolic composition. Nat. Prod. Res., 2017, 31(24), 2927-2930.
[40]
Wedge, D.; Galindo, J.; Macıas, F. Fungicidal activity of natural and synthetic sesquiterpene lactone analogs. Phytochemistry, 2000, 53(7), 747-757.
[41]
Pasqualotto, A.C. Differences in pathogenicity and clinical syndromes due to Aspergillus fumigatus and Aspergillus flavus. Med. Mycol., 2009, 47(1), 261-270.
[42]
Chakraborty, S.; Afaq, N.; Singh, N.; Majumdar, S. Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus. J. Integr. Med., 2018, 16(5), 350-357.
[43]
Gonçalves, A.L. Study of the antimicrobial activity of some native medicinal trees with conservation potential / recovery of tropical. Forests, 2007.
[44]
Morais-Braga, M.F.B.; Carneiro, J.N.P.; Machado, A.J.T.; Santos, A.T.L.; Sales, D.l.; Lima, l.F.; Figueredo, F.G.; Coutinho, H.D.M. Psidium guajava L., from ethnobiology to scientific evaluation: Elucidating bioactivity against pathogenic microorganisms. J. Ethnopharmacol., 2016, 194, 1140-1152.
[45]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[46]
Tsuchiya, H.; Sato, M.; Miyazaki, T.; Fujiwara, S.; Tanigaki, S.; Ohyama, M.; Tanaka, T.; Iinuma, M. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol., 1996, 50(1), 27-34.
[47]
Estanislau, A.A.; Barros, F.A.S.; Peña, A.P.; Santos, S.C.; Ferri, P.H.; Paula, J.R. Chemical composition and antibacterial activity of the essential oils of five species of Eucalyptus grown in Goiás. Brazil. J. Pharmacol., 2001, 11(2), 95-100.
[48]
Vaghasiya, Y.; Nair, R.; Chanda, S. Antibacterial and preliminary phytochemical and physico-chemical analysis of Eucalyptus citriodora Hk leaf. Nat. Prod. Res., 2008, 22(9), 754-762.
[49]
Nair, R.; Vaghasiya, Y.; Chanda, S. Antibacterial activity of Eucalpytus citriodora Hk. oil on few clinically important bacteria. Afr. J. Biotechnol., 2008, 7(1), 25-26.
[50]
Kosasi, S.; Van Der Sluis, W.G.; Labadie, R. Multifidol and multifidol glucoside from the latex of Jatropha multifida. Phytochemistry, 1989, 28(9), 2439-2441.
[51]
Buch, D.R.; Arantes, A.B.; Campelo, P.M.S. Wound healing exudates leafs evaluation from Jatropha multifida L. Rev. Bras. Farm., 2008, 89, 142-145.
[52]
Ongtengco, D.C. The in vitro antibacterial activity of Jatropha multifida Linn. latex against common bacterial wound isolates. Acta Manila. Ser. A, 1992, 40, 25-28.
[53]
Ogundipe, O.; Oladipupo, B. The phytochemical and antimicrobial studies of Persea americana Mill.(Lauraceae). Hamdard Med., 2001, 44, 44-50.
[54]
Srivastava, A.; Tandon, P.; Ayala, A.; Jain, S. Solid state characterization of an antioxidant alkaloid boldine using vibrational spectroscopy and quantum chemical calculations. Vibratl. Spect., 2011, 56(1), 82-88.
[55]
Schmeda-Hirschmann, G.; Rodriguez, J.; Theoduloz, C.; Astudillo, S.; Feresin, G.; Tapia, A. Free-radical scavengers and antioxidants from Peumus boldus Mol.(“Boldo”). Free Radic. Res., 2003, 37(4), 447-452.
[56]
Denyer, S.P.; Maillard, J.Y. Cellular impermeability and uptake of biocides and antibiotics in Gram‐negative bacteria. J. Appl. Microbiol., 2002, 92, 35S-45S.
[57]
Lambert, P.A. Bacterial resistance to antibiotics: Modified target sites. Adv. Drug Deliv. Rev., 2005, 57(10), 1471-1485.
[58]
Chavasco, J.M.; Feliphe, P.E.; Muniz, B.H.; Cerdeira, C.D.; Leandro, F.D.; Coelho, L.F.L.; Silva, J.J.; Chavasco, J.K.; Dias, A.L.T. Evaluation of antimicrobial and cytotoxic activities of plant extracts from southern Minas Gerais cerrado. Rev. Inst. Med. Trop. São Paulo, 2014, 56(1), 13-20.
[59]
Suffredini, I.B.; Varella, A.D.; Younes, R.N. Minimal inhibitory concentration and minimal bactericidal concentration results from three selected antibacterial plant extracts from the Amazon. Rev. Inst. Ciênc. Saúde , 2007, 25(2), 131-132.
[60]
Santos, A.L.D.; Santos, D.O.; Freitas, C.C.D.; Ferreira, B.L.A.; Afonso, I.F.; Rodrigues, C.R.; Castro, H.C. Staphylococcus aureus: Visiting a strain of clinical importance. J. Bras. Patol. Med. Lab., 2007, 43(6), 413-423.
[61]
Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev., 2015, 28(3), 603-661.
[62]
Madduluri, S.; Rao, K.B.; Sitaram, B. In vitro evaluation of antibacterial activity of five indigenous plants extract against five bacterial pathogens of human. Int. J. Pharm. Pharm. Sci., 2013, 5(4), 679-684.
[63]
Chandra, K.A.; Wanda, D. Traditional method of initial diarrhea treatment in children. Compr. Child Adolesc. Nurs., 2017, 40(Suppl. 1), 128-136.
[64]
Mehta, B.; Nigam, R.; Nigam, V.; Singh, A. Isolation and antimicrobial screening of ten long chain aliphatic compounds from Psidium guajava (leaves). Asian J. Plant Sci. Res., 2012, 2(3), 318-322.
[65]
Reis, M.O.R. Evaluation of the in vitro antimicrobial activity of the leaves' hydroalcoholic extract Persea gratissima Gaertn - avacateiro - (Laraceae). MSc Dissertation in health promotion, University of Franca,, 2006.
[66]
Panizza, S. Plantas que Curam (Cheiro de Mato), 3 ed.; São Paulo,; , 1998.
[67]
Christian, E.O.; Okwesili, N.; Parker, E.J.; Okechukwu, U. Acute toxicity investigation and anti-diarrhoeal effect of the chloroform-methanol extract of the leaves of Persea americana. Iran. J. Pharm. Res., 2014, 13(2), 651-658.
[68]
Takahashi, T.; Kokubo, R.; Sakaino, M. Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculata. Lett. Appl. Microbiol., 2004, 39(1), 60-64.
[69]
Azevedo, R.R.S.; Almeida, V.G.A.; Silva, E.M.F.; Silva, A.L.; Gomes, N.R.S.; Matias, T.M.S.; Souza, L.I.O.; Santos, A.F. Antioxidant and antibacterial potential of the extract ethanol of plants used as tea. Revista Semente, 2011, 6(6), 240-249.
[70]
Matos, F.D.A.; Sousa, M.; Matos, M.; Machado, M.; Craveiro, A. Active chemical constituents and biological properties of Brazilian medicinal plants. Editora UFC, 2 ed, Fortaleza,, 2004.
[71]
Brasileiro, B.G.; Pizziolo, V.R.; Raslan, D.S.; Jamal, C.M.; Silveira, D. Antimicrobial and cytotoxic activities screening of some Brazilian medicinal plants used in Governador Valadares district. Revista Brasileira de Ciências Farmacêuticas, 2006, 42(2), 195-202.
[72]
Bouzada, M.L.M.I.; Fabri, R.L.I.; Garcia, G.D.; Scio, E.I. Antimicrobial and cytotoxic activity of some Brazilian medicinal plants; Revista Cubana Planta Médica, 2004.
[73]
Raza, M. A role for physicians in ethnopharmacology and drug discovery. J. Ethnopharmacol., 2006, 104(3), 297-301.
[74]
Van Hal, S.J.; Jensen, S.O.; Vaska, V.L.; Espedido, B.A.; Paterson, D.L.; Gosbell, I.B. Predictors of mortality in Staphylococcus aureus bacteremia. Clin. Microbiol. Rev., 2012, 25(2), 362-386.
[75]
Chatterjee, A.; Rai, S.; Guddattu, V.; Mukhopadhyay, C.; Saravu, K. Is methicillin-resistant Staphylococcus aureus infection associated with higher mortality and morbidity in hospitalized patients? A cohort study of 551 patients from South Western India. Risk Manag. Healthc. Policy, 2018, 11, 243-250.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy