Abstract
A class of 1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)naphthalen-2-ol derivatives (4a-t) has been synthesized in good yields through a three component coupling reaction. The newly synthesized compounds were evaluated for their in vitro antiproliferative activity against five cell lines such as DU145 (human prostate cancer), MDA-MB-B231 (human breast cancer), SKOV3 (human ovarian cancer), B16-F10 (mouse skin melanoma) and CHO-K1 (Chinese hamster ovary cells), a noncancerous cell line. In vitro inhibitory activity indicates that compounds 4a, 4b, 4c, 4d, 4g, 4j, and 4o exhibited potent anti-proliferative behavior. Among them, compounds 4g, 4j and 4o found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking facilitates to investigate the probable binding mode and key active site interactions in tubulins α and β proteins. The docking results are complementary to experimental results.
Keywords: β-naphthol, 2-aminobenzothiazole, aldehydes, cytotoxicity, molecular docking, in vitro inhibitory activity.
Graphical Abstract
(b) Domling, A. Curr. Opin. Chem. Biol., 2002, 6, 306-313.
(c) Orru, R.V.A.; de Greef, M. Synthesis, 2003, 1471-1499.
(d) Ugi, I.; Heck, S. Comb. Chem. High Throughput Screen., 2001, 4, 1.
(b) Siva Prasad, K.; Sujatha, S.; Srinivas, U.; Shubham, D.; Perumal, Y.; Dilep Kumar, S.; Nagendra Babu, B.; Krishna, S.E.; Jaya Shree, A. Eur. J. Med. Chem., 2018, 150, 39-52.
(b) Tamm, J.; Cowan, S.T.; Rowatt, E. Eds.; Cambridge University Press: Cambridge,, 1958.
(c) Shaabani, A.; Rahmati, A.; Naderi, S. Bioorg. Med. Chem. Lett., 2005, 15, 5553-5557.
(b) Kumar, A.; Rao, M.S.; Rao, V.K. Aust. J. Chem., 2010, 63, 1538-1540.
(c) Jimonet, P.; Audiau, F.; Barreau, M.; Blanchard, J-C.; Boireau, A.; Bour, Y.; Coléno, M-A.; Doble, A.; Doerflinger, G.; C. Do Huu, C. Donat, M.-H.; Duchesne, J. M.; Ganil, Guérémy, P.; Honoré, E.; Just, B.; Kerphirique, R.; Gontier, S.; Hubert, P.; Laduron, P. M.; Le Blevec, J.; Meunier, M.; Miquet, J.-M.; Nemecek, C.; Pasquet, M.; Piot, O.; Pratt, J.; Rataud, J.; Reibaud, M.; Stutzmann, J.-M.; Mignani, S. J. Med. Chem., 1999, 42, 2828-2843.
(d) Živec, M. Anžič, B.; Gobec S. Org. Process Res. Dev., 2010, 14, 1125-1129.
(b) Kumar, K.P.; Pankai, K.B.; Anvesh, J.; Srinivas, K.; Sanjay, K.B.; Narender, R. Eur. J. Med. Chem., 2014, 83, 344-354.
(c) Cardellicchio, C.; Capozzi, M.A.M.; Naso, F. Tetrahedron Asymmetry, 2010, 21, 507-517.
(d) Boga, C.; Martino, E. -.D.; Forlandi, L.; Torri, F. J. Chem. Res. Miniprint, 2001, 2, 219-223.
(e) Rakhtshah, J.; Shaabani, B.; Salehzadeh, S.; Moghadam, N. H. Bioorg. Chem., 2019, 85, 420-430.
(f) Mohammed, I.; Hampton, S.E.; Ashall, L.; Hildebrandt, E.R.; Kutlik, R.A.; Manandhar, S.P.; Floyd, B.J.; Smith, H.E.; Dozier, J.K.; Distefano, M.D.; Schmidt, W.K.; Dore, T.M. Bioorg. Med. Chem., 2016, 24, 160-178.
(g) Karmakar, B.; Banerji, J. Tetrahedron Lett., 2011, 52, 4957-4960.