[1]
Vilariño, M.V.; Franco, C.; Quarrington, C. Food loss and waste reduction as an integral part of a circular economy. Front. Environ. Sci., 2017, 5, 1-5.
[2]
Ayala-Zavala, J.F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.A.; Siddiqui, M.W.; Dávila-Aviña, J.E.; González-Aguilar, G.A. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int., 2011, 44, 1866-1874.
[3]
Gustavsson, J.; Cederberg, C.; Sonesson, U.; van Otterdijk, R.; Meybeck, A. Global food losses and waste: Extent, causes and prevention.Rome, ItalyFood and Agriculture Organization of the United Nations; , 2011.
[4]
Waldron, K. Waste minimization, management and co-product recovery in food processing: An introduction. In: Handbook of Waste Management and Co-Product Recovery in Food Processing; Waldron, K., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2007; Vol. 1, pp. 3-20.
[5]
Dimou, C.; Koutelidakis, E.A. From pomegranate processing byproducts
to innovative value added functional ingredients and biobased
products with several applications in food sector BAOJ Biotechnology, 2017, 3, 1(25), 1-7.
[6]
Górnaś, P.; Rudzińska, M. Seeds recovered from industry by-products of nine fruit species with a high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Ind. Crops Prod., 2016, 83, 329-338.
[7]
Grigoras, C.G.; Destandau, E.; Gabriel, L.; Elfakir, C. Bioactive compounds extraction from pomace of four apple varieties. JESR, 2012, 18, 96-103.
[8]
Yahia, E.M. The contribution of fruits and vegetables to human
health In: Fruit and vegetable phytochemicals: Chemistry, nutritional
value and stability; De, la Rosa; Alvarez-Parrilla, E.; Gonzalez-
Aguilar, G., Eds.; Wiley-Blackwell Publishing: Ames, Iowa,
U.S.A., 2010; pp. 3-51.
[9]
Dimou, C.; Koutelidakis, E.A. Value added alternatives of winemaking process residues: A health based oriented perspective. BAOJ Biotechnol., 2016, 2(3), 1-8.
[10]
Simone, T.C.; Simone, B.G. Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. Food Chem., 2017, 220, 477-489.
[11]
Dimou, C.; Koutelidakis, E.A. Grape pomace: A challenging renewable resource of bioactive phenolic compounds with diversified health benefits. MOJFPT, 2016, 3(1), 262-265.
[12]
Dulf, F.V.; Vodnar, D.C.; Socaciu, C. Effects of solid-state fermentation with two filamentus fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L) by-products. Food Chem., 2016, 209, 27-36.
[13]
Dimou, C.; Kopsahelis, N.; Papadaki, A.; Papanikolaou, S.; Kookos, I.K.; Mandala, I.; Koutinas, A.A. Wine lees valorization: Biorefinery development including production of a generic fermentation feedstock employed for poly(3-hydroxybutyrate) synthesis. Food Res. Int., 2015, 73, 81-87.
[14]
Sharma, P.C.; Gupta, A.; Issar, K. Effect of packaging and storage on dried apple pomace and fiber extracted from pomace. J. Food Process. Preserv., 2017, 41(3)e12913
[16]
Grigoras, G.C.; Destandau, E.; Fougere, L.; Elfakir, C. Evaluation of apple pomace extracts as a source of bioactive compounds. Ind. Crops Prod., 2013, 49, 794-804.
[17]
Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Enhancement of the total Phenolic compounds and antioxidant activity of aqueous Citrus Limon L. pomace extract using microwave pretreatment on dry powder. J. Food Process. Preserv., 2016, 41(5)e13152
[18]
Issar, K.; Sharma, P.C.; Gupta, A. Utilization of apple pomace in the preparation of fiber-enriched acidophillus yoghurt. J. Food Process. Preserv., 2017, 41(4)e13098
[19]
Kumar, Y.S.; Kumar, P.V.; Reddy, O.V.S.R. Pectinase production from mango peel using Aspergillus foetidus and its application in processing of mango juice. J. Food Biotechnol, 2012, 26(2), 107-123.
[20]
Borah, P.P.; Das, P.; Badwaik, L.S. Ultrasound treated potato peel and sweet lime pomace based biopolymer film development. Ultrason. Sonochem., 2017, 36, 11-19.
[21]
Russo, M.; Bonaccorsi, I.; Torre, G.; Saro, M.; Dugo, P.; Mondello, L. Underestimated sources of flavonoids, limonoids and dietary fibre. Availability in lemon’s by-products. J. Funct. Foods, 2014, 9, 18-26.
[22]
Koutelidakis, A.; Dimou, C. The effects of functional food and
bioactive compounds on biomarkers of cardiovascular diseases In: Functional Foods Text book; Martirosyan, D., Ed.; Functional Food
Center: U.S.A., 2016; pp. 1st ed. 89-117.
[23]
Figuerola, F.; Hurtado, M.L.; Estevez, A.M.; Chiffelle, I.; Asenjo, F. Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem., 2005, 91(3), 395-401.
[24]
Saikia, S.; Mahanta, C.L. In vitro physicochemical, phytochemical and functional properties of fiber rich fractions derived from by-products of six fruits. JFST, 2016, 53(3), 1496-1504.
[25]
Wanlapa, S.; Wachirasiri, K.; Sithisamang, D. Thitichaya Suwannatup. Potential of selected tropical fruits peels as dietary fiber in functional foods. Int. J. Food Prop., 2015, 18, 1306-1316.
[26]
Garcia, M.L.; Dominguez, R.; Galvez, M.; Gavlez, D.; Casas, C.; Selgas, M.D. Utilisation of cereal and fruit fibers in low fat dry fermented sausage. Meat Sci., 2002, 60, 227-236.
[27]
Wang, H.J.; Thomas, R.L. Direct use of apple pomace in bakery products. J. Food Sci., 1989, 54, 618-620.
[28]
Terpstra, A.H.; Lapre, J.A.; Vries, H.T.; Beynen, A.C. The hypocholesterolemic effect of lemon peels, lemon pectin, and the waste stream material of lemon peels in hybrid F1B hamsters. 2002. Eur. J. Nutr., 2002, 41(1), 19-26.
[29]
Čakar, U.; Petrović, A.; Pejin, B.; Čakar, M.; Živković, M.; Vajs, V.; Đorđević, B. Fruit as a substrate for a wine: A case study of selected berry and drupe fruit wines. Sci. Hortic., 2019, 244, 42-49.
[30]
Čakar, U.; Grozdanić, N.; Pejinc, B.; Vasić, V.; Čakar, M.; Petrović, A.; Djordjević, B. Impact of vinification procedure on fruit wine inhibitory activity against α-glucosidase. Food Biosci., 2018, 25, 1-7.
[31]
Čakar, U.; Petrović, A.; Janković, M.; Pejin, B.; Vajs, V.; Čakar, M.; Djordjević, B. Differentiation of wines made from berry and drupe fruits according to their phenolic profiles. Eur. J. Hortic. Sci., 2018, 83(1), 49-61.
[33]
Pejin, B.; Stanimirovic, B. Dragan, Vujovic.; J.P, Djordjevic.; Velickovic, M.; Tesevic V. The natural product content of the selected Cabernet Franc wine samples originating from Serbia: A case study of phenolics. Nat. Prod. Res., 2016, 30(15), 1762-1765.
[34]
Dordevic, N.O.; Novaković, M.M.; Pejin, B.; Mutić, J.J.; Vajs, V.E.; Pajović, S.B.; Tešević, V.V. Comparative analytical study of the selected wine varieties grown in Montenegro. Nat. Prod. Res., 2017, 31(15), 1825-1830.
[35]
Koutelidakis, A.E.; Rallidis, L.; Koniari, K.; Panagiotakos, D.; Komaitis, M.; Zampelas, A. AnastasiouNana, M.; Kapsokefalou, M. Effect of green tea on postprandial antioxidant capacity, serum lipids, C Reactive Protein and glucose levels in patients with coronary artery disease. Eur. J. Nutr., 2013, 53(2)479486
[36]
Chryssochoidis, G.M.; Kapsokefalou, M.; Pothoulaki, M.; Kehagia, O.; Linardakis, M.; Koutelidakis, A. Bioactive compounds databanks. Preferences of the research community. J. Appl. Nutr., 2008, 56(1), 4-16.
[37]
Hool, L.C. Reactive oxygen species in cardiac signaling: From mitochondria to plasma membrane ion channels. Clin. Exp. Pharmacol. Physiol., 2006, 33(1-2), 146-151.
[38]
McCann, M.J.; Gill, C.I.R.; O’Brien, G.; Rao, J.R.; McRoberts, W.C.; Hughes, P.; McEntee, R.; Rowland, I.R. Anti-cancer properties of phenolics from apple waste on colon carginogenesis in vitro. Food Chem. Toxicol., 2007, 45, 1224-1230.
[39]
Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P.S. Processing of apple pomace for bioactive molecules. Crit. Rev. Biotechnol., 2008, 28, 285-296.
[40]
Kalinowska, M.; Bielawska, A.; Lewandowska-Siwkiewicz, H.; Priebe, W.; Lewandowski, W. Apples: Content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiol. Biochem., 2014, 84, 169-188.
[41]
Bobinaitė, R.; Viskelis, P.; Bobinas, C.; Mieželienė, A.; Alenčikienė, G.; Venskutonis, P.R. Raspberry marc extracts increase antioxidative potential, ellagic acid, ellagitannin and anthocyanin concentrations in fruit purees. Food Sci.Technol., 2016, 66, 460-467.
[42]
Hwang, S.L.; Shih, P.H.; Yen, G.C. Neuroprotective effects of citrus flavonoids. J. Agric. Food Chem., 2012, 60, 877-885.
[43]
Kopsahelis, N.; Dimou, C.; Papadaki, A.; Xenopoulos, E.; Kuraleou, M.; Kalithraka, S.; Kotseridis, Y.; Papanikolaou, S.; Koutinas, A.A. Refining of wine lees and cheese whey for the production of microbial oil, polyphenol-rich extracts and value-added co-products. J. Chem. Technol. Biotechnol., 2017, 93(1), 257-268.
[44]
Butsat, S.; Weerapreeyakul, N.; Siriamornpun, S. Changes in phenolic antioxidant activity in thai Rice husk at five growth stages during development. J. Agric. Food Chem., 2009, 57, 4566-4571.
[45]
Albuquerque, T.G.; Santos, F. Sanches, Silva A.; Oliveira, M.B.; Bento, A. C.; Costa, H.S. Nutritional and phytochemical composition of Annona cherimola fruit and by-products: Potential health benefits. Food Chem., 2016, 193, 187-195.
[46]
Ayala Zavala, J.F.; Gonzalez-Aguilar, G.A. Use of additives to preserve the quality of fresh-cut fruits and vegetables. In: Advances in fresh-cut fruits and vegetables processing; Martin-Beloso, O.; Soliva-Fortuny, R., Eds.; CRS Press: Boca Raton, FL, U.S.A., 2011; pp. 231-254.
[47]
Vodnar, D.C.; Lavinia, F.C.; Dulf, F.V.; Stefanescu, B.E.; Crisan, G.; Socaciu, C. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chem., 2017, 231, 131-140.
[48]
Barbosa-Martína, E. Chel - Guerreroa, L.; González-Mondragón, E.; Betancur-Ancona, D. Chemical and technological properties of avocado (Persea americana Mill.) seed fibrous residues. Food Bioprod. Process., 2016, 100, 457-463.
[49]
Sanz-Puig, M.; Moreno, P.M.; Rodrigo, D.; Martinez, A. Combined effect of high hydrostatic pressure (HHP) and antimicrobial from agro-industrial by products against S. Typhimurium. LWT-Food Sci. Technol., 2017, 77, 126-133.
[50]
Arvanitoyannis, I.S.; Varzakas, T.H. Vegetable waste management:
Treatment methods and potential uses of treated waste In: Waste
management for the food industries; Arvanitoyannis, , Ed.; Elsevier
Inc, 2008.
[51]
Boukroufa, M.; Boutekedjiret, C.; Chemat, F. Development of green procedure of citrus fruits waste processing to recover carotenoids. REFFIT, 2017, 3, 252-262.
[52]
Bosse, A.K.; Fraatz, M.A.; Zorn, H. Formation of complex natural flavours by biotransformation of apple pomace from basidiomycetes. Food Chem., 2013, 141, 2952-2959.
[53]
Mantzouridou, F.T.; Paraskevopoulou, A.; Lalou, S. Yeast flavor production by solid state fermentation of orange peel waste. Biochem. Eng. J., 2015, 101, 1-8.
[54]
Darmasiwi, S.; Herawati, O.; Ningsih, O.C. Aromatic compounds production by fungal solid state fermentation in Pandanus tectorius fruits. Biosci. Biotechnol. Res. Asia, 2016, 13(1), 75-78.
[55]
Górnaś, P.; Rudzińska, M. Seeds recovered from industry by-products of nine fruit species with a high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Ind. Crops Prod., 2016, 83, 329-338.
[56]
Górnaś, P. Unique variability of tocopherol composition in various seed oils recovered from by-products of apple industry: rapid and simple determination of all four homologues (α, β, γ and δ by RP-HPLC/FLD. Food Chem., 2015, 172, 129-134.
[57]
Górnaś, P.; Siger, A.; Juhņeviča, K.; Lācis, G.; Šnē, E.; Segliņa, D. Cold-pressed Japanese quince (Chaenomeles japonica (Thunb.) Lindl. ex Spach) seed oil as a rich source of ó-tocopherol, carotenoids and phenolics: A comparison of the composition and antioxidant activity with nine other plant oils. Eur. J. Lipid Sci. Technol., 2014, 116, 563-570.
[58]
Caligiani, A.; Bonzanini, F.; Palla, G.; Cirlini, M.; Bruni, R. Characterization of a potential nutraceutical ingredient: Pomegranate (Punica granatum L.) seed oil unsaponifiable fraction. Plant Foods Hum. Nutr., 2010, 65, 277-283.
[59]
Dimou, C.; Koutelidakis, E.A.; Nasopoulou, C.; Karantonis, H. Current trends and emerging technologies in biopigment production processes: Industrial food and health applications. IJHAF, 2017, 1(2), 33-46.
[60]
Gasmi, J.; Sanderson, J.T. Growth inhibitory, antiandrogenic, and pro-apoptotic effects of punicic acid in LNCaP human prostate cancer cells. J. Agric. Food Chem., 2010, 58, 12149-12156.
[61]
da Silva, A.C.; Jorge, N. Bioactive compounds of the lipid fractions of agro-industrial waste. Food Res. Int., 2014, 66, 493-500.
[62]
Ayala-Zavala, J.F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H. Villa- Rodriguez J.A.; Siddiqui, W. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int., 2011, 44, 1866-1874.
[63]
Petkova, Z.; Antova, G. Proximate composition of seeds and seed oils from melon (Cucumis melo L.) cultivated in Bulgaria. Cogent Food Agric., 2015, 1, 1-15.
[64]
Dulf, F.V. Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania. Chem. Cent. J., 2012, 6, 106.
[65]
Dulf, F.V.; I., Oroian C.D.; Vodnar, C.; Socaciu, A. Pintea Lipid classes and fatty acid regiodistribution in triacylglycerols of seed oils of two sambucus species (S. nigra L. and S. ebulus L.). Molecules, 2013, 18, 11768-11782.
[66]
Goula, A.M.; Lazarides, H.N. Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: The cases of olive mill and pomegranate wastes. J. Food Eng., 2015, 167, 45-50.
[67]
Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and comercialized applications. Trends Food Sci. Technol., 2012, 26, 2.
[68]
Sicari, V.; Poiana, M. Recovery of Bergamot seed oil by supercritical carbon dioxide extraction and comparison with traditional solvent extraction. J. Food Process Eng., 2013, 40(1)e12341
[69]
Thangaraj, P. Extraction of bioactive compounds. Pharmacological
assays of plant-based natural products. In: Pharmacological Assays
of Plant-Based Natural Products, Vol. 71 Springer, Cham. , 11-17.
[70]
Vankar, P.S. Essential oils and fragrances from natural source. Resonance, 2004, 9, 30-41.
[71]
Rabetafika, H.N.; Bchir, B.; Bleckerb, C.; Richel, A. Fractionation of apple by-products as source of new ingredients: Current situation and perspectives. Trends Food Sci. Technol., 2014, 40, 99-114.
[72]
Sun-Waterhouse, D.; Farr, J.; Wibinos, R.; Saleh, Z. Fruit based functional foods I. Production of food grade apple fibre ingredients. Int. J. Food Sci. Technol., 2008, 43, 2113-2122.
[73]
Canteri-Schemin, M.H.; Fertonani, H.C.; Waszczynskyj, N.; Wo-siacki, G. Extraction of pectin from apple pomace. Braz. Arch. Biol. Technol., 2005, 48(2), 259-266.
[74]
Fromm, M.; Loos, H.M.; Bayha, S.; Carle, R.; Kammerer, D.R. Recovery and characterization of colored phenolic preparations from apple seeds. Ultrason. Sonochem., 2006, 13, 511-516.
[75]
Roselló-Soto, E.; Koubaa, M.; Moubarik, A.; Lopes, R.P.; Saraiva, J.A.; Boussetta, N.; Grimi, N.; Barbaa, F.J. Emerging opportunities for the effective valorization of wastes and by-products generated during olive oil production process: Nonconventional methods for the recovery of high-added value compounds. Trends Food Sci. Technol., 2015, 45, 296-310.
[76]
Reis, S.; Rai, D.K.; Abu-Ghannam, N. Water at room temperature as a solvent for the extraction of apple pomace phenolic compounds. Food Chem., 2012, 135, 1991-1998.
[77]
Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr. Rev. Food Sci. F., 2017, 16(2), 295-315.
[78]
Lu, M.W.; Ho, C.T.; Huang, Q.R. Extraction, bioavailability, and bioefficacy of capsaicinoids. J. Food Drug Anal, 2017, 25(1), 27-36.
[79]
Wijngaard, H.; Hossain, M.B.; Rai, D.K.; Brunton, N. Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int., 2012, 46(2), 505-513.
[80]
Zhang, H.F.; Yang, X.H.; Wang, Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends Food Sci. Technol., 2011, 22(12), 672-688.
[81]
Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrA-C. Trends Analyt. Chem., 2015, 71, 100-109.
[82]
Pananun, T.; Montalbo-Lomboy, M.; Noomhorm, A.; Grewell, D.; Lamsal, B. High-power ultrasonication-assisted extraction of soybean isoflavones and effect of toasting. LWT - Food Sci. Technol, 2012, 47(1), 199-207.
[83]
Virot, M.; Tomao, V.; Le Bourvellec, C.; Renard, C.; Chemat, F. Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrason. Sonochem., 2010, 17(6), 1066-1074.
[84]
Medouni-Adrara, S.; Boulekbache-Makhloufa, L.; Medouni-Ha-rounec, Y.C.L.; Dahmounea, F.; Makhoukhea, A.; Madani, K. Optimization of the recovery of phenolic compounds from Algerian grape by-products. Ind. Crops Prod., 2015, 77.
[85]
Tongkham, N.; Juntasalay, B.; Lasunon, P.; Sengkhamparn, N. Dragon fruit peel pectin: Microwave-assisted extraction and fuzzy assessment. Agric. Nat. Resourc., 2017, 51, 262-267.
[86]
Donsi, F.; Ferrari, G.; Fruilo, M.; Pataro, G. Pulsed electric field-assisted vinification of aglianico and piedirosso grapes. J. Agric. Food Chem., 2010, 58, 11606-11615.
[87]
Bobinaite, R.; Pataro, G.; Lamanauskas, N.; Šatkauskas, S.; Viške-lis, P.; Ferrari, G. Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. J. Food Sci. Technol., 2015, 9, 5898-5905.
[88]
Luengo, E.; Alvarez, I.; Raso, J. Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innov. Food Sci. Emerg. Technol., 2013, 17, 79-84.
[89]
Parniakov, O.; Barba, F.J.; Grimi, N.; Lebovka, N.; Vorobiev, E. Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels. Food Chem., 2016, 192, 842-848.