Letter Article

FoxF1是Cilium中Sonic Hedgehog信号组件的Ciliogenesis和分布所必需的

卷 19, 期 5, 2019

页: [326 - 334] 页: 9

弟呕挨: 10.2174/1566524019666190405115420

价格: $65

摘要

背景:在脊椎动物中,纤毛对于Hedgehog信号转导至关重要。据报道,在许多情况下,叉头盒转录因子FoxF1与Sonic Hedgehog(Shh)信号传导有关。然而,FoxF1在纤毛中的作用仍然未知。在这里,我们展示了FoxF1在纤毛发生的调节和纤毛中Shh信号组分分布中的重要作用。 方法:NIH / 3T3细胞血清饥饿24h诱导纤毛。同时,shRNA用于敲低细胞中的FoxF1表达,并且CRISPR / Cas9用于产生FoxF1斑马鱼突变体。通过qRT-PCR和蛋白质印迹分别检测指示基因的mRNA和蛋白质表达。进行免疫荧光染色以检测纤毛和Shh组分分布。 结果:FoxF1敲低降低了NIH / 3T3细胞的纤毛长度。同时,FoxF1功能的破坏抑制了纤毛相关基因的表达,并导致纤毛中Shh成分的异常分布。此外,纯合的FoxF1突变体在早期斑马鱼胚胎中表现出缺陷性纤毛的缺陷。 结论:总之,我们的数据表明FoxF1是体外和体内纤毛发生所必需的,并且是纤毛中Shh信号组分的正确定位所必需的。

关键词: FoxF1,纤毛,ciliogenesis,Sonic Hedgehog,斑马鱼突变体,hypephric cilium。

[1]
Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol 2007; 69: 377-400.
[2]
Ishikawa H, Marshall W. Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 2011; 12: 222-34.
[3]
Gerdes JM, Davis EE, Katsanis N. The vertebrate primary cilium in development, homeostasis, and disease. Cell 2009; 137: 32-45.
[4]
Badano JL, Mitsuma N, Beales PL, et al. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 2006; 7: 125-48.
[5]
Tobin JL, Beales PL. The nonmotile ciliopathies. Genet Med 2009; 11: 386-402.
[6]
Rosenbaum JL, Witman GB. Intraflagellar transport. Nat Rev Mol Cell Biol 2002; 3: 813-25.
[7]
Pedersen LB, Rosenbaum JL. Chapter Two Intraflagellar Transport (IFT). Role in ciliary assembly, resorption and signalling. Curr Top Dev Biol 2008; 85: 23-61.
[8]
Davenport JR, Watts AJ, Roper VC, et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr Biol 2007; 17: 1586-94.
[9]
Goetz SC, Anderson KV. The primary cilium: A signalling centre during vertebrate development. Nat Rev Genet 2010; 11: 331-44.
[10]
Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003; 426: 83-7.
[11]
Liem KF, He M, Ocbina PJR, et al. Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling. Proc Natl Acad Sci 2009; 106: 13377-82.
[12]
Benayoun BA, Caburet S, Veitia RA. Forkhead transcription factors: key players in health and disease. Trends Genet 2011; 27: 224-32.
[13]
Mahlapuu M, Enerbäck S, Carlsson P. Haploinsufficiency of the forkhead gene Foxf1, a target for sonic hedgehog signaling, causes lung and foregut malformations. Development 2001; 128: 2397-406.
[14]
Kalinichenko VV, Zhou Y, Bhattacharyya D, et al. Haploinsufficiency of the mouse forkhead box f1 gene causes defects in gall bladder development. J Biol Chem 2002; 277: 12369-74.
[15]
Ren X, Ustiyan V, Pradhan A, et al. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells. Circ Res 2014; 115: 709-20.
[16]
Fleury M, Eliades A, Carlsson P, et al. FOXF1 inhibits hematopoietic lineage commitment during early mesoderm specification. Development 2015; 142: 3307-20.
[17]
Kalinichenko VV, Lim L, Clark J, et al. Defects in pulmonary vasculature and perinatal lung hemorrhage in mice heterozygous null for the Forkhead Box f1 transcription factor. Dev Biol 2001; 235: 489-506.
[18]
Melboucy-Belkhir S, Pradère P, Tadbiri S, et al. Forkhead Box F1 represses cell growth and inhibits COL1 and ARPC2 expression in lung fibroblasts in vitro. Am J Physiol Cell Mol Physiol 2014; 307: L838-47.
[19]
Bohnenpoll T, Wittern AB, Mamo TM, et al. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development. PLoS Genet 2017; 13: e1006951.
[20]
Westerfield M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio). 5th Edition. Univ. Oregon Press 2007.
[21]
Montague TG, Cruz JM, Gagnon JA, et al. CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 2014; 42: W401-7.
[22]
Gagnon JA, Valen E, Thyme SB, et al. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 2014; 9: e98186.
[23]
Zhang K, Chen YD, Zhang T, et al. A novel role of id1 in regulating sscillatory shear stress-mediated lipid uptake in endothelial cells. Ann Biomed Eng 2018; 46: 849-63.
[24]
Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 2008; 3: 59-69.
[25]
Lo PK, Lee JS, Sukumar S. The p53-p21WAF1 checkpoint pathway plays a protective role in preventing DNA rereplication induced by abrogation of FOXF1 function. Cell Signal 2012; 24: 316-24.
[26]
He M, Subramanian R, Bangs F, et al. The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat Cell Biol 2014; 16: 663-72.
[27]
Song Z, Zhang X, Jia S, et al. Zebrafish as a model for human ciliopathies. J Genet Genomics 2016; 43: 107-20.
[28]
Lechtreck KF. IFT-Cargo interactions and protein transport in cilia. Trends Biochem Sci 2015; 40: 765-78.
[29]
Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J Cell Biol 2000; 151: 709-18.
[30]
Liu A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 2005; 132: 3103-11.
[31]
Marszalek JR, Ruiz-Lozano P, Roberts E, et al. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA 1999; 96: 5043-8.
[32]
Putoux A, Thomas S, Coene KLM, et al. KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat Genet 2011; 43: 601-6.
[33]
Wendling DS, Lück C, Von Schweinitz D, et al. Characteristic overexpression of the forkhead box transcription factor Foxf1 in Patched-associated tumors. Int J Mol Med 2008; 22: 787-92.
[34]
Millington G, Elliott KH, Chang YT, et al. Cilia-dependent GLI processing in neural crest cells is required for tongue development. Dev Biol 2017; 424: 124-37.
[35]
Haycraft CJ, Banizs B, Aydin-Son Y, et al. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 2005; 1: e53.
[36]
Huangfu D, Anderson KV. Cilia and hedgehog responsiveness in the mouse. Proc Natl Acad Sci 2005; 102: 11325-30.
[37]
K.M. Jaffe, S.Y. Thiberge, M.E. Bisher, R.D. Burdine. Imaging Cilia in Zebrafish 2010.
[http://dx.doi.org/10.1016/S0091- 679X(10)97022-2.]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy