Review Article

系统性红斑狼疮危险因素的化学和药物的机制的见解

卷 27, 期 31, 2020

页: [5175 - 5188] 页: 14

弟呕挨: 10.2174/0929867326666190404140658

价格: $65

conference banner
摘要

系统性红斑狼疮(SLE)是一种慢性和复发的异质性自身免疫性疾病,主要影响育龄妇女。遗传和环境危险因素参与红斑狼疮的发病机制,易感基因最近已被确定。然而,由于基因治疗离临床应用还很遥远,对环境危险因素的进一步研究可以揭示重要的治疗方法。我们系统地探索了两组环境风险因素:化学物质(包括二氧化硅、溶剂、杀虫剂、碳氢化合物、重金属和颗粒物)和药物(包括普鲁卡因胺、肼嗪、奎尼丁、青霉胺、异烟肼和甲基多巴)。此外,还探讨了潜在风险因素的机制,如遗传因素、表观遗传变化和免疫耐受中断。这篇综述确定了新的危险因素及其潜在的机制。管理这些危险因素的可行措施将有益于SLE患者,并提供潜在的治疗策略。

关键词: 危险因素,系统性红斑狼疮,自身免疫,遗传因素,表观遗传变化,免疫耐受

[1]
Rekvig, O.P.; Van der Vlag, J. The pathogenesis and diagnosis of systemic lupus erythematosus: still not resolved. Semin. Immunopathol., 2014, 36(3), 301-311.
[http://dx.doi.org/10.1007/s00281-014-0428-6] [PMID: 24763531]
[2]
Kaul, A.; Gordon, C.; Crow, M.K.; Touma, Z.; Urowitz, M.B.; van Vollenhoven, R.; Ruiz-Irastorza, G.; Hughes, G. Systemic lupus erythematosus. Nat. Rev. Dis. Primers, 2016, 2, 16039.
[http://dx.doi.org/10.1038/nrdp.2016.39] [PMID: 27306639]
[3]
Meda, F.; Folci, M.; Baccarelli, A.; Selmi, C. The epigenetics of autoimmunity. Cell. Mol. Immunol., 2011, 8(3), 226-236.
[http://dx.doi.org/10.1038/cmi.2010.78] [PMID: 21278766]
[4]
Ren, J.; Panther, E.; Liao, X.; Grammer, A.C.; Lipsky, P.E.; Reilly, C.M. The impact of protein acetylation/deacetylation on systemic lupus erythematosus. Int. J. Mol. Sci., 2018, 19(12), 4007.
[http://dx.doi.org/10.3390/ijms19124007] [PMID: 30545086]
[5]
Gubbels Bupp, M.R.; Jorgensen, T.N. Androgen-induced immunosuppression. Front. Immunol., 2018, 9, 794.
[http://dx.doi.org/10.3389/fimmu.2018.00794] [PMID: 29755457]
[6]
Sharma, A.K.; Zhou, G.P.; Kupferman, J.; Surks, H.K.; Christensen, E.N.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase I alpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J. Biol. Chem., 2008, 283(47), 32860-32869.
[http://dx.doi.org/10.1074/jbc.M804916200] [PMID: 18782776]
[7]
Dev, J.; Park, D.; Fu, Q.; Chen, J.; Ha, H.J.; Ghantous, F.; Herrmann, T.; Chang, W.; Liu, Z.; Frey, G.; Seaman, M.S.; Chen, B.; Chou, J.J. Structural basis for membrane anchoring of HIV-1 envelope spike. Science, 2016, 353(6295), 172-175.
[http://dx.doi.org/10.1126/science.aaf7066] [PMID: 27338706]
[8]
Schnell, J.R.; Chou, J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008, 451(7178), 591-595.
[http://dx.doi.org/10.1038/nature06531] [PMID: 18235503]
[9]
Berardi, M.J.; Shih, W.M.; Harrison, S.C.; Chou, J.J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, 2011, 476(7358), 109-113.
[http://dx.doi.org/10.1038/nature10257] [PMID: 21785437]
[10]
OuYang, B.; Xie, S.; Berardi, M.J.; Zhao, X.; Dev, J.; Yu, W.; Sun, B.; Chou, J.J. Unusual architecture of the p7 channel from hepatitis C virus. Nature, 2013, 498(7455), 521-525.
[http://dx.doi.org/10.1038/nature12283] [PMID: 23739335]
[11]
Oxenoid, K.; Dong, Y.; Cao, C.; Cui, T.; Sancak, Y.; Markhard, A.L.; Grabarek, Z.; Kong, L.; Liu, Z.; Ouyang, B.; Cong, Y.; Mootha, V.K.; Chou, J.J. Architecture of the mitochondrial calcium uniporter. Nature, 2016, 533(7602), 269-273.
[http://dx.doi.org/10.1038/nature17656] [PMID: 27135929]
[12]
Chou, K.C.; Jones, D.; Heinrikson, R.L. Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett., 1997, 419(1), 49-54.
[http://dx.doi.org/10.1016/S0014-5793(97)01246-5] [PMID: 9426218]
[13]
Chou, K.C.; Tomasselli, A.G.; Heinrikson, R.L. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett., 2000, 470(3), 249-256.
[http://dx.doi.org/10.1016/S0014-5793(00)01333-8] [PMID: 10745077]
[14]
Chou, K.C.; Howe, W.J. Prediction of the tertiary structure of the beta-secretase zymogen. Biochem. Biophys. Res. Commun., 2002, 292(3), 702-708.
[http://dx.doi.org/10.1006/bbrc.2002.6686] [PMID: 11922623]
[15]
Chou, K.C. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun., 2004, 319(2), 433-438.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.016] [PMID: 15178425]
[16]
Chou, K.C. Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. Biochem. Biophys. Res. Commun., 2004, 316(3), 636-642.
[http://dx.doi.org/10.1016/j.bbrc.2004.02.098] [PMID: 15033447]
[17]
Chou, K.C. Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J. Proteome Res., 2005, 4(5), 1681-1686.
[http://dx.doi.org/10.1021/pr050145a] [PMID: 16212421]
[18]
Chou, K.C. Insights from modeling the tertiary structure of human BACE2. J. Proteome Res., 2004, 3(5), 1069-1072.
[http://dx.doi.org/10.1021/pr049905s] [PMID: 15473697]
[19]
Chou, K.C. Insights from modeling the 3D structure of DNA-CBF3b complex. J. Proteome Res., 2005, 4(5), 1657-1660.
[http://dx.doi.org/10.1021/pr050135+] [PMID: 16212418]
[20]
Chou, K.C. Modeling the tertiary structure of human cathepsin-E. Biochem. Biophys. Res. Commun., 2005, 331(1), 56-60.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.123] [PMID: 15845357]
[21]
Chou, K.C. Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem., 2004, 11(16), 2105-2134.
[http://dx.doi.org/10.2174/0929867043364667] [PMID: 15279552]
[22]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Aristoff, P.A.; Tarpley, W.G.; Reusser, F. Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E. J. Biol. Chem., 1993, 268(9), 6119-6124.
[PMID: 7681060]
[23]
Althaus, I.W.; Gonzales, A.J.; Chou, J.J.; Romero, D.L.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Resnick, L.; Busso, M.E.; So, A.G. The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J. Biol. Chem., 1993, 268(20), 14875-14880.
[PMID: 7686907]
[24]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; LeMay, R.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Thomas, R.C.; Aristoff, P.A. Steady-state kinetic studies with the polysulfonate U-9843, an HIV reverse transcriptase inhibitor. Experientia, 1994, 50(1), 23-28.
[http://dx.doi.org/10.1007/BF01992044] [PMID: 7507441]
[25]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Thomas, R.C.; Aristoff, P.A.; Tarpley, W.G. Kinetic studies with the non-nucleoside human immunodeficiency virus type-1 reverse transcriptase inhibitor U-90152E. Biochem. Pharmacol., 1994, 47(11), 2017-2028.
[http://dx.doi.org/10.1016/0006-2952(94)90077-9] [PMID: 7516658]
[26]
Althaus, I.W.; Chou, K.C.; Lemay, R.J.; Franks, K.M.; Deibel, M.R.; Kezdy, F.J.; Resnick, L.; Busso, M.E.; So, A.G.; Downey, K.M.; Romero, D.L.; Thomas, R.C.; Aristoff, P.A.; Tarpley, W.G.; Reusser, F. The benzylthio-pyrimidine U-31,355, a potent inhibitor of HIV-1 reverse transcriptase. Biochem. Pharmacol., 1996, 51(6), 743-750.
[http://dx.doi.org/10.1016/0006-2952(95)02390-9] [PMID: 8602869]
[27]
Chou, K.C.; Forsén, S. Graphical rules for enzyme-catalysed rate laws. Biochem. J., 1980, 187(3), 829-835.
[http://dx.doi.org/10.1042/bj1870829] [PMID: 7188428]
[28]
Zhou, G.P.; Deng, M.H. An extension of Chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem. J., 1984, 222(1), 169-176.
[http://dx.doi.org/10.1042/bj2220169] [PMID: 6477507]
[29]
Chou, K.C.; Kézdy, F.J.; Reusser, F. Kinetics of processive nucleic acid polymerases and nucleases. Anal. Biochem., 1994, 221(2), 217-230.
[http://dx.doi.org/10.1006/abio.1994.1405] [PMID: 7529005]
[30]
Xu, Y.; Ding, J.; Wu, L.Y.; Chou, K.C. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One, 2013, 8(2) e55844
[http://dx.doi.org/10.1371/journal.pone.0055844] [PMID: 23409062]
[31]
Xu, Y.; Shao, X.J.; Wu, L.Y.; Deng, N.Y.; Chou, K.C. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ, 2013, 1 e171
[http://dx.doi.org/ 10.7717/peerj.171] [PMID: 24109555]
[32]
Qiu, W.R.; Xiao, X.; Lin, W.Z.; Chou, K.C. iMethyl-PseAAC: identification of protein methylation sites via a pseudo amino acid composition approach. BioMed Res. Int., 2014, 2014 947416
[http://dx.doi.org/10.1155/2014/947416] [PMID: 24977164]
[33]
Xu, Y.; Wen, X.; Shao, X.J.; Deng, N.Y.; Chou, K.C. iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int. J. Mol. Sci., 2014, 15(5), 7594-7610.
[http://dx.doi.org/10.3390/ijms15057594] [PMID: 24857907]
[34]
Xu, Y.; Wen, X.; Wen, L.S.; Wu, L.Y.; Deng, N.Y.; Chou, K.C. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One, 2014, 9(8) e105018
[http://dx.doi.org/10.1371/journal.pone.0105018] [PMID: 25121969]
[35]
Chen, W.; Feng, P.; Ding, H.; Lin, H.; Chou, K.C. iRNA-Methyl: identifying N(6)-methyladenosine sites using pseudo nucleotide composition. Anal. Biochem., 2015, 490, 26-33.
[http://dx.doi.org/10.1016/j.ab.2015.08.021] [PMID: 26314792]
[36]
Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.C. iRNA-PseU: identifying RNA pseudouridine sites. Mol. Ther. Nucleic Acids, 2016, 5(7) e332
[http://dx.doi.org/10.1038/mtna.2016.37] [PMID: 28427142]
[37]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem., 2016, 497, 48-56.
[http://dx.doi.org/10.1016/j.ab.2015.12.009] [PMID: 26723495]
[38]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394, 223-230.
[http://dx.doi.org/10.1016/j.jtbi.2016.01.020] [PMID: 26807806]
[39]
Jia, J.; Zhang, L.; Liu, Z.; Xiao, X.; Chou, K.C. pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, 2016, 32(20), 3133-3141.
[http://dx.doi.org/10.1093/bioinformatics/btw387] [PMID: 27354696]
[40]
Liu, Z.; Xiao, X.; Yu, D.J.; Jia, J.; Qiu, W.R.; Chou, K.C. pRNAm-Pc: predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties. Anal. Biochem., 2016, 497, 60-67.
[http://dx.doi.org/10.1016/j.ab.2015.12.017] [PMID: 26748145]
[41]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iHyd-PseCp: identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 2016, 7(28), 44310-44321.
[http://dx.doi.org/10.18632/oncotarget.10027] [PMID: 27322424]
[42]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iPTM-mLys: identifying multiple lysine PTM sites and their different types. Bioinformatics, 2016, 32(20), 3116-3123.
[http://dx.doi.org/10.1093/bioinformatics/btw380] [PMID: 27334473]
[43]
Qiu, W.R.; Xiao, X.; Xu, Z.C.; Chou, K.C. iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget, 2016, 7(32), 51270-51283.
[http://dx.doi.org/10.18632/oncotarget.9987] [PMID: 27323404]
[44]
Xu, Y.; Chou, K.C. Recent progress in predicting posttranslational modification sites in proteins. Curr. Top. Med. Chem., 2016, 16(6), 591-603.
[http://dx.doi.org/10.2174/1568026615666150819110421] [PMID: 26286211]
[45]
Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K.C. iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol. Ther. Nucleic Acids, 2017, 7, 155-163.
[http://dx.doi.org/10.1016/j.omtn.2017.03.006] [PMID: 28624191]
[46]
Liu, L.M.; Xu, Y.; Chou, K.C. iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC. Med. Chem., 2017, 13(6), 552-559.
[http://dx.doi.org/10.2174/1573406413666170515120507] [PMID: 28521678]
[47]
Qiu, W.R.; Jiang, S.Y.; Sun, B.Q.; Xiao, X.; Cheng, X.; Chou, K.C. iRNA-2methyl: identify RNA 2′-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier. Med. Chem., 2017, 13(8), 734-743.
[http://dx.doi.org/10.2174/1573406413666170623082245] [PMID: 28641529]
[48]
Qiu, W.R.; Jiang, S.Y.; Xu, Z.C.; Xiao, X.; Chou, K.C. iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget, 2017, 8(25), 41178-41188.
[http://dx.doi.org/10.18632/oncotarget.17104] [PMID: 28476023]
[49]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, D.; Chou, K.C. iPhos-PseEvo: identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory. Mol. Inform., 2017, 36(5-6)
[http://dx.doi.org/10.1002/minf.201600010] [PMID: 28488814]
[50]
Xu, Y.; Wang, Z.; Li, C.; Chou, K.C. iPreny-PseAac: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC. Med. Chem., 2017, 13(6), 544-551.
[http://dx.doi.org/10.2174/1573406413666170419150052] [PMID: 28425870]
[51]
Chen, W.; Ding, H.; Zhou, X.; Lin, H.; Chou, K.C. iRNA(m6A)-PseDNC: identifying N6-methyladenosine sites using pseudo dinucleotide composition. Anal. Biochem., 2018, 561-562, 59-65.
[http://dx.doi.org/10.1016/j.ab.2018.09.002] [PMID: 30201554]
[52]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-3typea: identifying three types of modification at RNA’s adenosine sites. Mol. Ther. Nucleic Acids, 2018, 11, 468-474.
[http://dx.doi.org/10.1016/j.omtn.2018.03.012] [PMID: 29858081]
[53]
Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K.C. iDNA6mA-PseKNC: identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2019, 111(1), 96-102.
[http://dx.doi.org/10.1016/j.ygeno.2018.01.005] [PMID: 29360500]
[54]
Khan, Y.D.; Rasool, N.; Hussain, W.; Khan, S.A.; Chou, K.C. iPhosT-PseAAC: identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC. Anal. Biochem., 2018, 550, 109-116.
[http://dx.doi.org/10.1016/j.ab.2018.04.021] [PMID: 29704476]
[55]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Jia, J.H.; Chou, K.C. iKcr-PseEns: identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics, 2018, 110(5), 239-246.
[http://dx.doi.org/10.1016/j.ygeno.2017.10.008] [PMID: 29107015]
[56]
Chou, K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins, 2001, 43(3), 246-255.
[http://dx.doi.org/10.1002/prot.1035] [PMID: 11288174]
[57]
Chen, W.; Lei, T.Y.; Jin, D.C.; Lin, H.; Chou, K.C. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Anal. Biochem., 2014, 456, 53-60.
[http://dx.doi.org/10.1016/j.ab.2014.04.001] [PMID: 24732113]
[58]
Chen, W.; Lin, H.; Chou, K.C. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol. Biosyst., 2015, 11(10), 2620-2634.
[http://dx.doi.org/10.1039/C5MB00155B] [PMID: 26099739]
[59]
Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K.C. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res., 2015, 43(W1), W65-W71.
[http://dx.doi.org/10.1093/nar/gkv458] [PMID: 25958395]
[60]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mEuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 2018, 110(1), 50-58.
[http://dx.doi.org/10.1016/j.ygeno.2017.08.005] [PMID: 28818512]
[61]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc_bal-mGneg: predict subcellular localization of gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC. J. Theor. Biol., 2018, 458, 92-102.
[http://dx.doi.org/10.1016/j.jtbi.2018.09.005] [PMID: 30201434]
[62]
Chou, K.C.; Cheng, X.; Xiao, X. pLoc_bal-mHum: predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset. Genomics, 2018, 111(6), 1274-1282.
[http://dx.doi.org/10.1016/j.ygeno.2018.08.007]] [PMID: 30179658 ]
[63]
Xiao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.C. pLoc_bal-mGpos: predict subcellular localization of gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics, 2018, 111(4), 886-892.
[http://dx.doi.org/10.1016/j.ygeno.2018.05.017]] [PMID: 29842950]
[64]
Liu, Z.; Xiao, X.; Qiu, W.R.; Chou, K.C. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal. Biochem., 2015, 474, 69-77.
[http://dx.doi.org/10.1016/j.ab.2014.12.009] [PMID: 25596338]
[65]
Xiao, X.; Min, J.L.; Lin, W.Z.; Liu, Z.; Cheng, X.; Chou, K.C. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via benchmark dataset optimization approach. J. Biomol. Struct. Dyn., 2015, 33(10), 2221-2233.
[http://dx.doi.org/10.1080/07391102.2014.998710] [PMID: 25513722]
[66]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iPPBS-Opt: a sequence-based ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets. Molecules, 2016, 21(1) E95
[http://dx.doi.org/10.3390/molecules21010095] [PMID: 26797600]
[67]
Liu, B.; Yang, F.; Huang, D.S.; Chou, K.C. iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 2018, 34(1), 33-40.
[http://dx.doi.org/10.1093/bioinformatics/btx579] [PMID: 28968797]
[68]
Chou, K.C. Low-frequency collective motion in biomacromolecules and its biological functions. Biophys. Chem., 1988, 30(1), 3-48.
[http://dx.doi.org/10.1016/0301-4622(88)85002-6] [PMID: 3046672]
[69]
Chou, K.C. Low-frequency vibrations of DNA molecules. Biochem. J., 1984, 221(1), 27-31.
[http://dx.doi.org/10.1042/bj2210027] [PMID: 6466317]
[70]
Chou, K.C. Identification of low-frequency modes in protein molecules. Biochem. J., 1983, 215(3), 465-469.
[http://dx.doi.org/10.1042/bj2150465] [PMID: 6362659]
[71]
Chou, K.C.; Zhang, C.T.; Maggiora, G.M. Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopolymers, 1994, 34(1), 143-153.
[http://dx.doi.org/10.1002/bip.360340114] [PMID: 8110966]
[72]
Chou, K.C. Low-frequency resonance and cooperativity of hemoglobin. Trends Biochem. Sci., 1989, 14(6), 212-213.
[http://dx.doi.org/10.1016/0968-0004(89)90026-1] [PMID: 2763333]
[73]
Chou, K.C.; Maggiora, G.M.; Mao, B. Quasi-continuum models of twist-like and accordion-like low-frequency motions in DNA. Biophys. J., 1989, 56(2), 295-305.
[http://dx.doi.org/10.1016/S0006-3495(89)82676-1] [PMID: 2775828]
[74]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 2013, 41(6) e68
[http://dx.doi.org/10.1093/nar/gks1450] [PMID: 23303794]
[75]
Feng, P.M.; Chen, W.; Lin, H.; Chou, K.C. iHSP-PseRAAAC: identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442(1), 118-125.
[http://dx.doi.org/10.1016/j.ab.2013.05.024] [PMID: 23756733]
[76]
Ding, H.; Deng, E.Z.; Yuan, L.F.; Liu, L.; Lin, H.; Chen, W.; Chou, K.C. iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res. Int., 2014, 2014 286419
[http://dx.doi.org/10.1155/2014/286419] [PMID: 24991545]
[77]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int., 2014, 2014 623149
[http://dx.doi.org/10.1155/2014/623149] [PMID: 24967386]
[78]
Lin, H.; Deng, E.Z.; Ding, H.; Chen, W.; Chou, K.C. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res., 2014, 42(21), 12961-12972.
[http://dx.doi.org/10.1093/nar/gku1019] [PMID: 25361964]
[79]
Chen, W.; Feng, P.; Ding, H.; Lin, H.; Chou, K.C. Using deformation energy to analyze nucleosome positioning in genomes. Genomics, 2016, 107(2-3), 69-75.
[http://dx.doi.org/10.1016/j.ygeno.2015.12.005] [PMID: 26724497]
[80]
Chen, W.; Ding, H.; Feng, P.; Lin, H.; Chou, K.C. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7(13), 16895-16909.
[http://dx.doi.org/10.18632/oncotarget.7815] [PMID: 26942877]
[81]
Zhang, C.J.; Tang, H.; Li, W.C.; Lin, H.; Chen, W.; Chou, K.C. iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget, 2016, 7(43), 69783-69793.
[http://dx.doi.org/10.18632/oncotarget.11975] [PMID: 27626500]
[82]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8(3), 4208-4217.
[http://dx.doi.org/10.18632/oncotarget.13758] [PMID: 27926534]
[83]
Su, Z.D.; Huang, Y.; Zhang, Z.Y.; Zhao, Y.W.; Wang, D.; Chen, W.; Chou, K.C.; Lin, H. iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics, 2018, 34(24), 4196-4204.
[http://dx.doi.org/10.1093/bioinformatics/bty508] [PMID: 29931187]
[84]
Yang, H.; Qiu, W.R.; Liu, G.; Guo, F.B.; Chen, W.; Chou, K.C.; Lin, H. iRSpot-Pse6NC: identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int. J. Biol. Sci., 2018, 14(8), 883-891.
[http://dx.doi.org/10.7150/ijbs.24616] [PMID: 29989083]
[85]
Chou, K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol., 2011, 273(1), 236-247.
[http://dx.doi.org/10.1016/j.jtbi.2010.12.024] [PMID: 21168420]
[86]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 628, 315-321.
[http://dx.doi.org/10.1016/j.gene.2017.07.036] [PMID: 28728979]
[87]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33(22), 3524-3531.
[http://dx.doi.org/10.1093/bioinformatics/btx476] [PMID: 29036535]
[88]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mGneg: predict subcellular localization of gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2017, S0888-7543(17), 30102-30107..
[http://dx.doi.org/10.1016/j.ygeno.2017.10.002] [PMID: 28989035]
[89]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 2018, 34(9), 1448-1456.
[http://dx.doi.org/10.1093/bioinformatics/btx711] [PMID: 29106451]
[90]
Chou, K.C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 2013, 9(6), 1092-1100.
[http://dx.doi.org/10.1039/c3mb25555g] [PMID: 23536215]
[91]
Cheng, X.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC. Bioinformatics, 2019, 35(3), 398-406.
[http://dx.doi.org/10.1093/bioinformatics/bty628] [PMID: 30010789]
[92]
Xiao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.C. pLoc_bal-mVirus: predict subcellular localization of multi-label virus proteins by PseAAC and IHTS treatment to balance training dataset. Med. Chem., 2019, 15(5), 496-509.
[http://dx.doi.org/10.2174/1573406415666181217114710]] [PMID: 30556503]
[93]
Chou, K.C.; Cheng, X.; Xiao, X. pLoc_bal-mEuk: predict subcellular localization of eukaryotic proteins by general PseAAC and quasi-balancing training dataset. Med. Chem., 2019, 15(5), 472-485.
[http://dx.doi.org/10.2174/1573406415666181218102517]] [PMID: 30569871]
[94]
Miller, F.W.; Alfredsson, L.; Costenbader, K.H.; Kamen, D.L.; Nelson, L.M.; Norris, J.M.; De Roos, A.J. epidemiology of environmental exposures and human autoimmune diseases: findings from a national institute of environmental health sciences expert panel workshop. J. Autoimmun., 2012, 39(4), 259-271.
[http://dx.doi.org/10.1016/j.jaut.2012.05.002] [PMID: 22739348]
[95]
Lu-Fritts, P.Y.; Kottyan, L.C.; James, J.A.; Xie, C.; Buckholz, J.M.; Pinney, S.M.; Harley, J.B. Association of systemic lupus erythematosus with uranium exposure in a community living near a uranium-processing plant: a nested case-control study. Arthritis Rheumatol., 2014, 66(11), 3105-3112.
[http://dx.doi.org/10.1002/art.38786] [PMID: 25103365]
[96]
Cozier, Y.C.; Barbhaiya, M.; Castro-Webb, N.; Conte, C.; Tedeschi, S.K.; Leatherwood, C.; Costenbader, K.H.; Rosenberg, L. Relationship of cigarette smoking and alcohol consumption to incidence of systemic lupus erythematosus in the black women’s health study. Arthritis Care Res. (Hoboken), 2019, 71(5), 671-677.
[http://dx.doi.org/10.1002/acr.23703]] [PMID: 30091287]
[97]
Leiss, H.; Niederreiter, B.; Bandur, T.; Schwarzecker, B.; Blüml, S.; Steiner, G.; Ulrich, W.; Smolen, J.S.; Stummvoll, G.H. Pristane-induced lupus as a model of human lupus arthritis: evolvement of autoantibodies, internal organ and joint inflammation. Lupus, 2013, 22(8), 778-792.
[http://dx.doi.org/10.1177/0961203313492869] [PMID: 23817510]
[98]
Zandman-Goddard, G.; Solomon, M.; Rosman, Z.; Peeva, E.; Shoenfeld, Y. Environment and lupus-related diseases. Lupus, 2012, 21(3), 241-250.
[http://dx.doi.org/10.1177/0961203311426568] [PMID: 22065092]
[99]
Parks, C.G.; De Roos, A.J. Pesticides, chemical and industrial exposures in relation to systemic lupus erythematosus. Lupus, 2014, 23(6), 527-536.
[http://dx.doi.org/10.1177/0961203313511680] [PMID: 24763537]
[100]
Bernatsky, S.; Fournier, M.; Pineau, C.A.; Clarke, A.E.; Vinet, E.; Smargiassi, A. Associations between ambient fine particulate levels and disease activity in patients with systemic lupus erythematosus (SLE). Environ. Health Perspect., 2011, 119(1), 45-49.
[http://dx.doi.org/10.1289/ehp.1002123] [PMID: 20870568]
[101]
Kamen, D.L. Environmental influences on systemic lupus erythematosus expression. Rheum. Dis. Clin. North Am., 2014, 40(3), 401-412.
[http://dx.doi.org/10.1016/j.rdc.2014.05.003] [PMID: 25034153]
[102]
Brown, J.M.; Pfau, J.C.; Pershouse, M.A.; Holian, A. Silica, apoptosis, and autoimmunity. J. Immunotoxicol., 2005, 1(3), 177-187.
[http://dx.doi.org/10.1080/15476910490911922] [PMID: 18958651]
[103]
Cooper, G.S.; Wither, J.; Bernatsky, S.; Claudio, J.O.; Clarke, A.; Rioux, J.D.; Fortin, P.R.; Fortin, P.R. CaNIOS GenES Investigators. Occupational and environmental exposures and risk of systemic lupus erythematosus: silica, sunlight, solvents. Rheumatology (Oxford), 2010, 49(11), 2172-2180.
[http://dx.doi.org/10.1093/rheumatology/keq214] [PMID: 20675707]
[104]
Dietert, R.R.; Luebke, R.W. Immunotoxicity, immune dysfunction, and chronic disease, 2012.
[http://dx.doi.org/10.1007/978-1-61779-812-2]
[105]
Dietert, R.R. Role of developmental immunotoxicity and immune dysfunction in chronic disease and cancer. Reprod. Toxicol., 2011, 31(3), 319-326.
[http://dx.doi.org/10.1016/j.reprotox.2010.09.006] [PMID: 20854896]
[106]
Li, J.; McMurray, R.W. Effects of chronic exposure to DDT and TCDD on disease activity in murine systemic lupus erythematosus. Lupus, 2009, 18(11), 941-949.
[http://dx.doi.org/10.1177/0961203309104431] [PMID: 19762394]
[107]
Cheng, X.L.; Zhang, H.; Guo, D.; Qiao, Z.D. Upregulation of fas and fasL expression in nicotine-induced apoptosis of endothelial cells. Methods Find. Exp. Clin. Pharmacol., 2010, 32(1), 13-18.
[http://dx.doi.org/10.1358/mf.2010.32.1.1428742] [PMID: 20383341]
[108]
Bijl, M.; Horst, G.; Limburg, P.C.; Kallenberg, C.G. Effects of smoking on activation markers, fas expression and apoptosis of peripheral blood lymphocytes. Eur. J. Clin. Invest., 2001, 31(6), 550-553.
[http://dx.doi.org/10.1046/j.1365-2362.2001.00842.x] [PMID: 11422406]
[109]
He, Y.Y.; Yan, Y.; Zhang, H.F.; Lin, Y.H.; Chen, Y.C.; Yan, Y.; Wu, P.; Fang, J.S.; Yang, S.H.; Du, G.H. Methyl salicylate 2-O-β-d-lactoside alleviates the pathological progression of pristane-induced systemic lupus erythematosus-like disease in mice via suppression of inflammatory response and signal transduction. Drug Des. Devel. Ther., 2016, 10, 3183-3196.
[http://dx.doi.org/10.2147/DDDT.S114501] [PMID: 27729775]
[110]
Kunchithapautham, K.; Atkinson, C.; Rohrer, B. Smoke exposure causes endoplasmic reticulum stress and lipid accumulation in retinal pigment epithelium through oxidative stress and complement activation. J. Biol. Chem., 2014, 289(21), 14534-14546.
[http://dx.doi.org/10.1074/jbc.M114.564674] [PMID: 24711457]
[111]
Pocino, M.; Malavé, I.; Baute, L. Zinc administration restores the impaired immune response observed in mice receiving excess copper by oral route. Immunopharmacol. Immunotoxicol., 1990, 12(4), 697-713.
[http://dx.doi.org/10.3109/08923979009019685] [PMID: 2092046]
[112]
Lee, S.; Hayashi, H.; Maeda, M.; Chen, Y.; Matsuzaki, H.; Takei-Kumagai, N.; Nishimura, Y.; Fujimoto, W.; Otsuki, T. Environmental factors producing autoimmune dysregulation-chronic activation of T cells caused by silica exposure. Immunobiology, 2012, 217(7), 743-748.
[http://dx.doi.org/10.1016/j.imbio.2011.12.009] [PMID: 22226303]
[113]
Lee, S.; Hayashi, H.; Maeda, M.; Matsuzaki, H.; Kumagai-Takei, N.; Chen, Y.; Urakami, K.; Kusaka, M.; Nishimura, Y.; Otsuki, T. Immunostimulation by silica particles and the development of autoimmune dysregulation, 2014.
[http://dx.doi.org/10.5772/57544]
[114]
Pollard, K.M. Silica, silicosis, and autoimmunity. Front. Immunol., 2016, 7, 97.
[http://dx.doi.org/10.3389/fimmu.2016.00097] [PMID: 27014276]
[115]
Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr. Rev., 2009, 30(4), 293-342.
[http://dx.doi.org/10.1210/er.2009-0002] [PMID: 19502515]
[116]
Chighizola, C.; Meroni, P.L. The role of environmental estrogens and autoimmunity. Autoimmun. Rev., 2012, 11(6-7), A493-A501.
[http://dx.doi.org/10.1016/j.autrev.2011.11.027] [PMID: 22172713]
[117]
Schug, T.T.; Janesick, A.; Blumberg, B.; Heindel, J.J. Endocrine disrupting chemicals and disease susceptibility. J. Steroid Biochem. Mol. Biol., 2011, 127(3-5), 204-215.
[http://dx.doi.org/10.1016/j.jsbmb.2011.08.007] [PMID: 21899826]
[118]
Rogers, J.A.; Metz, L.; Yong, V.W. Review: endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms. Mol. Immunol., 2013, 53(4), 421-430.
[http://dx.doi.org/10.1016/j.molimm.2012.09.013] [PMID: 23123408]
[119]
Inadera, H. The immune system as a target for environmental chemicals: xenoestrogens and other compounds. Toxicol. Lett., 2006, 164(3), 191-206.
[http://dx.doi.org/10.1016/j.toxlet.2006.03.006] [PMID: 16697129]
[120]
Costenbader, K.H.; Gay, S.; Alarcón-Riquelme, M.E.; Iaccarino, L.; Doria, A. Genes, epigenetic regulation and environmental factors: which is the most relevant in developing autoimmune diseases? Autoimmun. Rev., 2012, 11(8), 604-609.
[http://dx.doi.org/10.1016/j.autrev.2011.10.022] [PMID: 22041580]
[121]
Richardson, B.C.; Patel, D.R. Epigenetics in 2013. DNA methylation and miRNA: key roles in systemic autoimmunity. Nat. Rev. Rheumatol., 2014, 10(2), 72-74.
[http://dx.doi.org/10.1038/nrrheum.2013.211] [PMID: 24418763]
[122]
Hedrich, C.M.; Tsokos, G.C. Epigenetic mechanisms in systemic lupus erythematosus and other autoimmune diseases. Trends Mol. Med., 2011, 17(12), 714-724.
[http://dx.doi.org/10.1016/j.molmed.2011.07.005] [PMID: 21885342]
[123]
Quintero-Ronderos, P.; Montoya-Ortiz, G. Epigenetics and autoimmune diseases. Autoimmune Dis., 2012, 2012 593720
[http://dx.doi.org/10.1155/2012/593720] [PMID: 22536485]
[124]
Lu, Q. The critical importance of epigenetics in autoimmunity. J. Autoimmun., 2013, 41, 1-5.
[http://dx.doi.org/10.1016/j.jaut.2013.01.010] [PMID: 23375849]
[125]
Hughes, T.; Sawalha, A.H. The role of epigenetic variation in the pathogenesis of systemic lupus erythematosus. Arthritis Res. Ther., 2011, 13(5), 245.
[http://dx.doi.org/10.1186/ar3484] [PMID: 22044622]
[126]
Collotta, M.; Bertazzi, P.A.; Bollati, V. Epigenetics and pesticides. Toxicology, 2013, 307, 35-41.
[http://dx.doi.org/10.1016/j.tox.2013.01.017] [PMID: 23380243]
[127]
Ji, H.; Khurana Hershey, G.K. Genetic and epigenetic influence on the response to environmental particulate matter. J. Allergy Clin. Immunol., 2012, 129(1), 33-41.
[http://dx.doi.org/10.1016/j.jaci.2011.11.008] [PMID: 22196522]
[128]
Baccarelli, A.; Bollati, V. Epigenetics and environmental chemicals. Curr. Opin. Pediatr., 2009, 21(2), 243-251.
[http://dx.doi.org/10.1097/MOP.0b013e32832925cc] [PMID: 19663042]
[129]
Hou, L.; Zhang, X.; Wang, D.; Baccarelli, A. Environmental chemical exposures and human epigenetics. Int. J. Epidemiol., 2011.
[130]
Hou, L.; Wang, D.; Baccarelli, A. Environmental chemicals and microRNAs. Mutat. Res., 2011, 714(1-2), 105-112.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.05.004] [PMID: 21609724]
[131]
Feil, R.; Fraga, M.F. Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet., 2012, 13(2), 97-109.
[http://dx.doi.org/10.1038/nrg3142] [PMID: 22215131]
[132]
Chang, C.; Gershwin, M.E. Drug-induced lupus erythematosus: incidence, management and prevention. Drug Saf., 2011, 34(5), 357-374.
[http://dx.doi.org/10.2165/11588500-000000000-00000] [PMID: 21513360]
[133]
Bertsias, G.; Cervera, R.; Boumpas, D.T. Systemic lupus erythematosus: pathogenesis and clinical features. EULAR textbook on rheumatic diseases, 2012, 5, 476-505.,
[134]
Araújo-Fernández, S.; Ahijón-Lana, M.; Isenberg, D.A. Drug-induced lupus: including anti-tumour necrosis factor and interferon induced. Lupus, 2014, 23(6), 545-553.
[http://dx.doi.org/10.1177/0961203314523871] [PMID: 24557776]
[135]
Lowe, G.C.; Henderson, C.L.; Grau, R.H.; Hansen, C.B.; Sontheimer, R.D. A systematic review of drug-induced subacute cutaneous lupus erythematosus. Br. J. Dermatol., 2011, 164(3), 465-472.
[http://dx.doi.org/10.1111/j.1365-2133.2010.10110.x] [PMID: 21039412]
[136]
Aguirre Zamorano, M.A.; López Pedrera, R.; Cuadrado Lozano, M.J. Drug-induced lupus. Med. Clin. (Barc.), 2010, 135(3), 124-129.
[http://dx.doi.org/10.1016/j.medcli.2009.04.035] [PMID: 19576598]
[137]
Vaglio, A.; Grayson, P.C.; Fenaroli, P.; Gianfreda, D.; Boccaletti, V.; Ghiggeri, G.M.; Moroni, G. Drug-induced lupus: traditional and new concepts. Autoimmun. Rev., 2018, 17(9), 912-918.
[http://dx.doi.org/10.1016/j.autrev.2018.03.016] [PMID: 30005854]
[138]
Zarkavelis, G.; Kollas, A.; Kampletsas, E.; Vasiliou, V.; Kaltsonoudis, E.; Drosos, A.; Khaled, H.; Pavlidis, N. Aromatase inhibitors induced autoimmune disorders in patients with breast cancer: a review. J. Adv. Res., 2016, 7(5), 719-726.
[http://dx.doi.org/10.1016/j.jare.2016.04.001] [PMID: 28275510]
[139]
Miyagawa, F.; Sugano, Y.; Sho, M.; Asada, H. TS-1 (tegafur/gimeracil/oteracil)-induced systemic lupus erythematosus with skin lesions and anti-Sm antibody. Eur. J. Dermatol., 2017, 27(6), 646-647.
[http://dx.doi.org/10.1684/ejd.2017.3101] [PMID: 28721931]
[140]
Weber, W.; Tannen, R.; McQueen, C.; Glowinski, I. Acetylation Polymorphism. In: Clinical Pharmacology Proceedings of the 7th International Congress of Pharmacology, Paris1978.6(41).
[http://dx.doi.org/10.1016/C2013-0-03124-6]
[141]
Striebich, C.C. Drug-induced Lupus. Rheumatology Secrets, 3rd ed; 2014, 2(3), 137;
[142]
Merola, J.F. Lupus-like syndromes related to drugs.In Lupus Erythematosus, 2012, 211-221.
[http://dx.doi.org/10.1007/978-1-4614-1189-5_16]
[143]
Yung, R.; Richardson, B. Drug-induced lupus mechanisms, 2011, 385-404..
[http://dx.doi.org/10.1016/B978-0-12-374994-9.10022-1]
[144]
Zhao, S.; Wang, Y.; Liang, Y.; Zhao, M.; Long, H.; Ding, S.; Yin, H.; Lu, Q. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum., 2011, 63(5), 1376-1386.
[http://dx.doi.org/10.1002/art.30196] [PMID: 21538319]
[145]
Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 2012, 13(7), 484-492.
[http://dx.doi.org/10.1038/nrg3230] [PMID: 22641018]
[146]
Strickland, F.M.; Richardson, B.C. Epigenetics in human autoimmunity. Epigenetics in autoimmunity - DNA methylation in systemic lupus erythematosus and beyond. Autoimmunity, 2008, 41(4), 278-286.
[http://dx.doi.org/10.1080/08916930802024616] [PMID: 18432408]
[147]
Hewagama, A.; Richardson, B. The genetics and epigenetics of autoimmune diseases. J. Autoimmun., 2009, 33(1), 3-11.
[http://dx.doi.org/10.1016/j.jaut.2009.03.007] [PMID: 19349147]
[148]
Jiang, X.; Khursigara, G.; Rubin, R.L. Transformation of lupus-inducing drugs to cytotoxic products by activated neutrophils. Science, 1994, 266(5186), 810-813.
[http://dx.doi.org/10.1126/science.7973636] [PMID: 7973636]
[149]
Rubin, R.L. Drug-induced lupus. Toxicology, 2005, 209(2), 135-147.
[http://dx.doi.org/10.1016/j.tox.2004.12.025] [PMID: 15767026]
[150]
Ablin, J.; Verbovetski, I.; Trahtemberg, U.; Metzger, S.; Mevorach, D. Quinidine and procainamide inhibit murine macrophage uptake of apoptotic and necrotic cells: a novel contributing mechanism of drug-induced-lupus. Apoptosis, 2005, 10(5), 1009-1018.
[http://dx.doi.org/10.1007/s10495-005-1189-4] [PMID: 16151636]
[151]
Bouts, Y.M.; Wolthuis, D.F.; Dirkx, M.F.; Pieterse, E.; Simons, E.M.; van Boekel, A.M.; Dieker, J.W.; van der Vlag, J. Apoptosis and NET formation in the pathogenesis of SLE. Autoimmunity, 2012, 45(8), 597-601.
[http://dx.doi.org/10.3109/08916934.2012.719953] [PMID: 22913420]
[152]
Grayson, P.C.; Schauer, C.; Herrmann, M.; Kaplan, M.J. Review: neutrophils as invigorated targets in rheumatic diseases. Arthritis Rheumatol., 2016, 68(9), 2071-2082.
[http://dx.doi.org/10.1002/art.39745] [PMID: 27159737]
[153]
Grayson, P.C.; Kaplan, M.J. At the Bench: neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases. J. Leukoc. Biol., 2016, 99(2), 253-264.
[http://dx.doi.org/10.1189/jlb.5BT0615-247R] [PMID: 26432901]
[154]
Carmona-Rivera, C.; Purmalek, M.M.; Moore, E.; Waldman, M.; Walter, P.J.; Garraffo, H.M.; Phillips, K.A.; Preston, K.L.; Graf, J.; Kaplan, M.J.; Grayson, P.C. A role for muscarinic receptors in neutrophil extracellular trap formation and levamisole-induced autoimmunity. JCI Insight, 2017, 2(3) e89780
[http://dx.doi.org/10.1172/jci.insight.89780] [PMID: 28194438]
[155]
Irizarry-Caro, J.A.; Carmona-Rivera, C.; Schwartz, D.M.; Khaznadar, S.S.; Kaplan, M.J.; Grayson, P.C. Brief Report: drugs implicated in systemic autoimmunity modulate neutrophil extracellular trap formation. Arthritis Rheumatol., 2018, 70(3), 468-474.
[http://dx.doi.org/10.1002/art.40372] [PMID: 29121457]
[156]
Kretz-Rommel, A.; Rubin, R.L. Disruption of positive selection of thymocytes causes autoimmunity. Nat. Med., 2000, 6(3), 298-305.
[http://dx.doi.org/10.1038/73152] [PMID: 10700232]
[157]
Kretz-Rommel, A.; Duncan, S.R.; Rubin, R.L. Autoimmunity caused by disruption of central T cell tolerance. A murine model of drug-induced lupus. J. Clin. Invest., 1997, 99(8), 1888-1896.
[http://dx.doi.org/10.1172/JCI119356] [PMID: 9109433]
[158]
Mazari, L.; Ouarzane, M.; Zouali, M. Subversion of B lymphocyte tolerance by hydralazine, a potential mechanism for drug-induced lupus. Proc. Natl. Acad. Sci. USA, 2007, 104(15), 6317-6322.
[http://dx.doi.org/10.1073/pnas.0610434104] [PMID: 17404230]
[159]
Perez-Alvarez, R.; Pérez-de-Lis, M.; Ramos-Casals, M. BIOGEAS study group. Biologics-induced autoimmune diseases. Curr. Opin. Rheumatol., 2013, 25(1), 56-64.
[http://dx.doi.org/10.1097/BOR.0b013e32835b1366] [PMID: 23114587]
[160]
Catrina, A.I.; Trollmo, C.; af Klint, E.; Engstrom, M.; Lampa, J.; Hermansson, Y.; Klareskog, L.; Ulfgren, A.K. Evidence that anti-tumor necrosis factor therapy with both etanercept and infliximab induces apoptosis in macrophages, but not lymphocytes, in rheumatoid arthritis joints: extended report. Arthritis Rheum., 2005, 52(1), 61-72.
[http://dx.doi.org/10.1002/art.20764] [PMID: 15641091]
[161]
Atzeni, F.; Talotta, R.; Salaffi, F.; Cassinotti, A.; Varisco, V.; Battellino, M.; Ardizzone, S.; Pace, F.; Sarzi-Puttini, P. Immunogenicity and autoimmunity during anti-TNF therapy. Autoimmun. Rev., 2013, 12(7), 703-708.
[http://dx.doi.org/10.1016/j.autrev.2012.10.021] [PMID: 23207283]
[162]
Williams, E.L.; Gadola, S.; Edwards, C.J. Anti-TNF-induced lupus. Rheumatology (Oxford), 2009, 48(7), 716-720.
[http://dx.doi.org/10.1093/rheumatology/kep080] [PMID: 19416947]
[163]
Cunningham, M.; Gilkeson, G. Estrogen receptors in immunity and autoimmunity. Clin. Rev. Allergy Immunol., 2011, 40(1), 66-73.
[http://dx.doi.org/10.1007/s12016-010-8203-5] [PMID: 20352526]
[164]
Lahita, R.G. The immunoendocrinology of systemic lupus erythematosus. Clin. Immunol., 2016, 172, 98-100.
[http://dx.doi.org/10.1016/j.clim.2016.08.014] [PMID: 27546447]
[165]
Li, J.; McMurray, R.W. Effects of estrogen receptor subtype-selective agonists on autoimmune disease in lupus-prone NZB/NZW F1 mouse model. Clin. Immunol., 2007, 123(2), 219-226.
[http://dx.doi.org/10.1016/j.clim.2007.01.008] [PMID: 17336162]
[166]
Drehmer, M.N.; Andrade, D.; Pereira, I.A.; Marrero, A.R.; Muniz, Y.C.; de Souza, I.R.; Löfgren, S.E. Estrogen receptor alpha gene (ESR1) polymorphism can contribute to clinical findings in systemic lupus erythematosus patients. Lupus, 2017, 26(3), 294-298.
[http://dx.doi.org/10.1177/0961203316668041] [PMID: 27681518]
[167]
Weeding, E.; Sawalha, A.H. Deoxyribonucleic acid methylation in systemic lupus erythematosus: implications for future clinical practice. Front. Immunol., 2018, 9, 875.
[http://dx.doi.org/10.3389/fimmu.2018.00875] [PMID: 29740453]
[168]
Gorjestani, S.; Rider, V.; Kimler, B.F.; Greenwell, C.; Abdou, N.I. Extracellular signal-regulated kinase 1/2 signalling in SLE T cells is influenced by oestrogen and disease activity. Lupus, 2008, 17(6), 548-554.
[http://dx.doi.org/10.1177/0961203307087982] [PMID: 18539708]
[169]
Pan, W.; Zhu, S.; Yuan, M.; Cui, H.; Wang, L.; Luo, X.; Li, J.; Zhou, H.; Tang, Y.; Shen, N. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J. Immunol., 2010, 184(12), 6773-6781.
[http://dx.doi.org/10.4049/jimmunol.0904060] [PMID: 20483747]
[170]
Strickland, F.M.; Hewagama, A.; Lu, Q.; Wu, A.; Hinderer, R.; Webb, R.; Johnson, K.; Sawalha, A.H.; Delaney, C.; Yung, R.; Richardson, B.C. Environmental exposure, estrogen and two X chromosomes are required for disease development in an epigenetic model of lupus. J. Autoimmun., 2012, 38(2-3), J135-J143.
[http://dx.doi.org/10.1016/j.jaut.2011.11.001] [PMID: 22142890]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy